300 research outputs found

    Fractional Focusing and the Chirp Scaling Algorithm With Real Synthetic Aperture Radar Data

    Get PDF
    abstract: For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it does not require interpolation, and it can be used on both stripmap and spotlight SAR systems. Another transform that can be used to enhance the processing of SAR image formation is the fractional Fourier transform (FRFT). This transform has been recently introduced to the signal processing community, and it has shown many promising applications in the realm of SAR signal processing, specifically because of its close association to the Wigner distribution and ambiguity function. The objective of this work is to improve the application of the FRFT in order to enhance the implementation of the CSA for SAR processing. This will be achieved by processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR platform operating in the C-band, providing imagery with resolution between 8 and 100 meters at incidence angles of 10 through 59 degrees. The phase-history data will be processed into imagery using the conventional chirp scaling algorithm. The results will then be compared using a new implementation of the CSA based on the use of the FRFT, combined with traditional SAR focusing techniques, to enhance the algorithm's focusing ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT can also be used to provide focusing enhancements at extended ranges.Dissertation/ThesisM.S. Electrical Engineering 201

    Reduction of Vibration-Induced Artifacts in Synthetic Aperture Radar Imagery

    Get PDF
    Target vibrations introduce nonstationary phase modulation, which is termed the micro-Doppler effect, into returned synthetic aperture radar (SAR) signals. This causes artifacts, or ghost targets, which appear near vibrating targets in reconstructed SAR images. Recently, a vibration estimation method based on the discrete fractional Fourier transform (DFrFT) has been developed. This method is capable of estimating the instantaneous vibration accelerations and vibration frequencies. In this paper, a deghosting method for vibrating targets in SAR images is proposed. For single-component vibrations, this method first exploits the estimation results provided by the DFrFT-based vibration estimation method to reconstruct the instantaneous vibration displacements. A reference signal, whose phase is modulated by the estimated vibration displacements, is then synthesized to compensate for the vibration-induced phase modulation in returned SAR signals before forming the SAR image. The performance of the proposed method with respect to the signal-to-noise and signalto-clutter ratios is analyzed using simulations. Experimental results using the Lynx SAR system show a substantial reduction in ghosting caused by a 1.5-cm 0.8-Hz target vibration in a true SAR image

    FMCW rail-mounted SAR: Porting spotlight SAR imaging from MATLAB to FPGA

    Get PDF
    In this work, a low-cost laptop-based radar platform derived from the MIT open courseware has been implemented. It can perform ranging, Doppler measurement and SAR imaging using MATLAB as the processor. In this work, porting the signal processing algorithms onto a FPGA platform will be addressed as well as differences between results obtained using MATLAB and those obtained using the FPGA platform. The target FPGA platforms were a Virtex6 DSP kit and Spartan3A starter kit, the latter was also low-cost to further reduce the cost for students to access radar technology

    ΠŸΡ€ΠΎΡΡ‚ΠΎΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ компСнсации ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΉ свСтящихся Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΠΎ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ для Ρ€Π΅ΠΆΠΈΠΌΠ° Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π° РБА (Π°Π½Π³Π».)

