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ABSTRACT

For synthetic aperture radar (SAR) image formation processing, the chirp scaling al-

gorithm (CSA) has gained considerable attention mainly because of its excellent target

focusing ability, optimized processing steps, and ease of implementation. In particular,

unlike the range Doppler and range migration algorithms, the CSA is easy to implement

since it does not require interpolation, and it can be used on both stripmap and spotlight

SAR systems. Another transform that can be used to enhance the processing of SAR

image formation is the fractional Fourier transform (FRFT). This transform has been re-

cently introduced to the signal processing community, and it has shown many promising

applications in the realm of SAR signal processing, specifically because of its close asso-

ciation to the Wigner distribution and ambiguity function.

The objective of this work is to improve the application of the FRFT in order to

enhance the implementation of the CSA for SAR processing. This will be achieved by

processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR

platform operating in the C-band, providing imagery with resolution between 8 and 100

meters at incidence angles of 10 through 59 degrees. The phase-history data will be

processed into imagery using the conventional chirp scaling algorithm. The results will

then be compared using a new implementation of the CSA based on the use of the FRFT,

combined with traditional SAR focusing techniques, to enhance the algorithm’s focusing

ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT

can also be used to provide focusing enhancements at extended ranges.
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CHAPTER 1

Introduction

1.1 Research, Motivation and Objectives

Synthetic aperture radar (SAR) is a microwave imaging technique capable of pro-

viding high-resolution imagery from data collected by a relatively small antenna [4]. The

SAR takes advantage of the forward motion of the platform while transmitting and receiv-

ing short waveforms or pulses to form the equivalent of a long antenna. It is a coherent

system, in that it retains both the phase and magnitude of the received echos which are

synthesized in the signal processor to produce high resolution imagery [5]. Compared to

passive electro-optical systems, SAR is an active system capable of collecting imagery in

day/night and cloud cover conditions.

SAR was initially developed by Carl Wiley at Goodyear Aircraft Company in Goodyear,

Arizona, in 1951 and was originally called Doppler Radar Beam Sharpening. With the

onset of Moore’s law and the digital processor, this technology has continued to evolve

from the early optical processors, where phase-history was recorded on film and pro-

cessed on an optical bench, to today’s high speed digital processors. For strip-mapping

SAR, where the antenna is fixed with respect to the platform, high resolution radar images

are formed on digital processors using two-dimensional (2-D) correlation algorithms. For

spotlight SAR, where the antenna is steered to continuously illuminate the same spot,

image formation relies on the principle of computer tomography [4]. Another imaging

mode is inverse synthetic aperture radar (ISAR), where the antenna or radar beam is sta-

tionary and the movement of the target is used to create the synthetic aperture. Based on

the imaging modes, different image formation algorithms are used. Strip-mapping SAR

uses range Doppler, range migration and chirp scaling algorithms for image formation

[1], whereas spotlight SAR uses the polar format, range migration and chirp scaling al-
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gorithms [6]. The image formation methods used by ISAR combine the range Doppler

algorithm (RDA) along with time-frequency methods such as linear frequency-modulated

(LFM) chirp detection approaches [7, 8]. Note that SAR signals containing moving tar-

gets (including ISAR) are multi-component LFM signals and, in order to separate and

focus this energy, efficient LFM detection methods are necessary [8].

For high quality imagery, autofocus methods are necessary to remove quadratic and

higher order phase errors caused by uncompensated motion between the antenna and the

scene being imaged. Other phase error sources are algorithm/hardware limitations and

propagation effects [6]. To correct for these phase errors (which can cause image de-

focus), autofocusing techniques are used to estimate the phase error and correct it using

a phase cancellation filter. As with the image formation algorithms, different autofocus

methods are more applicable to the imaging modes. For strip-mapping, map-drift and

contrast maximization methods are used [1], and for spotlight, phase gradient autofocus

(PGA), map-drift and contrast maximization methods are commonly used [6, 9].

The chirp scaling algorithm (CSA) for SAR image formation was first introduced in

1994 [10] and has had wide spread acceptance, mainly due to its good focusing capabil-

ities and ease of implementation. The CSA provided a means of performing range cell

migration correction (RCMC) using fast Fourier transform (FFT) complex multiplication

methods. This approach is inherently phase preserving and can be implemented more

efficiently than the interpolation method used by the conventional RDA, where accuracy

is limited to the size of the interpolation kernel and depends on range varying coeffi-

cients [1, 6]. Another feature of the CSA is that it provides secondary range compression

(SRC) in its 2-D match filtering process. The SRC is an efficient method for handling the

range-azimuth coupling, which becomes increasingly necessary for large-swath, large-

beamwidth and high squint angle applications.

Recently, the fractional Fourier transform (FRFT) has been used to enhance the fo-
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cusing capabilities of the CSA [2]. The FRFT is a subset of the Fourier transform (FT)

that was introduced in the field of optics by Namias in the 1980s [11] and then to the

signal processing community in 1994 [2, 12]. Whereas the FT forms orthogonal coor-

dinates used to define the time-frequency (TF) plane, the FRFT generalizes the FT by

providing a continuum of fractional domains between the conventional TF domain [13].

The FRFT achieves this by rotating the TF plane in the counter clockwise direction with

the use of a rotational parameter α , which is periodic with period 2π . Since the FRFT is

a generalization of the FT, it is also a linear, unitary transform.

Having unitary and Hermitian operators associated with the FRFT [14, 15] allows for

a definition of the fractional autocorrelation function [13]. The fractional autocorrelation

function at arbitrary angles corresponds to radial slices of the ambiguity function (AF)

passing through the origin at the same arbitrary angles, reducing a 2-D AF search to a

1-D fractional autocorrelation function search [16, 17]. Using a fast discrete FRFT ap-

proximation with the fractional autocorrelation function provides an efficient detection

method, especially for LFM signals, in low signal-to-noise ratio (SNR) environments.

To characterize the accuracy of LFM detection using the FRFT in varying SNR environ-

ments, the Cramér-Rao lower bound (CRLB) for LFM mean squared error is often used

as a threshold for comparing the fractional autocorrelation function results.

The integration of the CSA with the FRFT is called the fractional chirp scaling al-

gorithm (FrCSA) [2]. Specifically, the FRFT enhances the CSA processing using a local

optimization procedure (LOP), and the resulting FrCSA provides significant improve-

ments to the SNR and sidelobe reduction ratio (SLRR) when compared to classical FFT

implementations.

One measure of SAR image quality is the quadratic phase error (QPE) [1, 6], which, if

not corrected, will contribute to elevated sidelobes and a broadening of a target’s impulse

response width (IRW). A mismatch of frequency-modulation (FM) chirp rates between

3



the received signal and the matched filter will contribute to QPE, thereby decreasing im-

age quality. One cause for the mismatch is the uncompensated motion between the radar

antenna and the target. In addition to using the FRFT to enhance the focusing capabilities

of the CSA, recent works have indicated that the FRFT has desirable properties that can

be used to develop new methods for correcting this mismatch [2, 8, 18]. To use the FRFT

to enhance the CSA, we will leverage the FrCSA concept of using the LOP to produce

an optimal response by first detecting the FM chirp rate mismatch using the fractional

autocorrelation function. The FM rate mismatch will be corrected in the range direction

on a pulse-by-pulse basis in the unprocessed phase-history data prior to CSA processing.

Since this occurs prior to image formation, it can be considered an update to the motion

compensation to correct for line-of-sight (LOS) translational motion. This update causes

changes in the distance between the target and sensor. For corrections in the azimuth

direction (QPE caused by estimation error of the effective radar velocity), we will use an

LOP to maximize a target’s contrast, thereby providing improvements in SNR and peak-

to-sidelobe ratio (PLSR). Having the ability to maximize contrast using the FRFT is a

result of the extra degree of freedom provided by the use of the transform [2].

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides the CSA signal

model and is the basis for improvements provided by the application of fractional opti-

mization techniques. The signal model is derived in Ian Cumming’s and Frank Wong’s

book, digital processing of Synthetic Aperture Radar Data [1]; it is presented in this

section and will be cited throughout this thesis. Another book by Walter Carrara, Ron

Goodman and Ronald Majewski Spotlight Synthetic Aperture Radar: Signal Processing

Algorithms [6] provides a derivation of the CSA and is also referenced in this section.

Chapter 3 provides an overview of the fractional Fourier transform by providing the
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FRFT kernel and listing some of the key properties, specifically the relationship with the

FT and the FRFT additivity property. The relationship of the FRFT with the Wigner dis-

tribution, and thus the ambiguity function, is also presented. This relationship is needed

to demonstrate how the fractional autocorrelation function is used in LFM detection. The

limitation of not having a fast FRFT algorithm comparable to the FFT is noted along with

a method for computing the continuous FRFT with complexity O(N log2 N), where N is

the signal length.

For the FRFT to be a useful tool in SAR signal processing, a transform rotational

parameter is necessary to tune the transform for an optimal response. By concentrating on

the mismatch between the CSA matched filter FM rates and the FM rates of the returned

SAR signal, LFM detection can be used to obtain the FRFT optimal parameters. Chapter

4 examines LFM detection accuracy by comparing the FRFT detection performance with

the CRLB for LFM signals.

Chapter 5 presents the proposed focusing technique which is based on enhancing the

CSA using the FRFT with optimizations obtained using a local optimization procedure.

This fractional focusing method is a first attempt at implementing the FrCSA as provided

in [2], with modifications necessitated by using optimized FRFT rotational parameters

for a RADARSAT-1 scene.

In Chapter 6, we use a local optimization procedure to detect the FM rate mismatch

between the signal and the matched filter using the fractional autocorrelation function.

The mismatch in FM rates are used to optimize the FRFT pulse compression response

for a RDRASAT-1 scene, by providing the optimizations to the enhanced focusing CSA

as provided in Chapter 5. Comparisons of the CSA and enhanced CSA are provided by

evaluation of contrast and point target analysis.
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CHAPTER 2

Chirp Scaling Algorithm

2.1 Chirp Scaling Algorithm Description

The chirp scaling algorithm (CSA), also known as the differential range deramp algo-

rithm, was presented in [1, 6, 10] as a refinement of the classical range Doppler algorithm

(RDA) to provide very high quality synthetic aperture radar (SAR) imagery. The CSA

has received widespread acceptance due to its efficient implementation and the ability to

perform secondary range compression (SRC), which can limit the focusing accuracy of

higher squint and wide-aperture systems using the RDA. This improvement is a benefit

of the phase-history data being available in the 2-D frequency domain where SRC can

be made azimuth frequency dependent. While the RDA algorithm uses interpolation to

implement range cell migration correction (RCMC), the CSA uses (a) frequency shifting

to correct for the constant migration component, and (b) chirp scaling to correct for the

linear migration component. The net result of the scaling and shifting operations, also

referred to as differential and bulk RCMC, respectively, is that a target’s energy is aligned

to the correct range position.

As the scaling operation is better matched to chirp-encoded signals, a requirement for

the CSA is that the signal or phase-history data must be chirped in the range direction. If

the collection system employs a de-ramp or de-chirp on receive, as many do, the chirp-

encoding will need to be reapplied prior to the scaling operation. Also, the CSA works

well for both stripmap and spotlight SAR collection systems [6].

