5 research outputs found

    Sherali-Adams and the binary encoding of combinatorial principles.

    Get PDF
    We consider the Sherali-Adams ( SA ) refutation system together with the unusual binary encoding of certain combinatorial principles. For the unary encoding of the Pigeonhole Principle and the Least Number Principle, it is known that linear rank is required for refutations in SA , although both admit refutations of polynomial size. We prove that the binary encoding of the Pigeonhole Principle requires exponentially-sized SA refutations, whereas the binary encoding of the Least Number Principle admits logarithmic rank, polynomially-sized SA refutations. We continue by considering a refutation system between SA and Lasserre (Sum-of-Squares). In this system, the unary encoding of the Least Number Principle requires linear rank while the unary encoding of the Pigeonhole Principle becomes constant rank

    Rank Lower Bounds in Propositional Proof Systems Based on Integer Linear Programming Methods

    Get PDF
    The work of this thesis is in the area of proof complexity, an area which looks to uncover the limitations of proof systems. In this thesis we investigate the rank complexity of tautologies for several of the most important proof systems based on integer linear programming methods. The three main contributions of this thesis are as follows: Firstly we develop the first rank lower bounds for the proof system based on the Sherali-Adams operator and show that both the Pigeonhole and Least Number Principles require linear rank in this system. We also demonstrate a link between the complexity measures of Sherali-Adams rank and Resolution width. Secondly we present a novel method for deriving rank lower bounds in the well-studied Cutting Planes proof system. We use this technique to show that the Cutting Plane rank of the Pigeonhole Principle is logarithmic. Finally we separate the complexity measures of Resolution width and Sherali-Adams rank from the complexity measures of Lovasz and Schrijver rank and Cutting Planes rank

    The Complexity of Some Geometric Proof Systems

    Get PDF
    In this Thesis we investigate proof systems based on Integer Linear Programming. These methods inspect the solution space of an unsatisfiable propositional formula and prove that this space contains no integral points. We begin by proving some size and depth lower bounds for a recent proof system, Stabbing Planes, and along the way introduce some novel methods for doing so. We then turn to the complexity of propositional contradictions generated uniformly from first order sentences, in Stabbing Planes and Sum-Of-Squares. We finish by investigating the complexity-theoretic impact of the choice of method of generating these propositional contradictions in Sherali-Adams
    corecore