    Get PDF
    Introduction.Β  Range Cell Migration (RCM) is a source of image blurring in synthetic aperture radars (SAR). There are two groups of signal processing algorithms used to compensate for migration effects. The first group includes algorithms that recalculate the SAR signal from the "along–track range – slant range" coordinate system into the "along-track rangeΒ  –  cross-track range"Β  coordinates using the method of interpolation. The disadvantage of these algorithms is their considerable computational cost. Algorithms of the second group do not rely on interpolation thus being more attractive in terms of practical application.Aim. To synthesize a simple algorithm for compensating for RCM without using interpolation.Materials and methods. The synthesis was performed using a simplified version of the Chirp Scaling algorithm.Results.Β  A simple algorithm, which presents a modification of the Keystone Transform algorithm, was synthesized. The synthesized algorithm based on Fast Fourier Transforms and the Hadamard matrix products does not require interpolation.Conclusion. A verification of the algorithm quality via mathematical simulation confirmed its high efficiency. Implementation of the algorithm permits the number of computational operations to be reduced. The final radar imageΒ  produced using the proposed algorithm is built in the true Cartesian coordinates. The algorithm can be applied for SAR imaging of moving targets. The conducted analysis showed that the algorithm yields Β theΒ  image of a moving target provided that the coherent processing interval is sufficiently large. The image lies along a line, which angle of inclination is proportional to the projection of the target relative velocity on the line-of-sight. Estimation of the image parameters permits the target movement parameters to be determined.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠœΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ свСтящихся Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΠΎ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ источником расфокусировки Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°Ρ… с синтСзированной Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€ΠΎΠΉ (РБА). БущСствуСт Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сигналов для компСнсации ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΉ. ΠŸΠ΅Ρ€Π²Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π° основании ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ интСрполяции осущСствляСтся пСрСсчСт принятых сигналов ΠΈΠ· систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ "ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ – наклонная Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ"Β  Π² систСму "ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ – попСрСчная Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ". НСдостатком Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Π΄Π°Π½Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ являСтся ΠΈΡ… высокая Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ. Алгоритмы Π²Ρ‚ΠΎΡ€ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ интСрполяционныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ поэтому Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ для практичСского использования.ЦСль.Β  Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ простой Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ компСнсации ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΉ Π±Π΅Π· примСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ интСрполяции.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π· Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° осущСствлСн Π½Π° основании ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΠΎΠΉ вСрсии Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π›Π§Πœ-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ (Chirp Scaling Algorithm).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½ простой Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° "Π·Π°ΠΌΠΊΠΎΠ²ΠΎΠ³ΠΎ камня".Алгоритм основан Π½Π° использовании быстрых ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π€ΡƒΡ€ΡŒΠ΅ ΠΈ поэлСмСнтных ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΉ. Π’ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ΅ Π½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ интСрполяции.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° качСства Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π½Π° основС матСматичСского модСлирования ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»Π° Π΅Π³ΠΎ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. ИспользованиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° позволяСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ количСство Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ.ЀинальноС Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°, строится Π²Β  истинной Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Алгоритм ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ для построСния РБА ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ двиТущихся Ρ†Π΅Π»Π΅ΠΉ. Π”Π°Π½Π½Ρ‹ΠΉ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ позволяСт ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΠΎ сфокусированноС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ двиТущСйся Ρ†Π΅Π»ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» синтСзирования достаточно Π²Π΅Π»ΠΈΠΊ. Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ двиТущСйся Ρ†Π΅Π»ΠΈ выстраиваСтся вдоль ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° прямой, ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ скорости Ρ†Π΅Π»ΠΈ Π½Π° линию визирования. ΠžΡ†Π΅Π½ΠΊΠ° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² изобраТСния позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ двиТСния Ρ†Π΅Π»ΠΈ

    Detection and classification of vibrating objects in SAR images

    Get PDF
    The vibratory response of buildings and machines contains key information that can be exploited to infer their operating conditions and to diagnose failures. Furthermore, since vibration signatures observed from the exterior surfaces of structures are intrinsically linked to the type of machinery operating inside of them, the ability to monitor vibrations remotely can enable the detection and identification of the machinery. This dissertation focuses on developing novel techniques for the detection and M-ary classification of vibrating objects in SAR images. The work performed in this dissertation is conducted around three central claims. First, the non-linear transformation that the micro-Doppler return of a vibrating object suffers through SAR sensing does not destroy its information. Second, the instantaneous frequency (IF) of the SAR signal has sufficient information to characterize vibrating objects. Third, it is possible to develop a detection model that encompasses multiple scenarios including both mono-component and multi-component vibrating objects immersed in noise and clutter. In order to cement these claims, two different detection and classification methodologies are investigated. The first methodology is data-driven and utilizes features extracted with the help of the discrete fractional Fourier transform (DFRFT) to feed machine-learning algorithms (MLAs). Specifically, the DFRFT is applied to the IF of the slow-time SAR data, which is reconstructed using techniques of time-frequency analysis. The second methodology is model-based and employs a probabilistic model of the SAR slow-time signal, the Karhunen-Loève transform (KLT), and a likelihood-based decision function. The performance of the two proposed methodologies is characterized using simulated data as well as real SAR data. The suitability of SAR for sensing vibrations is demonstrated by showing that the separability of different classes of vibrating objects is preserved even after non-linear SAR processing Finally, the proposed algorithms are studied when the range-compressed phase-history data is contaminated with noise and clutter. The results show that the proposed methodologies yields reliable results for signal-to-noise ratios (SNRs) and signal-to-clutter ratios (SCRs) greater than -5 dB. This requirement is relaxed to SNRs and SCRs greater than -10 dB when the range-compressed phase-history data is pre-processed with the Hankel rank reduction (HRR) clutter-suppression technique

    A Large Along-Track Baseline Approach for Ground Moving Target Indication Using TanDEM-X

    Get PDF
    In the paper a new method for ground moving target indication (GMTI) using two satellites (i.e. the TerraSAR-X and the TanDEM-X satellite) together is presented. The along-track baseline between the satellites is chosen to be in the order of several kilometres, so that each satellite observes the same moving vehicles at different times in the order of one to several seconds. The proposed method allows the estimation of the ground velocity of the moving targets as well as the estimation of the broadside positions without the need of complex bistatic processing techniques
    • …
    corecore