We consider a signal, such as a linear frequency-modulated (LFM) chirp, that is given

by

s(t) = exp( j2π(Kr/2) t2) (2.1)

with frequency-modulation (FM) rate Kr Hz2, that is transmitted by a SAR. The signal is
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reflected off a point reference target and is migrated at different azimuth locations η due

to constant changes in range throughout the synthetic aperture. The time taken for the

signal to travel to the target and return is given by τ = 2R/c, where R is the range of the

target from the radar and c = 3×108 m/s is the speed of wave propagation in light. This

scenario is depicted in Figure 2.1. The received baseband signal after the range migration

is given by [1],

sr(t,η) = A0 wr

(
t−

2Rη

c

)
wa

(
η− ηc

c

)
e− j4π f0Rη/c s

(
t−

2Rη

c

)
, (2.2)

where

Rη =
(
R2

0 +V 2
r η

2)1/2
, (2.3)

η is the azimuth time, A0 is an arbitrary complex constant, ηc is the beam center offset

time, wr(t) is the rectangular range envelope function, wa(η) is the sinc-squared azimuth

envelope function, f0 is the radar center frequency, Rη is the slant range at azimuth time

η , R0 is the slant range of closest approach, and Vr is the effective radar velocity.

To correct for this range migration and shift the signal to its proper location, a fre-

quency modulation is applied to a chirp-encoded signal to achieve a shift or scaling of

the signal [19]. Note that the maximum shift or scale change that can be implemented

by the frequency modulation cannot be too large in order to avoid any problems with the

associated change in the signal’s center frequency and bandwidth. This restriction is mit-

igated by applying RCMC in two steps so that only the difference in range cell migration

(RCM) at different ranges is corrected in the chirp scaling operation and the bulk RCM is

completed in the 2-D frequency domain along with SRC [1]. The η0 point in Figure 2.1 is

also referred to as the broadside range position, which is the position where the azimuth

frequency fη = fηc . Since the energy of a target should align along a constant range, the

range to a target in this pulse will be the range for which the target energy of all pulses

are corrected to. In other words, no RCMC will be applied to the pulse corresponding to

η0.
7



The CSA consists of four fast Fourier transforms (FFTs) and three phase multiplies.

Its derivation can be provided using Equation (2.2) for the received baseband signal and

the range equation in (2.3). Note that the signal is transformed into the 2-D frequency

domain with the use of 1-D FFTs and the principle of stationary phase (POSP) which is

used to approximate the Fourier transform (FT) integrals.

Figure 2.1: Range migration of a single target in 2-D processor memory, with each cell

corresponding to an in-phase quadrature or I & Q complex sample format.

The CSA steps are presented in [1], and Figure 2.2 is a flow diagram of the algorithm.

Given phase-history data which is in the range-time/azimuth-time domain, the CSA steps

are as follows.

1. The azimuth FFT is first computed in order to transform the received data, sr(t,η),
into the range Doppler domain.

2. Chirp scaling is applied, using a phase multiply to equalize the range migration of
all targets.
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3. A range FFT is used to transform the data to the 2-D frequency domain.

4. A phase multiply is performed with a reference function, which applies range com-
pression, SRC, and bulk RCMC in the same operation.

5. A range inverse FFT (IFFT) is performed to transform the data back to the range
Doppler domain.

6. A phase multiply is performed to apply azimuth compression with a time varying
match filter. A phase correction is also required as a result of the chirp scaling in
step 2, which can be incorporated into the same phase multiply.

7. The final azimuth IFFT is computed to transform the compressed data to the SAR
image domain.

Figure 2.2: Flow diagram of the chirp scaling algorithm. Here, Rg corresponds to range

and Az corresponds to azimuth.

Figure 2.3 shows the collection geometry for an orbiting platform. The CSA is sim-

ilarly applicable to airborne platforms. The slant range variable R is actually the instan-

taneous slant range Rη that continuously changes as the beam footprint moves across the

9



target at Vr. As shown in (2.3), a target’s slant range will be hyperbolic due to the constant

change in range from the broadside position of the antenna.

Figure 2.3: Satellite collection geometry, Figure taken from [1].

Figure 2.4 provides a definition of the image data array and demonstrates how the

azimuth and range directions are referenced. The conventions in Figures 2.1 and 2.4

will be used throughout this study, in that range will always be increasing from left to

right and azimuth will always be increasing from bottom to top. The term fast-time will

indicate the range direction and range-bin will be used to indicate a column vector at a

constant range. The term slow-time will indicate the azimuth direction and pulse number

will indicate a row vector of constant azimuth.

During the imaging operation or collect, pulses are received at the pulse repetition

frequency (PRF) and sampled at the range sampling rate to form the 2-D data array suit-

able for image formation processing. In Figure 2.4, the variables ρr and ρa refer to the

range and azimuth resolutions, respectively. For a radar signal, range is the linear dis-

tance along the line of sight from the radar to target. For stripmap systems with relatively
10



small squint, range is approximately perpendicular to the radar flight path and its resolu-

tion is given with ρr = c/(2BW), where c is the speed of wave propagation in light and

BW is the transmitted bandwidth. For two objects to be resolved,in the range direction,

they must be separated by a distance greater than the resolution ρr. Azimuth is the linear

distance in the direction parallel to the radar flight path. It can also be considered as the

along-track direction in an image, since it is the relative along-track position of an ob-

ject within the antenna’s field-of-view, following the radar’s line of flight. For stripmap

systems with relatively small squint, the azimuth direction is perpendicular to the range

direction, and the resolution of an image in the azimuth direction is normally quoted as

ρa = La/2, where La is the length of the antenna along the azimuth direction. For two ob-

jects to be resolved,in the azimuth direction, they must be separated by a distance greater

than the resolution ρa.

Figure 2.4: Range and azimuth reference to image data array. Each cell (corresponding to

an in-phase quadrature or I & Q complex sample format) represents the range resolution

ρr and azimuth resolution ρa.
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2.2 Example of Chirp Scaling

As noted, the chirp scaling concept was initially explained in [19] and the example

discussed in this section for SAR range processing was provided in [1]. Since the term

scaling is customarily used to indicate time or axis scaling, we wanted to provide this

example to clarify its use in the CSA and also show how the residual phase term is a

product of the scaling operation. In particular, by chirp scaling, we only mean multiply-

ing an LFM chirp by an exponential linear phase term to cause a frequency shift in the

LFM chirp; then we show that this is equivalent to a time shift of the LFM chirp.

2.2.1 Constant Shift (bulk RCMC)

In order to demonstrate the CSA with a constant shift, we multiply the LFM chirp

with chirp rate Kr, and shifted in time t = ta,

s0(t) =exp
{

j2π(Kr/2)(t− ta)2} (2.4)

with the following complex exponential linear phase signal (also called the scaling func-

tion)

sp(t) =exp{ j2πKr(t− ta)∆t} (2.5)

to obtain the scaling operation

s1(t) =s0(t)sp(t) = exp
{

jπ(Kr/2)(t− ta)2}exp{ j2π(t− ta)∆t} (2.6)

This multiplication actually results in frequency shifting the LFM chirp s0(t) by fsc =

Kr∆t. This multiplication is also referred to as chirp scaling. By rearranging the terms in

Equation (2.6), we can also express it as,

s1(t) =exp
{

jπ(Kr/2)(t− ta +∆t)2}exp
{
− jπKr∆t2} . (2.7)
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Equation (2.7) shows that the frequency-shifted (or scaled) LFM chirp by fsc = Kr∆t

is equivalent to time-shifting the LFM by tsc = ∆t plus an undesired residual phase that

can be removed during azimuth matched filtering [1].

Figure 2.5: Time-frequency chirp scaling (constant shift).

Figure 2.5 is a plot of the time-frequency plane showing how the scaling or frequency

shift fsc = Kr∆t causes the ∆t shift from the original center t. This constant shift in fre-

quency is the bulk RCMC in the CSA.

2.2.2 Shift Varying Linearly with Range (differential RCMC)

Figure 2.6 shows three equally spaced targets in the time-frequency (TF) plane having

the same FM rate. The scaling function (dashed line) is itself an LFM signal and for this

example, αKr is positive causing a compression of the range scale. This compression

results in the targets shifting closer to the center reference point. In the derivation of the

CSA, all targets are shifted in relation to a common reference location in range (Rre f )

which is a line where no time shift is applied. In Figure 2.6, Rre f will correspond to

the center target where t = 0. For this example, we will use the following LFM scaling

13



function,

sp(t) =exp
{

j2π(αKr/2)t2}. (2.8)

Figure 2.6: Chirp scaling effect on the range position of three targets with the same FM

rate.

When we multiply s0(t) with ta = 0 in (2.4) with the LFM scaling function in (2.8), the

resulting scaling transformation is a change in the FM rate of the LFM chirp from Kr to

Kr(1+α). Specifically, the new LFM chirp signal is given by,

ssc(t) =s0(t)sp(t) = exp( jπKrt2)exp( jπαKrt2) = exp( jπKr(1+α)t2) (2.9)

which changes the frequency of each target by fsc = αKrt. In other words, the shift in

time or range is provided by αt and is proportional to the distance from Rre f or t = 0. The

frequency shift ∆ f required to move the target from tb to t ′b can be obtained from,

∆ f tb =Kr(t ′b− tb) =−Kr∆t ′b. (2.10)

This relationship can be shown in the time-frequency plane using the Wigner distribution

of the original LFM chirp and the transformed LFM chirp. Specifically, it can be shown

that [20]

Wssc(t, f ) =Ws0(t, f +αKrt) (2.11)
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where

Ws0(t, f ) =
∫

∞

−∞

s0

(
t +

τ

2

)
s∗0
(

t− τ

2

)
exp(− j2πτ f )dτ (2.12)

is the Wigner distribution of s0(t).

2.3 Chirp Scaling

In the azimuth-time, range-time domain, a target’s range curvature will depend on

both the azimuth and range position. In the azimuth-frequency range-time domain, also

referred to as the range Doppler domain, the range curvature will not depend on the

target’s azimuth location since all target energy will align along a constant range [6]. For

this reason, chirp scaling is applied in this domain using a 2-D or azimuth dependent

range phase multiplication.

The first step for the CSA is to compute the FT of the received signal into the range

Doppler domain. Since a closed form expression for the transform is not available, an

approximation will be used by applying the POSP [1, 21]. Specifically we take the FT of

sr(t,η) in Equation (2.2) from the azimuth time η to the Doppler fη to obtain

Srd(t, fη) =Awr

(
t− 2R0

cD( fηre f ,Vrre f )

)
Wa( fη − fηc)exp

{
− j

4π f0D( fη ,Vr)

c

}

×exp

{
jπKm

c2

[
1−

D( fη ,Vrre f )

D( fηre f ,Vrre f )

][
R0

D( fη ,Vr)
−

Rre f

D( fη ,Vr)

]2
}

(2.13)

where A is a complex constant, Wa( fη) is the Doppler spectrum envelope or FFT of

wa(η) in (2.2), D( fη ,Vr) is the migration parameter in the range Doppler domain for the

effective radar velocity Vr and is given by,

D( fη ,Vr) =

√
1−

c2 f 2
η

4V 2
r f 2

0
, (2.14)
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and Km is the modified range FM rate

Km =
Kr

1−KrcR0 f 2
η/(2V 2

r f 3
0 D3( fη ,Vr))

. (2.15)

For LFM chirps, the azimuth dependent scaling function is given by

ssc(t, fη) =exp

{
jπKm

[
D( fηre f ,Vrre f )

D( fη ,Vrre f )
−1

]
t2

}
(2.16)

assuming no shift was applied to the target at Rre f .

