38 research outputs found

    SUB-APERTURE FOCUSING ALGORITHM OF GEOSYNCHRONOUS SAR

    Get PDF

    Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling

    Get PDF
    This paper presents an efficient phase preserving processor for the focusing of data acquired in sliding spotlight and TOPS (Terrain Observation by Progressive Scans) imaging modes. They share in common a linear variation of the Doppler centroid along the azimuth dimension, which is due to a steering of the antenna (either mechanically or electronically) throughout the data take. Existing approaches for the azimuth processing can become inefficient due to the additional processing to overcome the folding in the focused domain. In this paper a new azimuth scaling approach is presented to perform the azimuth processing, whose kernel is exactly the same for sliding spotlight and TOPS modes. The possibility to use the proposed approach to process ScanSAR data, as well as a discussion concerning staring spotlight, are also included. Simulations with point-targets and real data acquired by TerraSAR-X in sliding spotlight and TOPS modes are used to validate the developed algorithm

    SAR Image Formation via Subapertures and 2D Backprojection

    Get PDF
    Radar imaging requires the use of wide bandwidth and a long coherent processing interval, resulting in range and Doppler migration throughout the observation period. This migration must be compensated in order to properly image a scene of interest at full resolution and there are many available algorithms having various strengths and weaknesses. Here, a subaperture-based imaging algorithm is proposed, which first forms range-Doppler (RD) images from slow-time sub-intervals, and then coherently integrates over the resulting coarse-resolution RD maps to produce a full resolution SAR image. A two-dimensional backprojection-style approach is used to perform distortion-free integration of these RD maps. This technique benefits from many of the same benefits as traditional backprojection; however, the architecture of the algorithm is chosen such that several steps are shared with typical target detection algorithms. These steps are chosen such that no compromises need to be made to data quality, allowing for high quality imaging while also preserving data for implementation of detection algorithms. Additionally, the algorithm benefits from computational savings that make it an excellent imaging algorithm for implementation in a simultaneous SAR-GMTI architecture

    A high-resolution, four-band SAR testbed with real-time image formation

    Get PDF
    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events

    Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing

    Get PDF
    This paper describes a factorized geometrical autofocus (FGA) algorithm, specifically suitable for ultrawideband synthetic aperture radar. The strategy is integrated in a fast factorized back-projection chain and relies on varying track parameters step by step to obtain a sharp image; focus measures are provided by an object function (intensity correlation). The FGA algorithm has been successfully applied on synthetic and real (Coherent All RAdio BAnd System II) data sets, i.e., with false track parameters introduced prior to processing, to set up constrained problems involving one geometrical quantity. Resolution (3 dB in azimuth and slant range) and peak-to-sidelobe ratio measurements in FGA images are comparable with reference results (within a few percent and tenths of a decibel), demonstrating the capacity to compensate for residual space variant range cell migration. The FGA algorithm is finally also benchmarked (visually) against the phase gradient algorithm to emphasize the advantage of a geometrical autofocus approach

    Multipath smearing suppression for synthetic aperture radar images of harbor scenes

    Get PDF
    Due to the periodic and non-periodic variations in the sea surface, smearing is caused by the multiple paths between the sea surface and man-made objects in synthetic aperture radar images of harbor areas. This smearing can cover the real targets and lead to false alarms. To derive the relationship between the motion of the sea surface and blurring in synthetic aperture radar images, a sway signal model is established, and the Doppler spectrum of the sea surface is found to undulate for well-focused targets with different shapes. Based on this finding, a subaperture combined detection algorithm based on an inverse coherence factor filter is developed to separate the unwanted pixels from the resultant synthetic aperture radar image. An energy balance is used to suppress interference and maintain the resolution of the real scene. The algorithm can be automatically applied to synthetic aperture radar images. The experimental results with TerraSAR-X spotlight mode data show that this method can effectively detect and mitigate the effects of time-varying multipath phenomena

    Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection

    Get PDF
    This paper describes a Fast Factorized Back-Projection (FFBP) formulation that includes a fully integrated autofocus algorithm, i.e. the Factorized Geometrical Autofocus (FGA) algorithm. The base-two factorization is executed in a horizontal plane, using a Merging (M) and a Range History Preserving (RHP) transform. Six parameters are adopted for each sub-aperture pair, i.e. to establish the geometry stage-by-stage via triangles in 3-dimensional space. If the parameters are derived from navigation data, the algorithm is used as a conventional processing chain. If the parameters on the other hand are varied from a certain factorization step and forward, the algorithm is used as a joint image formation and autofocus strategy. By regulating the geometry at multiple resolution levels, challenging defocusing effects, e.g. residual space-variant Range Cell Migration (RCM), can be corrected. The new formulation also serves another important purpose, i.e. as a parameter characterization scheme. By using the FGA algorithm and its inverse, relations between two arbitrary geometries can be studied, in consequence, this makes it feasible to analyze how errors in navigation data, and topography, affect image focus. The versatility of the factorization procedure is demonstrated successfully on simulated Synthetic Aperture Radar (SAR) data. This is achieved by introducing different GPS/IMU errors and Focus Target Plane (FTP) deviations prior to processing. The characterization scheme is then employed to evaluate the sensitivity, to determine at what step the autofocus function should be activated, and to decide the number of necessary parameters at each step. Resulting FGA images are also compared to a reference image (processed without errors and autofocus) and to a defocused image (processed without autofocus), i.e. to validate the novel approach further
    corecore