With the Srd(t, fη) and ssc(t, fη) defined as in (2.13) and (2.16) respectively, the azimuth

dependent chirp scaling is achieved with

S1(t, fη) =ssc(t, fη)Srd(t, fη). (2.17)

2.4 Range Compression

After the chirp scaling phase multiplication, the phase-history data is transformed to

the azimuth-frequency, range-frequency domain by taking the FT of S1(t, fη) in the range

direction, from t to ft , to obtain S2( ft , fη). The data is now in the 2-D frequency domain

and the POSP is used again to evaluate the integral providing S2( ft , fη)

S2( ft , fη) = A1Wr( ft)Wa( fη − fηc)

×exp
{
− j

4πR0 f0D( fη ,Vr)

c

}
exp

{
− j

πD( fη ,Vr)

KmD( fηre f ,Vr)
f 2
t

}
exp

{
− j

4πR0

cKmD( fηre f ,Vrre f )
ft

}

×exp

{
− j

4π

c

[
1

D( fη ,Vrre f )
− 1

D( fηre f ,Vrre f )

]
Rre f ft

}

×exp

{
j
4πKm

c2

[
1−

D( fη ,Vrre f )

D( fηre f ,Vrre f )

][
R0

D( fη ,Vr)
−

Rre f

D( fη ,Vr)

]2
}
, (2.18)

where Wr( ft) is the range spectrum envelope or FFT of wr(t) in (2.13). The second

phase multiplication in the CSA is the range matched filter, which is a 2-D filter with

dependencies on both azimuth and range and is applied to all range-frequencies with a
16



dependence on fη . The matched filter applies the bulk RCMC and SRC by removing the

second and fourth exponential terms of (2.18) resulting in S3( ft , fη).

S3( ft , fη) = A1Wr( ft)Wa( fη − fηc)

×exp
{
− j

4πR0 f0D( fη ,Vr)

c

}
exp

{
− j

4πR0

cD( fηre f ,Vrre f )
ft

}

×exp

{
j
4πKm

c2

[
1−

D( fη ,Vrre f )

D( fηre f ,Vrre f )

][
R0

D( fη ,Vr)
−

Rre f

D( fη ,Vr)

]2
}

(2.19)

The last step in range compression is to compute the 1-D inverse FT of S3( ft , fη) from ft

to t, returning it to the range Doppler domain

S4(t, fη) = A2ρr

(
t− 2R0

cD( fηre f ,Vrre f

)
Wa( fη − fηc)exp

{
− j

4πR0 f0D( fη ,Vr)

c

}

×exp

{
j
4πKm

c2

[
1−

D( fη ,Vrre f )

D( fηre f ,Vrre f )

][
R0

D( fη ,Vr)
−

Rre f

D( fη ,Vr)

]2
}

(2.20)

where the range envelope ρr(t) is the IFFT of Wr( ft) in (2.19). The signal S4(t, fη) is

now compressed in range with the range curvature corrected for all targets in the scene.

Figure 2.7 shows the range compressed data in the range Doppler domain. For this scene,

the amount of RCM is small and would only be noticeable in the full resolution scene

data.
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Figure 2.7: RADARSAT-1 range Doppler (Vancouver Airport BC).

Figure 2.8 plots the range cell migration throughout the processed aperture at the range

reference location Rre f . As the plot indicates, the total RCM is 137 m and if we use ρr =

c/(2BW) with the bandwidth BW = 30.11 MHz, then the range resolution is ρr = 4.97 m

indicating the total RCM is ≈ 27 range-bins or pixels, which means the complete RCM

of 27 pixels is spread across the 4096 samples of the azimuth array. This is a plot of the

fourth exponential term in (2.18), thus it is the bulk RCMC.

Figure 2.8: Range cell migration (Vancouver Airport BC).
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2.5 Azimuth Compression

The third phase multiplication is the azimuth matched filter which is the conjugate of

the first and fifth exponential terms of (2.18). The first term is the azimuth modulation

and the fifth term the residual phase that is created in the first phase multiply (scaling

function). After applying the range dependent azimuth matched filter, azimuth compres-

sion is completed with a 1-D inverse FT. As a result, the scene data is now compressed in

both range and azimuth, providing a single look complex (SLC) image

S5(t,η) = A4ρr

(
t− 2R0

cD( fηre f ,Vrre f

)
ρa(η−ηc)exp{ jθ(t,η)} (2.21)

where ρa(η) is the IFFT of Wa( fη) in (2.20). There are different signal processing en-

hancements that are traditionally used in SAR processing but since we will be comparing

performance with the FRFT, these enhancements will not be implemented but discussed

in the conclusions.

2.6 Range Variant Scaling

The pervious section made an assumption that the transmitted pulse is an LFM chirp

and both Vr and Km are range invariant. In general, this is not the case in that Vr and

Km will vary in range providing higher order terms in the scaling function ssc(t, fη). To

account for these higher order terms, which are normally very small, we need a more

general expression for the scaling function,

ssc(t, fη) =exp
{

j2π

∫ t

0
Kmqt(u, fη)du

}
(2.22)

where

qt(u, fη) =

[
D( fηre f ,Vr)

D( fη ,Vr)
−1
]

t +
2Rre f

c

[
D( fηre f ,Vr)

D( fηre f ,Vrre f )D( fη ,Vr)
− 1

D( fη ,Vr)

]
. (2.23)
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To evaluate (2.22), the terms Kmqt(u, fη) can be expanded as a power series around

t. By assuming the frequency of the scaling function is locally linear, the function can be

approximated as,

ssc(t, fη) =exp
{

j
[
g0t +g1t2]} (2.24)

where the coefficients g0 and g1 vary with t and fη . With this approximation, the residual

phase (last term in (2.18)) is,

φres(t, fη) =
4
c2

πKmg1

πKm +g1

[
R0

D( fη ,Vr)
−

Rre f

D( fη ,Vrre f )
+

cg0

4g1

]2

−
g2

0
4g1

. (2.25)
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CHAPTER 3

Fractional Fourier Transform

3.1 Definition and Properties of the Fractional Fourier Transform

The fractional Fourier transform (FRFT) of order κ , −2 ≤ κ ≤ 2, is a generalization

of the classical Fourier transform (FT), and it can be interpreted as a rotation by an angle

α = κπ/2 in the time-frequency (TF) plane. It can also be considered as a decomposition

of the signal in terms of linear frequency-modulated (LFM) chirps [13, 22]. As a one-

parameter subclass of the class of linear canonical transforms, most of the properties of

the FRFT are special cases of the general properties of linear canonical transforms [23].

In Figures 3.1 and 3.2, we compare the FT and FRFT of an LFM chirp in the time-

frequency (TF) plane. We see that the bandwidth of the LFM chirp signal in the FT

domain is spread along the frequency axis as shown in Figure 3.1. If the TF plane is

rotated using the FRFT with angle α , the energy distribution of the chirp is concentrated

in the rotated domain, as shown in Figure 3.2 [18]. This rotation of the TF plane makes

the FRFT an attractive transform to the signal processing community, especially for SAR

signal processing and LFM detection. Specifically, the (t, f ) coordinate system is rotated

over an angle α = κπ/2 counter clockwise, and the rotated variables are given by (uα ,vα)

in the TF plane in Figure 3.2. The variables can be obtained using the following rotation

matrix or by applying the rotation operator Rα : uα

vα

=

 cosα sinα

−sinα cosα


 t

f

 (3.1)

= Rα(t, f )
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The rotated axes are obtained as

uα =t cosα + f sinα (3.2)

vα =− t sinα + f cosα (3.3)

and are more clearly demonstrated in Figure 3.3.

Figure 3.1: LFM projection in the TF plane.

Figure 3.2: LFM projection in the rotated TF plane using the FRFT.
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Figure 3.3: Fractional TF plane.

The continuous one-dimensional (1-D) FRFT is defined by means of the transforma-

tion kernel [12],

K(t,uα) =



√
1− j cotαe j2π

t2+u2
α

2 cotα− j2πuα t cscα , if α 6= nπ,n ∈ N

δ (t−uα), if α = 2πn,n ∈ N (3.4)

δ (t +uα), if α = 2πn+π,n ∈ N

e− j2πtuα , if α = (π/2)n,n ∈ N

For a continuous-time signal x(t), the FRFT is thus defined as

X(uα) = (Fαx)(uα) =
∫

∞

−∞

x(t)K(t,uα)dt (3.5)

=



√
1− j cotαe j2π

u2
α
2 cotα

∫
∞

−∞

x(t)e j2π
t2
2 cotα e− j2πuα t cscαdt, if α 6= nπ,n ∈ N

X(uα) = x(t), if α = 2πn,n ∈ N

X(−uα) = x(−t), if α = 2πn+π,n ∈ N∫
∞

∞

x(t)e− j2πtuα dt = X(uα) = X( f ), if α = (π/2)n,n ∈ N
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Given that F is the FT operator such that (Fx)( f ) =
∫

∞

∞
x(t)e− j2πt f dt and Fα is the

FRFT operator in Equation (3.5), then the FRFT possesses the following properties;

1. Zero rotation: F0 = I where (Ix)(t) = x(t) is the identity operator

2. Consistency with the Fourier transform: Fπ/2 = F

3. Additivity of rotations: Fβ Fα = Fα+β

4. 2π rotation: F2π = I

5. Inverse FRFT: (Fα
r )−1 = F(−α)

where (Fα)−1Fα = I.

In addition, the FRFT kernel satisfies the following useful properties:

1. K(t,uα) = K(uα , t)

2. K(t,u−α) = K∗(t,uα), where * indicates complex conjugation.

3. K(−t,uα) = K(t,−uα)

4.
∫

∞

−∞

K(t,uα)K∗(t, ũα)dt = δ (uα − ũα), where δ (uα) is the Dirac delta function

5.
∫

∞

−∞

K(t,uα)K(uα ,zβ )duα = K(t,zα+β )

Additional FRFT properties can be found in [12] and [23].

3.2 Relation of FRFT with Other Transforms

Consider a signal x(t) and its FRFT (Fαx)(uα). The Wigner distribution (WD)

Wx(t, f ) of a signal x(t) was defined in Equation (2.12) in Chapter 2 as

Wx(t, f ) =
∫

∞

−∞

x
(

t +
τ

2

)
x∗
(

t− τ

2

)
exp(− j2πt f )dτ.

The following relationship can be shown between the WD of the α FRFT of a signal

and the rotated, over an angle −α , of the WD of the same signal [23, 24]. Specifically,
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Wxα
(t, f ) = R−αWx(t, f ) = Wx(t cosα − 2π f sinα, t sinα + 2π f cosα), where the rota-

tion operator Rα is defined in Equation (3.1).

Since several Cohen’s class of time-frequency distributions are obtained by convolv-

ing a kernel characterizing the distribution with the Wigner distribution, an important

relationship exists between the FRFT and those TFRs [24].

3.3 The Discrete FRFT

There are several challenges to the calculation of the FRFT; to date, there is no fast

method similar to that of the FFT, however approximations have been proposed for both

the discrete FRFT and continuous time transforms [12, 23, 24, 25, 26].

We need to introduce a new fractional operator Fκ
r that emphasizes the order κ of the

FRFT rather than the angle α . It is thus related to the previous definition with α = κπ/2

or

Fκπ/2
r = Fα or F1

r = Fπ/2 = F. (3.6)

The new operator Fκ
r has the same properties as Fα and will be used as the operator for

the discrete approximation to the FRFT.

Figure 3.4 provides two different views of an FRFT of a rectangular signal with N =

64 samples, which sweeps the FRFT order 0 ≤ κ ≤ 1. As mentioned in Section 3.1, the

FRFT is periodic in 2π , and it is also symmetric about π/2 with strong oscillations as

α approaches 0 or π . In Figure 3.4 we notice strong oscillations for κ < 0.5 and the

expected sinc pattern for κ = 1, which is in agreement with the FT property F1
r = F .

25



Figure 3.4: Two different views of the FRFT of a rectangular signal.

A definition of the discrete FRFT (DFRFT) is provided in [27] which generalizes

the definition of the discrete FT (DFT) in the same manner as the continuous fractional

FRFT generalizes the continuous FT. This definition of the DFRFT is based on a set of

eigenvectors of the DFT matrix, which consist of the discrete counterparts from the set

of Hermite-Gaussian functions. It satisfies the following desirable properties: (a) the

DFRFT is a unitary transform; (b) it preserves the additivity property FbFa = Fa+b; (c)

it reduces to the DFT when the order is unity; and (d) it approximates to the continuous

FRFT.

A fast O(N log2 N) approximation for computing the continuous FRFT is provided

in [25] which maps the N samples of the original signal to N samples of the FRFT. The

FRFT of an arbitrary signal x(t), with angle α , is defined in Equation (3.5). In particular,

for angles that are not multiples of π , the computation of the FRFT corresponds to the

following steps: (a) the signal is first multiplied by an LFM chirp; (b) the FT of the signal

product is computed; (c) perform some scaling; (d) multiply by an LFM chirp.

Two methods for computing the approximation are provided in [25]. One method
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which does not include the use of Fresnel integrals is,

(Fκ
r x)

( mκ

2∆x

)
=

Aα

2∆x
ei2π(ρ−β )(m/2∆x)2 N

∑
n=−N

ei2πβ ((m−n)/2∆x)2

×ei2π(ρ−β )(n/2∆x)2
x
( n

2∆x

)
(3.7)

where α = κπ/2, ρ = cotα , β = cscα and

Aα =
exp(− jπsgn(sinα)/4+ jα/2)

|sinα|1/2

Since the summation in (3.7) is recognized as a convolution, the algorithm can be com-

puted with an FFT providing the FRFT with complexity O(N log2 N).

The result of the first chirp multiplication with x will cause a shearing in the TF plane,

making the bandwidth or time-bandwidth product twice as large. Since this is twice

the original support, x will need to be interpolated or up-sampled containing at least 2N

samples [26]. It will be assumed that this interpolation was done before x is used in

(3.7). For more detailed discussions of shearing in the TF plane see Appendix A of [25]

with an additional derivation in [23]. Also, the convolution of x with a chirp will cause

a similar shearing; see [20] for an additional discussion on the effect of time-frequency

distributions.

As noted and displayed in Figure 3.4, the FRFT exhibits strong oscillations as κ ap-

proaches 0 or 2. To adequately sample the FRFT in these regions would drive complexity,

so (3.7) is restricted to 0.5 ≤ |κ| ≤ 1.5. There are different routines using the fractional

additivity property to work around this constraint of limiting κ ∈ [0.5,1.5]. For κ ∈ [0,2],

the method provided in [25] is,

1. If 0.5≤ κ ≤ 1.5 or 2.5≤ κ ≤ 3.5, evaluate the integral directly

2. If −0.5≤ κ ≤ 0.5 or 1.5≤ κ ≤ 2.5 then Fκ = FFκ−1
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3.3.1 FRFT Implementation in MATLAB

There are two MATLAB programs available for computing (3.7), which are freely

available on the web. The first is fracF and can be obtained at the website for the book

[23]. The second is fracft and is distributed as a routine within the MATLAB time-

frequency toolbox DiscreteTFDs, developed by J. O’Neill. A complete analysis of the

two routines is provided in [26] and will not be covered here, however the difference in

their implementations will drive a decision to use fracF for the implementation in Chapter

6.

The main difference is that fracF operates on an even number of samples and uses

FFTs for upsampling in (3.7). The fracft routine operates on an odd number of samples

and uses sinc interpolator for upsampling. The sinc interpolator is defined as x(t) =

∑
∞
n=−∞ xnsinc

(
π

T (t−nT )
)

where T is the sampling period and sinc(x) = sin(x)/x, for

x 6= 0 and sinc(0) = 1 [28]. It is noted in [26] that fracft provides slightly improved results

due to the symmetric kernel, however the odd number of samples will be problematic for

optimized FFT sizes needed in implementation.
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CHAPTER 4

Linear Frequency-Modulated Chirp Detection

4.1 Fractional Autocorrelation Function

As the fractional Fourier transform (FRFT) is a linear canonical transformation [15], it

can be associated with a fractional autocorrelation function (FrACF). That is an important

function, for example, in estimating the rate of linear frequency-modulated (LFM) chirps

using one-dimensional (1-D) searches, especially at low signal-to-noise ratios (SNRs)

[15, 16, 17]. Using a fast discrete FRFT approximation, the 1-D searches can replace the

more computationally intensive 2-D ambiguity function (AF) searches since the FrACF

at an arbitrary angle corresponds to a radial slice of the AF passing through its origin at

the same arbitrary angle [15].

Consider a continuous-time signal s(t) and the unitary and Hermitian fractional oper-

ation (Rα
ρ s)(t) presented in [15] as

(Rα
ρ s)(t) = s(t−ρ cosα)e− j2πtρ sinαe jπρ2 cosα sinα .

Using the fractional operation, the FrACF, FAα(ρ), of s(t) is simply the correlation be-

tween the signal s(t) and its fractionally operated signal in the time domain. Specifically,

the FrACF is given by2,

FAα(ρ) = 〈s,(Rα
ρ s)〉= e jπρ2 cosα sinα

∫
s(t)s∗(t−ρ cosα)e− j2πtρ sinαdt. (4.1)

Two special cases of the FrACF are obtained for α = 0 and α = π/2, and are given by

FA0(ρ) =
∫

s(t)s∗(t−ρ)dt (4.2)

FAπ/2(ρ) =
∫
|s(t)|2e− j2πtρdt =

∫
S( f )S∗( f −ρ)d f (4.3)

where S( f ) is the conventional Fourier transform (FT) of s(t). The FrACF can also be

expressed in terms of the AF, AFs(t,ν), of the signal s(t) or its FRFT, (Fα
r s)(t) = S(uα)

2Unless otherwise indicated, all integration limits are from -infinity to infinity.
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in Equation (3.5). These two relationships are given as [16],

FAα(ρ) = AFs(ρ cosα,ρ sinα) (4.4)

=
∫

S(uα)S∗(uα −ρ)duα (4.5)

where the AF of s(t) is defined as

AFs(τ,υ) =
∫

s
(

t +
τ

2

)
s∗
(

t− τ

2

)
e− j2πυtdt. (4.6)

The relationship between the FrACF and the AF in Equation (4.4) shows that the

FrACF at angle α is equivalent to radial (of value ρ) slices of the AF, evaluated along

the orientation α . This relationship is similar to the one that the time-correlation in (4.2)

shares with AFs(t,0), which is a slice of the AF, evaluated along the horizontal axis.

Equation (4.4) will be exploited in the next section, for detecting LFM chirps.

Assuming a signal duration of N samples, an efficient method for calculating the

FrACF is given in [16], using a fast O(N log2 N) approximation of the FRFT [25]. The

method makes use of another approach to compute the FrACF by taking the inverse FT of

the squared magnitude of the FRFT of the signal s(t) with the orthogonal angle parameter

θα = α +π/2. Specifically, we can re-write (4.1) as

FAα(ρ) =
∫
|S(uθα

)|2e j2πρθα dθα . (4.7)

The efficient FrACF implementation follows from the discrete-time approximation of

Equation (4.7) [15]. Specifically, with M different angles αm, m = 1, . . . ,M, the FrACF

can be effectively implemented by first uniformly sampling the signal s(t) using the sam-

pling period Ts to obtain the samples s[n] = s(nTs), n = 1, . . . ,N; then the FRFT can be

calculated at orthogonal angles αm +π/2 for the sampled signal using the discrete FRFT

in [25]; the squared-magnitude s[n] of the FRFT is computed, and then its inverse FT is

obtained to yield the FrACF of the signal.
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4.2 LFM Detection Accuracy

A motivation for LFM estimation in SAR signal processing is to reduce the frequency-

modulation (FM) mismatch between the expected and received waveforms due to non-

linear motion between the radar and target [8, 18, 29]. In doing so, the fractional opti-

mization operators are used to tune the FRFT to produce an optimal response in pulse

compression, providing an increased SNR and improved peak sidelobe ratio (PSLR) per-

formance. To characterize the FM estimation accuracy, the Cramér-Rao lower bound

(CRLB) is used as the threshold for estimation performance [30].

Consider a received signal of the form,

s(t) =Aexp[ jπ(Kt2 + f0t)]+w(t), −Td/2 < t < Td/2 (4.8)

where Td is the signal duration, A is the amplitude, K is the FM rate, f0 is the initial

frequency and w(t) is zero mean complex additive white Gaussian noise (AWGN). The

mean squared error (MSE) of the FM rate estimation is given by [17],

MSE =
1
B

B

∑
l=b

(Kb−K)2 (4.9)

where B is the number of Monte Carlo simulation trials, Kb is the estimated FM rate at

the bth simulation and K is the true FM rate. The CRLB for an unbiased FM rate MSE

estimator is given by [17],

σ
2
K =

90 f 4
s

2π2N(N2−1)(N2−4)SNR
(4.10)

where fs is the sampling frequency, N is the number of samples and the SNR is A2/σ2,

where σ2 is the variance of the real and imaginary parts of the complex noise (note, the

real and imaginary parts have equal variances). As indicated in [17], the matched fil-

ter (MF) detector and generalized likelihood ratio test (GLRT) detector provide better

estimation performance, especially in low SNR environments. For our simulations, we
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compare the FrACF based detector with the GLRT detector [31].

4.2.1 GLRT Detector

The GLRT statistic for the received signal in Equation (4.8) first computes the max-

imum likelihood estimate (MLE) of the unknown FM rate K. As the MLE cannot be

computed in closed form [31], it is given by

KMF = arg max
K

C
∫
|S( f )

∫
e− jπ(Kt2+ f0t)e− j2πt f dt|e j2πt f d f . (4.11)

The typical definition of a matched filter is a correlator that will maximize the cor-

relation SNR. For the statistic provided in (4.11), instead of maximizing the correlation

SNR, we will maximize the correlation contrast, where contrast is defined as the ratio of

the standard deviation over the mean of the pixel magnitudes [9]. For SAR processing,

contrast is a common image quality metric normally calculated over a spatial region in an

image with pixels contained in a 2-D array encompassing the spatial region. For the test

statistic provided in (4.11), contrast will be calculated using the 1-D signal S(f).

C =
E(|I|2)
[E(|I|)]2

(4.12)

where I is the pixel magnitude and E(·) is statistical expectation.

For the maximization procedure in (4.11) to estimate the FM rate, we will use the

golden search algorithm to reduce the computational burden of sweeping from the lower

to upper bounds [32]. The golden search algorithm will always find a minimum or maxi-

mum value, however it can converge at local extrema. To help reduce the number of iter-

ations and avoid converging on local extrema, it helps to constrain bounds of the search

parameters to known limits. This can be done by first using a course resolution search,

choosing its maximum value, and then using it as input to the golden search. Note that

we also use the same search algorithm for the FrACF optimization.
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4.2.2 Fractional Autocorrelation Function Detector

For the LFM signal in (4.8), if both the FM rate K and the initial frequency f0 are

unknown, then the optimal GLRT detector can be obtained by integrating all possible

lines in the Wigner distribution time-frequency plane [33]. If f0 is not a parameter of

interest or is known, then a different detector was proposed in [16], that is based on the

AF of the received signal. Specifically, the detector uses the fact that all LFM chirp

signals have a linear support region that crosses the origin of the AF, thus minimizing the

region of search for the estimated FM rate. The detector then becomes the integration

of the magnitude of the AF along lines that only go through the origin in the AF plane.

Specifically, the estimated FM rate is,

KAF = arg max
K

∫
|AFs(t,Kt)|dt (4.13)

which is the maximization of all line integrals of the AF along lines whose slopes corre-

spond to any possible values of the FM rate K.

In order to simplify the computation of the 2-D search in the AF plane in (4.13), the

relation between the AF and FrACF in Equation (4.1) is used. Specifically, from (4.13),

the line in the AF plane is given by ν = Kt and has slope K. If we assume that this radial

line makes an angle α going through the origin, then a different equation can be written

for the integral of the AF in (4.13), that makes this angle α = tan−1(K). This integral is

given by,

∫ ∫
|AFs(t,ν)|δ (ν cosα− t sinα)dt dν (4.14)

and it can be further simplified to,

∫
|AFs(t cosα, t sinα)|dt. (4.15)
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Using (4.4), the integral can also be written in terms of the FrACF of the signal s(t) as,

L(K) =
∫
|FAtan−1(K)(ρ)|dρ. (4.16)

As a result, the detector will maximize this FrACF equation, over all possible values of

K,

KFrACF =arg max
K

L(K) = arg max
K

∫
|FAtan−1(K)(ρ)|dρ. (4.17)

Figure 4.1: Plot of FrACF detector statistic L(K) in (4.17) for different α = tan−1(K),

where α = κπ/2. The true LFM rate is Ka = 1808 and the estimated one is K′a = 1807.9.

Figure 4.1 is a plot of the FrACF estimate provided by (4.17) with the lower and upper

FRFT order κ constrained between 1.125 and 1.143.

Since we are interested in FM rate estimation, we will be using (4.8) with A = 1

and f0 = 0. The range matched filter parameters are provided in Table 4.1 and azimuth

matched filter in Table 4.2.
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Table 4.1: Range matched filter parameters

Parameter Symbol Value Units
Sampling rate fs 32.317 MHz
Range FM rate Kr 721.35 GHz/s
Pulse duration Tr 41.74 µs
Number of range samples Nr = fsTr 1349 samples

Table 4.2: Azimuth matched filter parameters

Parameter Symbol Value Units
Approximate FM rate Ka 1800 Hz/s
Pulse repetition frequency (PRF) Fa 1256.98 Hz
Pulse duration Ta 0.56 s
Number of range samples Na = FaTa 705 samples

The relationship between the FRFT rotational parameter α and the FM rate of a dis-

cretely sampled signal is given in [34]. For an LFM chirp e j2π(zt2+bt+c), with instanta-

neous frequency 2zt +b, the optimal FRFT order parameter is,

κopt =
2
π

αopt =−
2
π

tan−1
(

δ f/δ t

2z

)
(4.18)

where (a) δ f = fs/N is the frequency resolution; (b) δ t is the time resolution; (c) fs is the

sampling frequency; and (d) N is the number of samples. Thus we can re-write (4.18) as

κopt =
2
π

αopt =−
2
π

tan−1
(

f 2
s/N

2z

)
(4.19)

The FM rate statistic provided by (4.17) and the GLRT statistic provided by (4.11), were

generated using 200 Monte-Carlo simulations. For the comparison results shown next,

the FM rate estimation MSE is plotted in dB using 10log10

(
1

MSE

)
with signal SNR

spanning -5 to 20 dB.
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4.2.3 RADARSAT LFM detection accuracy

In this section, simulations are performed with RADARSAT-1 LFM parameters pro-

vided in tables 4.4 and 4.2 to characterize the FrACF detector performance in varying

SNR. We use the results of this chapter to require a minimum SNR for LFM detection

using real RADARSAT-1 data in Chapter 6. Figure 4.2 is a plot of the simulations and

it indicates that for the RADARSAT-1 range parameters, the FrACF has good estimation

performance for SNRs above approximately 7 dB. The performance of the GLRT is better

for low SNR environments, as expected from [17]. To use the FRFT for autocorrelation

or other applications requires the signal to be compact in the fractional domain, mean-

ing all energy must be contained within a constant radius in the Wigner distribution [25].

To assure compactness, s(t) is over-sampled, increasing the number of samples N, from

1349 to 4096, which corresponds to a good size for FFT. The CRLB is provided using the

original number of samples which could explain the slightly improved MSE performance

for the FrACF method. The standard deviation σ of the FM rate estimate is provided in

Figure 4.3 and is in agreement with the MSE plot. This parameter is necessary for the

expected FM rate mismatch when using the estimated rate in SAR focusing applications.
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Figure 4.2: Range FM rate estimation (N = 1349, Kr = 721.4 GHz/s (see Table 4.1)).

Figure 4.3: Range standard deviation FM rate estimation.
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Figure 4.4: Range bin FM rate estimation (N = 705, Ka = 1808 Hz/s (see Table 4.2)).

Figure 4.5: Azimuth standard deviation azimuth FM rate estimation.

Figure 4.4 indicates that the performance for the azimuth estimation is similar to that

of the range: an abrupt change in estimation error for SNRs above 5 dB and, as expected,

a better estimation of performance for the GLRT in low SNR environments.
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Figure 4.6 is a plot of the receiver operating characteristics (ROC) for the azimuth FM

rate or the rate of each range bin. The same detection statistic as provided in (4.17) was

used, with the exception that the maximum value of the FrACF estimate was used instead

of the sweep rate as depicted in Figure 4.1. To generate the ROC curves, 250 simulations

were performed for different SNRs and the curves were produced using [31],

PD =Q
(

Q−1(PFA)−
√

NA2/σ
2

)
(4.20)

where A = 1,N = 256 and σ2 was estimated from the simulation runs for each SNR.

Figure 4.6: Azimuth FrACF ROC.

4.2.4 RADARSAT FRFT FM Rate Detection Resolution

For completeness, we wanted to include this section on the FM rate resolution ca-

pability of the FRFT, with resolution defined as the ability to distinguish between two

equally strong LFM signals in a noise-free environment [33]. We will not be address-

ing multi-component LFM signals any further but wanted to include this because of its

dependence on LFM accuracy and its use in SAR signal processing, specifically in the

areas of moving target detection and inverse synthetic aperture radar (ISAR) [35, 36]. For
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conventional SAR, the radar antenna moves in relation to the target, whereas for ISAR,

the antenna is stationary and the target moves to form the synthetic aperture.

It is noted in [35] that the ability to separate two chirp signals with very small dif-

ference in chip rate has not been well defined, but simulations reveal that resolution is

inversely proportional to the square of the signal length Td . A recent work [37] provides

an algorithm which we will use to estimate the minimum resolution but also cites the lack

of any comparative studies.

For multi-component signals of the form [37],

s(t) =
M

∑
m=1

Am cos(2π f0mt +πK0mt2)+w(t), −Td/2≤ t ≤ Td/2 (4.21)

where M is the number of LFM components, Am is the amplitude of the mth LFM signal

and w(t) is zero-mean white Gaussian noise. The minimum resolution capability of the

FRFT is provided by,

∆Kmin =

∣∣∣∣2csc(cot−1(K0Td/fs))

T 2
d

∣∣∣∣ (4.22)

where ∆Kmin is the difference between the upper and lower lines of a parallelogram cre-

ated in the normalized TF plane by two LFM signals with the same center frequency f0.

The axis normalization is achieved by first defining the scaling variable s =
√

∆t/∆ f ,

then creating the normalized axis x = ∆t/s and ν = fss. The length of both axes is now

represented by the dimensionless value
√

∆t∆ f depicted as ∆x in Figure 4.7. Additional

details of TF axis normalization can be found in [23, 25].
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Figure 4.7: Multi-component TF plane (normalized axis).

Figure 4.8 plots ∆Kmin as provided by (4.22) for different up-sampling ratios.

Figure 4.8: Minimum detectable range resolution.

Figure 4.9 is a MATLAB simulation using the same range LFM values as in the previous

section to include the up-sampling of the signal to an FFT size of 4096. The multi-

component signal was created using (4.21) with M = 2, Am = 1 for all m, f0m = 0, for all

m and w(t) = 0 for all t, and for the FM rates, K01 = Kr and K02 = Kr +K′r.
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The FrACF plot in Figure 4.9 (left) shows good FM rate separability for ∆K≥ 3.2GHz/s

and the FrACF plot Figure 4.9 (right) shows the inability to separate FM rates for ∆K ≤

3.0GHz/s.

Figure 4.9: Multi-component detection, N = 4096.
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CHAPTER 5

Fractional Focusing and the Chirp Scaling Algorithm

5.1 Fractional Chirp Scaling Algorithm (FrCSA)

The fractional Fourier transform (FRFT) has found widespread acceptance within the

synthetic aperture radar (SAR) signal processing community, mainly in operations of

linear frequency-modulated (LFM) chirp detection, high profile range imaging (inverse

synthetic aperture radar (ISAR)) [8, 38] as well as single channel SAR images for the de-

tection of moving targets [18]. A common thread to the mentioned algorithms is the detec-

tion of chirp type signals amongst random clutter. Most recently, fractional chirp scaling

algorithm (FrCSA) approaches have been investigated [2, 39] with improved signal-to-

noise ratio (SNR) and greater sidelobe reduction, when compared with previous imple-

mentations of the chirp scaling algorithm (CSA). Typical sidelobe mitigation strategies in

SAR image processing make use of weighting functions, however this method causes an

unwanted boarding of the impulse response width (IRW) and degradation of SNR. If the

sidelobes can be reduced without the use of weighting functions, then the IRW and SNR

degradations may be avoided, yielding improved performance for the FrCSA.

The new FRFT based CSA uses the FRFT to enhance the overall focusing capabilities

of the CSA [2]. A flow diagram of the algorithm is provided in Figure 5.1. The algorithm

makes use of a local optimization procedure (LOP) [2] that investigates all possible FRFT

rotation angles α and selects the optimum value to be used throughout the algorithm.
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Figure 5.1: Block diagram of FrCSA algorithm. Here R denotes range, and Az denotes

azimuth. Figure taken from [2].

The most important steps in the FrFT is in range transformation processing and the frac-

tional correlator-based range match filter [40]. A module combining these two steps gives

the FrCSA its unique strength relative to the Fourier transform (FT) based CSA in han-

dling signals, particularly at the far end of the scene.

5.2 Fractional Focusing with Contrast Maximization

The intent of this research is to understand how the FRFT can be used in SAR signal

processing, specifically as part of the CSA algorithm, to improve image formation. Using

the relationship of the FRFT with time-frequency (TF) representations [12], we began by

analyzing the Wigner distributions (WDs) of range-bin samples and the corresponding

matched filter to understand how the rotational parameter of the FRFT could tune the

transform to produce an optimal pulse compression response. Figure 5.2 shows plots of
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the match filter (upper plot) and the range-bin signal (lower plot) for range-bin 969. As

expected, the signals are conjugates of each other and matched filtering should concen-

trate the energy to discrete frequencies with narrow bandwidth. This method will only

apply to stationary targets. Moving targets will not be localized in frequency but walk

across frequencies [7], maintaining a slope or ramp, thereby maintaining bandwidth in

the TF plane.

Figure 5.2: Wigner distribution representations of matched filter and range-bin signals.

The upper plot in Figure 5.2 is the WD of the pulse after matched filtering, using the

classical FT, with the fractional order set to 1, (F1
r x)( f ), and the lower plot is the result of

tuning the transform with (Fκ
r x)( fκ) where κ =−0.001386 and is related to the rotational

parameter α = κπ/2. We see that with optimal parameter selection, the energy or target

after match filtering is concentrated in frequency with narrow bandwidth for the optimized

center frequency. As the WD indicates, the resulting signal is a frequency domain signal
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and an inverse FT will rotate it by π/2 concentrating the target in time.

Figure 5.3: (WD) or pulse after matched filtering: using classical FT (upper plot) and

optimized with FRFT optimization (lower plot).

Figure 5.4 is a comparison of the target response for range-bin 969, comparing the FT

and FRFT methods. We see the FRFT response has an improved peak-to-sidelobe ratio

(PSLR) with better concentration of the target energy. To obtain the optimized value κ =

−0.001386, we computed the MLE in (4.11) with contrast maximization as the selection

criteria.
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Figure 5.4: Comparison of target response for range-bin 969 using classical FT (F1
r )

(blue-line) and optimized FRFT (Fκ
r ) (red-line).

Recent works have indicated that the FRFT can be used to correct mismatches between

the expected and the received signal’s FM rate [2, 8, 18]. This mismatch can be explained

as a nonlinear motion between the platform and target. To understand the optimization

capabilities of the FRFT with mismatches in the expected FM rate, we conducted a sweep

of the azimuth FM rate Ka while maximizing the contrast using the FRFT. The same

contrast maximization method was provided in (4.11), with the exception that the FRFT

rotational parameter is also swept between κmin and κmax creating a 2-D search.
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Figure 5.5: MATLAB mesh plot of 2-D contrast maximization search; sweeping Ka and

κ .

Figure 5.6: MATLAB scaled image of 2-D search, highlighting maximum contrast at:

Ka = 1804.5 and κ = 1.0002.

Figures 5.5 and 5.6 indicate that the FRFT was able to maximize the contrast for each

FM rate, however the absolute maximum occurs with a Ka mismatch that is less then 0.01
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percent of the optimal FM rate. We also notice that the absolute maximum occurred for

the rotational value κ = 1.0002 indicating that for this signal, the FRFT enhanced the

PSLR beyond that of the MLE search methods.

5.3 Fractional Focusing and the CSA

To apply the fractional focusing method of the previous section, it is necessary to

modify the CSA in Figure 2.2 so FRFT optimizations can be implemented. There are

two common approaches for FRFT optimization [2, 34]. The first approach chooses a

global FRFT order κ and uses it for all pulses or range-bins processed with the FRFT.

The second approach evaluates each pulse or range-bin and tunes the FRFT order for the

optimal response. This is referred to as the local optimization procedure (LOP) [2, 34].

While the first global optimization approach is easier to implement and provides improved

results, the finely tuned LOP provides the best performance [34]. Figure 5.7 shows the

FRFT modified CSA which includes a pre-azimuth FRFT filter to correct for mismatches

between the received pulses and the range FM rate Kr, and a modification of the azimuth

match filter to maximize contrast for each range-bin using the FRFT to optimize the

azimuth FM rate Ka. Note that, for the LOP approach, the FRFT optimization values need

to be obtained using some approach; the approach we adopt in this work is discussed in

the next section. Note also that the forward and inverse FRFTs are not optimized. The

FRFT order is set to κ = 1 so the FRFT is the classical FT. This was done to provide easy

modification of the new CSA procedure and allow for direct comparison to the CSA in

Figure 2.2 without transform optimization.
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Figure 5.7: Block diagram providing an overview of fractional focusing with CSA.

Figure 5.7 is a block diagram overview of the fractional CSA. The Rg-FrFT indicates

that the FRFT is applied in the range direction, and the Az-FrFT indicates that the FRFT is

applied in the azimuth direction. The IFrFTs indicate the inverse transform provided with

the inverse FRFT property (Fκ
r )−1 = F(−κ)

r . Secondary range compression and range cell

migration correction (RCMC) are applied in the range matched filtering step. Differential

RCMC is applied in the chirp scaling step.

The fractional CSA begins with a 2-D array of demodulated raw (unprocessed) phase-

history data sr(t,η) as given in Equation (2.2). The phase-history data is in the range-time

and azimuth-time domains, respectively indicated by t and η .

The fractional focusing CSA steps [1, 2] are summarized as follows1,

1. The fractional filter is applied to each received pulse,
sr(tκ ,η) = (Fκ

r sr)(tκ ,η). Since this is only applied to the fast-time pulses, the
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range-time variable t is updated to tκ , indicating that the TF plane of the signal is
rotated by κ .

2. An azimuth FRFT is performed to transform the data into the range Doppler do-
main,
Srd(tκ , fη) = (F1

r sr)(tκ ,η). With the FRFT order set to 1, the data is transformed
to the range-time, azimuth-frequency domain, also referred to as the range Doppler
domain; this is indicated by the change of η to fη . Since this is equivalent to
applying the classical FT, the azimuth frequency index is not affected.

3. Chirp scaling is applied, using a phase multiply to equalize the range migration of
all targets, S1(tκ , fη) = ssc(t, fη)Srd(tκ , fη).

4. A range FRFT is computed to transform the data to the 2-D frequency domain,
S2( ftκ , fη) = (F1

r S1)(tκ , fη). The range-time variable tκ is updated to indicate
range-frequency ftκ with no additional fractional rotations.

5. A phase multiply is performed with a reference function, which applies range com-
pression, SRC, and bulk RCMC in the same operation,
S3( ftκ , fη) = SMFRange( ft , fη)S2( ftκ , fη).

6. A range IFRFT is performed to transform the data back to the range Doppler do-
main, S4(tκ , fη) = (F−1

r S3)( ftκ , fη). The range Doppler is indicated with tκ , fη .

7. A phase multiply is performed to apply azimuth compression with a time varying
match filter. A phase correction is also required as a result of the chirp scaling in
step 2, which is incorporated into the same phase multiply,
S5(tκ , fηβ

) = (Fβ
r SMFAzimuth)(tκ , fηβ

)S4(tκ , fηβ
). Contrast maximization is achieved

by applying Fβ
r in the azimuth direction. The new azimuth-frequency variable is

updated to fηβ
, indicating that the TF plane of the azimuth signal is rotated by β .

8. The final azimuth IFRFT is performed to transform the compressed data to the SAR
image domain, S6(tκ ,ηβ ) = (F−1

r S5)(tκ , fηβ
). The data is now back in the range-

time, azimuth-time domains, with FRFT optimizations indicated by the updated
variables tκ ,ηβ . Also, since this is the last step, the data is compressed in both
range and azimuth. This ensures that the data is suitable for additional processing
or detected and scaled for image display.

1The subscripts κ,β on the index variables, indicate that the TF plane for the signal data is in the
fractional domain or the data along that axis is rotated by a fractional operator α 6= nπ,n ∈ N, or α =
(π/2)n,n ∈ N for α = κπ/2 or α = βπ/2.
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CHAPTER 6

Application of Enhanced FRFT Focusing Technique Using RADARSAT Data

In Chapter 5, we presented the enhanced fractional Fourier transform (FRFT) tech-

nique based on enhancements of the chirp scaling algorithm (CSA). This fractional fo-

cusing method is a first attempt at implementing the fractional CSA (FrCSA) provided in

[2]. It includes modifications that were necessitated by the use of the fractional autocorre-

lation function (FrACF) to obtain locally optimized FRFT rotational parameters from real

SAR images. In this chapter, we apply the enhanced FRFT focusing (EFrF) technique to

SAR data obtained from RADARSAT scenes.

We will obtain performance comparisons between the standard CSA and the EFrF

implementation by setting the FRFT order κ = 1 for the original CSA steps requir-

ing fast Fourier transforms (FFTs). A challenge that has not been addressed with this

implementation is the generation of the optimal FRFT transform parameters. We will

present one approach; however, given the additivity of the rotations property of the FRFT

Fκ1+κ2
r = Fκ1

r Fκ2
r , and the time-frequency plane, many optimized fractional CSA imple-

mentations are possible by combining standard SAR signal processing techniques with

the FRFT to obtain optimal transform parameters.

We will first describe the test environment, followed by the generation of the opti-

mized transform parameters for a RADARSAT-1 [41, 42] scene, then provide results of

our fractional CSA implementation.

6.1 Processing Architecture

All processing in this thesis was accomplished on a Sun Ultra24 Workstation (Quad

x86) with the following configuration: (a) Operating System: SunOS 5.11; (b) Compiler:
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Sun Studio 12; (c) Programming Language: FORTRAN 90; (d) Parallel Processing: Open

Multi-Processing (OpenMP); (e) All FFTs: Sun Performance Library (ZFFTZ); and (f)

Polynomial regression: Netlib (DGETRF, DGETRI)

6.1.1 FRFT Algorithm Implementation

To enable FRFT processing on the above architecture, it was necessary to port the

MATLAB fracF routine in Section 3.3.1 to FORTRAN 90. It could have also been ported

to C or C++ but we wanted to work with FORTRAN since all the high performance algo-

rithm libraries are written in FORTRAN. Sufficient testing was conducted to verify that

the ported FORTRAN module provided the same results as the MATLAB fracF routine.

Testing consisted of comparing both the real and imagery parts of a rectangular function

processed at FRFT orders between 0.5 and 1.0.

The fracF is considered O(N log2 N) where N is the number of data samples, however

its implementation compared to the FFT was noticeably slower. In addition to the two

chirp multiplications and the frequency domain multiplication to accomplish the convo-

lution, the fracF algorithm required two FFTs of length 2N and three FFTs of length 16N.

Since all of the filter and data arrays are N = 4096 or radix-2, an approximation of the

complexity is 4N log2 2N + 48N log2 16N which is approximately 68 times higher than

N log2 N for the standard FFT.

A comparison of performance on the test architecture was performed using a one di-

mensional (1-D) FFT on the 4096x4096 data array. The test was accomplish using a

single thread that the standard FFT completed in 0.97 seconds and the fracF procedure

completed in 88.38 seconds, which is still considerably faster than an implementation of

complexity O(N2).
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6.2 RADARSAT-1 Scene Phase History Data

The RADARSAT-1 phase-history data was included with the book digital processing

of Synthetic Aperture Radar Data [1] and made available by Gordon Staples of Radarsat

International. The Canadian Space Agency holds the copyright, and it is provided on

condition that it only be used for educational purposes.

The data is provided in CEOS format, and MATLAB routines are made available for

extracting the CEOS format data from the CD. The MATLAB routines also make neces-

sary corrections to account for fluctuations in the gain or automatic gain control (AGC)

during the collect.

Some of the RADARSAT-1 scene parameters are listed below. To account for the

minimum array size needed for convolution, good FFT sizes and minimum number of

samples to meet compact signal support requirements, all arrays with be over-sampled

(zero padded) to a length 4096. The raw phase-history samples used as input to the

CSA were 2048x2048, or 2048 pulses by 2048 range-bins. Due to interpolation methods

used in the fracF routine, all phase-history data and matched filters were symmetrically

zero padded keeping the original data in the center of the up-sampled arrays. Table 6.1

contains some RADARSAT-1 non-changing parameters that are used in the matched filter

and chirp scaling operations.
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Table 6.1: RADARSAT-1 Fine-beam:2 parameters

Parameter Symbol Value Units
Sampling rate fs 32.317 MHz
Pulse bandwidth 30.11 MHz
Range FM rate Kr 721.35 GHz/s
Pulse duration Tr 41.74 µs
Number of range samples Nr 1349 samples
Center frequency f0 5.30 GHz
Wavelength λ 0.05657 m
Pulse repetition frequency PRF 1256.98 Hz

The actual Vancouver scene is a small subset of an overall larger scene of phase-

history data provided in [1]. Table 6.2 contains a list of parameters that change throughout

the scene based on either range or time.

Table 6.2: RADARSAT-1 Vancouver scene parameters

Parameter Symbol Value Units
Slant range (scene center) R0 974804 m
Effective radar velocity Vr 7052.2 m/s
Doppler centroid fηc -8190 Hz
Azimuth FM rate Ka 1795 Hz/s
Number of azimuth samples Na 705 samples
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6.3 FM Rate Estimation Using Fractional Autocorrelation and Contrast Maximization

In Section 4, we characterized the performance of the fractional autocorrelation func-

tion (FrACF) detector against the Cramér-Rao lower bound (CRLB) in varying signal-

to-noise ratio (SNR) environments. To provide a measure of FrACF performance using

the received RADARSAT-1 data, we will need to provide an estimate of the received and

processed SNR. The SNR of a SAR signal is governed by the radar range equation and,

for an uncompressed pulse it is given by [1, 6, 43, 3],

SNRimage =
PavG2λ 2σ

(4π)3R3kToBLV ρa
(6.1)

where Pav is the average power, G is the antenna gain, σ is the target radar cross section

(RCS), R is the slant range, k is Boltzmann’s constant, To is 290 degrees Kelvin, B is the

receiver bandwidth, L is radar losses, ρa is the azimuth resolution and V is the platform

velocity. If clutter is being observed, then σ = σ0ρaρr/cosψ , providing the clutter-to-

noise ratio (CNR) as

CNR =
PavG2λ 3σ0ρr

2(4π)3R3
kkToBLV cosψ

(6.2)

where σ0 is the backscatter coefficient, ψ is the grazing angle and ρr is the range reso-

lution. Since we are working with previously collected data and the randomness of σ0

in (6.2), it will be necessary to obtain an CNR estimate based on SAR imagery (speckle)

noise components.

The total noise in SAR imagery σN , is comprised of two components, additive noise

σn which is the result of thermal noise and multiplicative which is the signal dependent

noise proportional to the average signal level σ̄0 [6],

σN =σn +(MNR)σ̄0 (6.3)
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where MNR is the multiplicative noise ratio, and the relationship of σn to CNR is

σn =σ0/CNR. (6.4)

The principle contributors of MNR are the integrated sidelobe ratio (ISLR) of points in

the surrounding area, ambiguities in the image, quantization noise and image artifacts or

MNR = ISLR + QNR + AMBR, where QNR is the quantization ratio and AMBR is the

ambiguity ratio [6]. Figure 6.1 is a plot of image clutter for |MNR|< |CNR| showing the

effect of MNR on the ISLR of points used to produce the image clutter. As noted, MNR

is the ratio of the image no-return area (NRA), divided by the average image clutter [3].

Note that the total noise in the NRA is σNNRA = σn +(QNR+AMBR)σ̄0.

Figure 6.1: Plot of image clutter for |MNR| < |CNR|, showing the relationship of total

noise σN with the total noise in the NRA, σNNRA . A similar graphic is provided in [3].

Since the LFM detection simulations assumed an additive noise model, we will use the

ratio of the total noise in the NRA with the total of the image clutter for CNR estimates

used to gauge detection performance. One reason for this approach is that, σNNRA can be

estimated directly form the received or processed data. Since this involves MNR, we must
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address limitations of time-frequency (TF) LFM chirp rate detection methods for signals

with MNR > 1. Results of simulations in [44] indicate the instantaneous frequency (IF)

of signals corrupted with both multiplicative and complex additive white Gaussian noise

(AWGN), is that the IF estimation can be accomplished with time frequency methods

provided the standard deviation of the multiplicative noise is less than its mean. It is

noted in [45] that the MNR is the ratio of the standard deviation over the mean and that

the theoretical MNR of a single look amplitude SAR image is 0.5227. Since this is less

than 1.0, time frequency methods such as the FrACF can be used to estimate the IF or

LFM chirp rates.

The method that will be used to provide an estimate of the noise will be to identify re-

gions in the collected or processed imagery where there is little or no back-scatter energy

such as radar shadows or large areas of calm water [6, 3, 45]. Since the multiplicative

noise component is proportional to the average signal level σ̄0, the CNR will be estimated

as the ratio of the NRA to total image clutter. Figure 6.2 is the magnitude of received

phase-history data from RADARSAT-1 suitable for processing into a SAR map (image).

For this data, range is increasing from left to right and the satellite was moving from

top to bottom, transmitting and receiving pulses at the pulse repetition frequency (PRF).

Each received pulse is sampled at 32.317 MHz providing a 2-D array of phase-history

data. The received baseband signal data is given by (2.2). To provide a comparison of

detector performance in varying CNR regions, we will obtain the CNR in dB using,

CNRdB =10log10

(
Psignal

Pnoise

)
(6.5)

where Pnoise will be chosen from homogeneous regions in both the phase history data sets

depicted in Figure 6.2 and Figure 6.5 [6, 3, 45]. Since the homogeneous regions and

received pulses will not be the same length, (6.5) can be redefined as,

CNRdB =10log10

(
E{|s−σNNRA |}2

E{|σNNRA |}2

)
(6.6)
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where s is a 1-D array containing the pulse or range-bin samples and E(·) is statistical

expectation.

The detection was done with FrACF and the performance is provided in Figure 6.3

which is in agreement with the results of the simulations in that, the performance of

FrACF will depend on having good SNR. Both detection and CNR calculations can be

noisy so a smoothing filter was used when necessary to help identify trends in the plotted

data. When a smoothing filter was used, this was indicated on the plot as win(n) where n

is the length of the filter used in the MATLAB convolution (conv) routine.

Figure 6.2: RADARSAT-1 phase-history data (Vancouver Airport BC).
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Figure 6.3: Range FM rate detection using FrACF.

Figure 6.4: Range SNR for RADARSAT-1 scene (Vancouver Airport BC).

Figure 6.5 is an image of the phase-history data in the range Doppler domain, after

range pulse compression (matched filtering) and range cell migration correction (RCMC)

and the data in this domain is provided by Equation ( 2.20).
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Figure 6.5: RADARSAT-1 range Doppler (Vancouver Airport BC).

We see in Figure 6.6 that the azimuth LFM rate detector performed well mainly due to

good CNR in the range Doppler domain after range compression and range cell migration

correction.
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Figure 6.6: Azimuth FM rate detection using the FrACF.

Figure 6.7: Azimuth CNR for RADARSAT-1 scene.

Comparing the range and azimuth FM rate detection performance in Figure 6.3 and Fig-

ure 6.6, we can see that the azimuth FM rate detection performed better in that there is

less noise and an overall trend noticeable in Figure 6.6, whereas in Figure 6.3 we no-

tice possible good LFM detection in the region where the CNR peaked between pulse
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numbers 400 - 1000. The better estimation performance of the azimuth detector can be

attributed to performing the detection on the data in the range Doppler domain after range

compression. Since it is after range compression, the CNR is improved as indicated in

Figure 6.7. It should also be noted, that clear SAR imagery is dependent on having CNR

between 5 dB and 15 dB [3] and this threshold is evident in Figure 6.7.

Figure 6.8: Azimuth FRFT optimized parameters using contrast maximization.

Figure 6.8 is a plot of the optimized FRFT rotational parameters using contrast maximiza-

tion for the detection statistic in (4.11). Since this statistic is captured during the azimuth

matched filtering stage, the target energy is fully compressed. For this implementation,

the algorithm maximizes the contrast of the strongest target within each range bin. It is

also possible to force the maximization for specific spatial regions by bounding the re-

gions for which contrast is maximized. Both MATLAB and FORTRAN provided intrinsic

routines for selecting maximum values and their locations in multi-dimensional arrays.

To obtain a better estimate for the range FM rate, we performed the detection after

azimuth compression when the CNR is improved and, as expected, this did provide a

better noise estimate. Figure 6.9 is a plot of the CNR for each pulse using Equation (6.6)
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on data that is compressed in both range an azimuth, in other words, a single look complex

(SLC) image. As shown in Figure 6.10, the CNR is well above the needed threshold of

5 dB as indicated in Figure 4.2. Figure 6.10 is a plot of the FRFT optimization values κ

obtained using FrACF.

Figure 6.9: Clutter-to-noise (CNR) ratio for each pulse from a single look complex (SLC)

image (compressed in both range and azimuth).
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Figure 6.10: Pulse FRFT optimization values obtained using the FrACF.

Using the noisy estimates to correct mismatches in the range FM rate caused severe

streaking or high noise levels in the azimuth direction of the SLC image. Since we are

using the FRFT to correct for nonlinear motion between the satellite and target, it is not

possible for the uncompensated motion to change this rapidly for non-moving targets, so

the range FM estimates were used as input to a polynomial fitting algorithm. The fitted

polynomial will be used for the pulse FRFT optimization values and a plot of the values

is provided in Figure 6.8. Note that FRFT optimization values are the difference between

the matched filter and received data LFM chirp rates, and are corrections to the azimuth

dependent range FM rates needed to concentrate the frequency in the TF plane as demon-

strated in Figure 5.3. These corrections are provided as updates to the original FM rate

using the FRFT operator additivity property.
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Figure 6.11: Pulse FRFT optimization values using FrACF; for κ =−7e−5,∆Kr =−2.8e8

using Equation (4.19).

6.4 Fractional Auto Focus for Chirp Scaling Algorithm

The fractional focusing CSA was implemented using the steps depicted in the overview

Figure 5.7.

6.4.1 Fast-time FRFT chirp optimization

The first FRFT optimization was applied to each pulse using the values in Figure 6.11,

sr(tκ ,η) = (Fκ
r sr)(tκ ,η). This is done by applying a 1-D FRFT to each row of sr(tκ ,η)

with κi = FRFTorder(i).

6.4.2 Azimuth FRFT

A azimuth FRFT is performed by applying a 1-D FRFT to each column or range-bin

with κi = 1 for all range-bins, Srd(tκ , fη) = (F1
r sr)(tκ ,η). Notice the frequency index fη
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indicating the data is now in the range-time azimuth-frequency domain.

6.4.3 Chirp scaling

Chirp scaling is applied using the fη dependent phase multiply,

S1(tκ , fη) = ssc(t, fη)Srd(tκ , fη). This is accomplished with a 1-D multiply applied to

each row of the 2-D data array. The phase multiply is provided with (2.16).

6.4.4 Range FRFT

A range FRFT is performed by applying a 1-D FRFT to each row or pulse with κi = 1

for all pulses, S2( ftκ , fη) = (F1
r S1)(tκ , fη). The phase-history data is now in the 2-D

frequency domain. The frequency indexes ftκ and fη indicate the data is now in the

range-frequency, azimuth-frequency domain.

6.4.5 Range matched filter

An fη dependent range matched filter is applied to remove the second and forth ex-

ponential terms of (2.18), S3( ftκ , fη) = SMFRS2( ftκ , fη). The phase of matched filter is,

φRangeMF =
πD( fη ,Vr)

KmD( fηre f ,Vr)
f 2
t +

4π

c

[
1

D( fη ,Vrre f )
− 1

D( fηre f ,Vrre f )

]
Rre f ft (6.7)

A 1-D range matched filter if applied by multiplying each row of the S2( ftκ , fη) with

F1
r
{

exp( jφRangeMF)
}

.

Figure 6.12 is a plot of the phase and matched filter for pulse 2048.
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Figure 6.12: Range matched filter phase and magnitude for pulse 2048.

6.4.6 Range IFRFT

A range IFRFT is performed by applying a 1-D FRFT to each row or pulse with

κi =−1.0 for all pulses, S4(tκ , fη) = (F−1
r S3)( ftκ , fη). The phase-history data is now in

the range Doppler domain.

6.4.7 Azimuth matched filter

A tκ dependent azimuth matched filter is applied to remove the first term of (2.18) and

(2.25), S5(tκ , fηβ
) = (Fβ

r SMFAzS4)(tκ , fηβ
). The phase of matched filter is,

φAzimuthMF =
4πR0 f0D( fη ,Vr)

c

+
4
c2

πKmg1

πKm +g1

[
R0

D( fη ,Vr)
−

Rre f

D( fη ,Vrre f )
+

cg0

4g1

]2

+
g2

0
4g1

(6.8)

With the application of the matched filter, the FRFT optimization is applied to maximize

contrast using the optimization values displayed in Figure 6.8. The FRFT optimized 1-D
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matched filter is applied to each column of S4(tκ , fη) using, Fβi
r {exp( jφAzimuthMF)}. The

Netlib algorithms DGETRF and DGETRI were used as a polynomial fitting routine to

produce the coefficients g0 and g1.

6.4.8 Azimuth IFRFT

A azimuth IFRFT is performed by applying a 1-D FRFT to each column or range-bin

with κi = −1.0 for all range-bins, S6(tκ ,ηβ ) = (F−1
r S5)(tκ , fη). The data is now com-

pressed in both range and azimuth with concentrated target energy. This product is often

referred to as a single look complex (SLC) image.

6.4.9 Results

The result of the CSA or fractional focusing CSA is an single look complex (SLC)

image. Each pixel of this image has an I and Q or real and imaginary component and

often, the dynamic range of the magnitude y(m,n) =
√

I(m,n)2 +Q(m,n)2 exceeds the

display capabilities of common display systems. There are many algorithms and theories

for remapping the pixels into an acceptable display range, many of which make use of log

functions and image statistics. The remap of the SLC image included was accomplished

using a nonlinear contrast stretch routine that remapped all pixel values between the min-

imum and maximum magnitude
(√

I2 +Q2
)

values to an 8-bit display range of 0 to 255.

Also, it is customary to project the slant plane SLC image into the ground plane before

remapping. This slant-to-ground projection was not performed, hence the image is in the

slant plane.

An overview image (1/8 resolution) is provided in Figure 6.13, where azimuth-time

is increasing from the bottom to top and range increases from let to right.
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Figure 6.13: RADARSAT-1 scene (Vancouver, BC).

Figure 6.14 is a full resolution chip from the center of the RADARSAT-1 scene used for

this evaluation. First to get an appreciation of what 8 meter resolution imagery looks

like, the runway 08L-26R marker was placed in the chip. According to the Vancouver

airport guide, that runway is 200 feet wide. Since we will be comparing performance

enhancements of the FRFT, no attempt was made to improve the overall response by

including weighting functions or multi-look methods in the processing (this is mentioned

because weighting functions such as the Taylor window are standard techniques used in

SAR signal processing for mitigating side-lobe levels.) There are two rectangles placed
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around areas of bright return to indicate regions for calculating contrast. See Table 6.3 for

contrast values. EFrF is used to indicate fractional focusing in the CSA. The area Loc (1)

is the rectangle in the upper region of the chip (approximate row 2250) and Loc (2) is the

lower region (approximate row 2450). Also included in the table is a point target located

at row 2634, column 1967. This target is not located within the full resolution chip but is

noticeable in the 1/8 resolution scene.

Table 6.3: RADARSAT-1 Vancouver scene contrast comparisons

Location CSA FFrF
Loc (1) 3.797 4.013
Loc (2) 4.829 5.109
(2634,1967) 3.004 3.113

Figure 6.14: Full resolution chip of the RADARSAT-1 scene.

Figure 6.15 is a point target located at row 2424 column 2415. To produce the MAT-

LAB plots, the complex points are up-sampled by a factor of 16. The target on the left

is from CSA processing with original FT or FRFT order F1
r . The target on the right was
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produced using the same algorithm and parameters except that the FRFT LOP parameters

or Fκ
r applied as indicated in Figure 5.7. We see a significant improvement in the range

direction especially in the resolution; this is a result of correcting the FM rate mismatch.

In other words, the target is no longer walking across range bins but aligned in frequency

or time as depicted in Figure 5.3.

Figure 6.15: MATLAB point target analysis at target location (2424,2415). Target upsam-

pled by a factor on 16 and displayed with MATLAB routine imagesc.

Figure 6.16 provides a fast time comparison of point target at row 2424. For this target

it is easy to see an improved peak sidelobe ratio (PSLR) (approximately 1dB) along with

an overall improvement in the impulse response width (IRW) or resolution. It should be

noted, that it is customary to provide comparisons in dB, however we wanted to keep the

scaling between Figure 6.15 and Figure 6.16 comparable.
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Figure 6.16: Point target fast-time comparison (azimuth pulse 2424).
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CHAPTER 7

Conclusions and Future Work

7.1 LFM Detection Accuracy

From both the high resolution results presented in [16] and our simulation-error anal-

ysis results, we can conclude that fractional autocorrelation function (FrCSA) is an effi-

cient method for LFM detection with high performance in low SNR environments. For

RADARSAT-1 LFM chirp rate estimation, Figures 4.2 and 4.4 indicate that FrACF can be

used for estimation in SNR environments above 5 dB. One measure of SAR image quality

is quadratic phase error (QPE) which contributes to elevated sidelobe and broadening of

the impulse response width (IRW). A mismatch of FM rates between the matched filter

and returned signal will contribute to QPE thereby decreasing image quality. A rule of

thumb for high focusing [1] accuracy (less than 2 percent IRW boarding), is∣∣∣∣∆K
K

∣∣∣∣≤ 1
TBP

(7.1)

where K is the FM rate, ∆Kis the FM rate mismatch and TBP is the time bandwidth

product. This indicates that the range FM rate mismatch must be, ∆Kr ≤ 0.57 GHz/s and

the standard deviation in Figure 4.3 indicates that this can be achieved in normal SNR

environments.

The detection performance for the RADARSAT-1 scene in Figures 6.3 and 6.6 are in

agreement with the MSE simulations indicating that the FrACF can be used for FM rate

detection in good SNR environments. One possible approach to enhance the detection

of the range FM rate could be to perform the detection after azimuth compression to en-

hance the SNR of each pulse. Depending on how this is implemented, it could result in

performing complete image formation processing twice.
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7.2 Fractional Focusing and the CSA Implementation

While the concentration of this work has been the use of the FRFT to enhance the

focusing of the CSA, some of the obtained results require additional consideration.

7.2.1 Contrast Maximization

The results of testing contrast maximization with changing FM rate Ka and changing

FRFT order κ indicate that the FRFT has the capability to enhance the contrast beyond

that of correcting the FM rate mismatch. This is depicted in Figure 5.6 and suggests that

matched filtering at optimal FRFT orders will increase the peak sidelobe ratio (PSLR)

compared to classical FT methods. The expected behavior was that the absolute maxi-

mum contrast would have occurred for an FRFT order κ = 1 when the chirp rate of the

matched filter matched that of the signal. Since the maximum value occurred for κ 6= 1,

additional testing is necessary to verify the possibility of an isolated result. We need to

test whether applying a matched filter and using the extra degree of freedom provided by

the FRFT [2] will allow the contrast to be maximized beyond that of FT matched filtering.

7.2.2 Enhanced Fractional Focusing (EFrF) using the CSA

The excellent results obtained and presented in Figures 6.15 and 6.16 suggest that the

initial focusing of the CSA was not optimal; however, the only difference between the

presented results was the value of the FRFT transform order. The CSA was produced

within the same program without the application or the range and azimuth FRFT updates,

indicating the optimal FRFT transform not only enhanced the PSLR but also improved

the resolution or IRW. Although the FRFT optimization was applied in both the range and

azimuth directions, the range or fast-time application provided an overall better enhance-
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ment. Applying the FRFT before the first azimuth FFT and getting significant results,

suggests that motion compensation may not have been optimal for this scene.

7.3 Future Research
7.3.1 LFM detection using the Discrete Chirp-Fourier Transform

As noted in Chapter 6, the mapping of the continuous FRFT to a discrete implemen-

tation requires significant up-sampling or interpolation, thus increasing the processing

time. Although its implementation is O(N log2 N) where N is the number of samples, its

performance is considerably slower. A possible faster implementation for LFM detection

is the use of the discrete chirp-Fourier transform (DCFT) which uses the DFT to match

multiple chirps to multiple chirp components [46]. The definition of the DFT,

X(k) =
1√
N

N−1

∑
n=0

x(n)W nk
N , 0≤ k ≤ N−1 (7.2)

where WN = exp(− j2π/N), the DCFT is

Xc(k, l) =
1√
N

N−1

∑
n=0

x(n)W ln2+kn
N , 0≤ k, l ≤ N−1 (7.3)

where k represents the constant frequencies and l the chirp rates. The author indicates

a relationship between the DCFT and FRFT exists in that the chirp rate parameter l is

related to the rotational parameter of the FRFT. Note, this method does not have a rela-

tionship with the ambiguity function similar to FrACF, meaning a 2-D search is necessary

to identify both k and l. It may be possible to minimize the 2-D search by constraining k

and l to their expected values and some initial testing needs to be done to understand the

performance.

7.3.2 Multi-component LFM Rate Resolution

While researching LFM detection using the FRFT, a question that was not answered

deals with the resolution of the sweep rate parameter used to create the detection statistic
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in FrACF. The idea being, if we understood a bound on the LFM rate resolution, that

would provide a bound for the sweep rate resolution. The workaround for not having this

bound, was to understand the LFM rate accuracy needed to minimize QPE. We were able

to locate a recent work [37] where it is noted that there are no comparative works.

Based on the relationship of the FRFT with the WD, we tried locating a more gen-

eralized definition for chirp-rate resolution and time-frequency. As noted by Wang [35],

resolution defined as the ability to separate two chirp signals with very small difference

in chirp rate, has not been well defined.

Additional research is needed to identify additional work in the area of chirp rate res-

olution and the FRFT, or a more generalized definition for time-frequency.

7.3.3 LFM detection and instantaneous frequency

Since we used the signal SNR in our analysis, it should be noted that the multiplica-

tive noise ratio (MNR) is a common image quality metric used for speckle imagery. The

MNR is defined as the ratio of the image intensity in the no return area (NRA) divided by

the intensity in a bright surrounding area [3]. There is work [44] indicating that the in-

stantaneous frequency (IF) time-frequency estimation will be impacted by multiplicative

noise and not possible for MNR > 1.0.

Additional research is needed using the signal model in [44] in place of the model pro-

vided with Equation (4.8) to understand the LFM detection performance for SAR LFM

signals.

7.3.4 Matched filtering and time-bandwidth product

With the FRFT additivity of rotations property, it is possible to rotate the time-frequency

(TF) plane of a chirp, throughout a continuous range of fractional domains or angles using
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the rotational parameter α as depicted in Figure 3.3.

Figure 7.1: Chirp: time-bandwidth product for −1≤ κ ≤ 1.

Figure 7.1 is a plot of a RADARSAT-1 chirp rotated throughout the range of the FRFT

using the additivity of rotations property and as expected, the time-bandwidth product

(TBP) is maximized for α = ±π/4, where α = κπ/2. Since the matched filtering pro-

cess will cancel the rotation by applying a conjugate chirp, a study should be done to

understand the results of applying the filter at the maximum TBP. As indicated in [42]

the matched filter compression gain is attributed to the TBP and by Equation (4.19), we

know that oversampling or zero padding the arrays used in pulse compression will cause a

clockwise rotation in the TF plane decreasing the TBP. By use of the FRFT rotational pa-

rameter, it may be possible to enhance the compression gain by rotating both the matched

filter and the signal to the maximum TBP.
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7.3.5 Time-frequency methods for moving target and inverse synthetic aperture radar

(ISAR) processing

The direct relationship of the FRFT to linear canonical transforms makes the FRFT

an attractive transform for many TF applications. The focus of the work in this research

was to estimate uncompensated motion and enhance the CSA processing by correcting

the LFM chirp rates of stationary targets. If we were interested in processing the moving

target information, then there is recent work using the FRFT for this purpose with many

proposed methods [7, 8, 18, 36, 38]. As we demonstrated with the enhanced FRFT fo-

cusing (EFrF) technique using the CSA and RADARSAT-1 data, the implementation and

characteristics of the data determined how the FRFT was used. We suspect there will be

similar challenges in applying the FRFT to real data used for both moving target detection

and inverse synthetic aperture radar (ISAR) processing. If real data is available, this work

could be extended into these areas.
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