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Abstract

The vibratory response of buildings and machines contains key information that can

be exploited to infer their operating conditions and to diagnose failures. Further-

more, since vibration signatures observed from the exterior surfaces of structures are

intrinsically linked to the type of machinery operating inside of them, the ability

to monitor vibrations remotely can enable the detection and identification of the

machinery.

This dissertation focuses on developing novel techniques for the detection and

M-ary classification of vibrating objects in SAR images. The work performed in this

dissertation is conducted around three central claims. First, the non-linear trans-

formation that the micro-Doppler return of a vibrating object suffers through SAR

sensing does not destroy its information. Second, the instantaneous frequency (IF)

of the SAR signal has sufficient information to characterize vibrating objects. Third,

it is possible to develop a detection model that encompasses multiple scenarios in-
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cluding both mono-component and multi-component vibrating objects immersed in

noise and clutter.

In order to cement these claims, two different detection and classification method-

ologies are investigated. The first methodology is data-driven and utilizes features

extracted with the help of the discrete fractional Fourier transform (DFRFT) to feed

machine-learning algorithms (MLAs). Specifically, the DFRFT is applied to the IF

of the slow-time SAR data, which is reconstructed using techniques of time-frequency

analysis. The second methodology is model-based and employs a probabilistic model

of the SAR slow-time signal, the Karhunen-Loève transform (KLT), and a likelihood-

based decision function. The performance of the two proposed methodologies is

characterized using simulated data as well as real SAR data. The suitability of SAR

for sensing vibrations is demonstrated by showing that the separability of different

classes of vibrating objects is preserved even after non-linear SAR processing.

Finally, the proposed algorithms are studied when the range-compressed phase-

history data is contaminated with noise and clutter. The results show that the

proposed methodologies yields reliable results for signal-to-noise ratios (SNRs) and

signal-to-clutter ratios (SCRs) greater than −5 dB. This requirement is relaxed to

SNRs and SCRs greater than −10 dB when the range-compressed phase-history data

is pre-processed with the Hankel rank reduction (HRR) clutter-suppression technique.
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Chapter 1

Introduction

1.1 Overview

Synthetic aperture radar (SAR) is a ubiquitous coherent imaging technique designed

for generating high-resolution terrain images. Synthetic aperture radar operates by

illuminating the target scene with electromagnetic pulses, typically in the microwave

band, and measures the amplitude and phase of the return signal. After substantial

signal processing of the collected data, the final product is a two-dimensional image

where each pixel in the image represents the reflectivity of a region at the transmit-

ted frequency [1]. The relatively long wavelengths, compared with those of optical

sensors, make SAR systems capable of remote imaging over thousands of kilometers

regardless of weather conditions. The typical range of these systems can be anywhere

from 25km for the Lynx radar1 [2] to well over 800 km for the RADARSAT-2 [3].

These SAR-collection platforms can generate images at a variety of resolution scales.

1Lynx is a high resolution, SAR that has been designed and built by General Atomics
Aeronautical Systems, Inc., in collaboration with Sandia National Laboratories. The Lynx
SAR has been used in various vibrometry experiments coordinated by the SAR research
group at the University of New Mexico.
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Chapter 1. Introduction

For example, the Lynx radar has the ability to generate 0.1m (4in.) and 0.3m (1ft.)

resolution images [2].

Figure 1.1: Synthetic aperture radar operating in spotlight mode. The radar beam is
continually steered to constantly illuminate the same ground patch from all positions
of the flight path.

For common imaging applications, a typical airborne SAR platform operating in

spotlight-mode illuminates the ground scene for at least several seconds to create a

single SAR image. Figure 1.1 shows the typical three-dimensional data acquisition

geometry for the spotlight SAR. During the data-collection process, the image forma-

tion technique, often the polar-format algorithm (PFA) [4], assumes all targets in the

2



Chapter 1. Introduction

ground scene are static. This assumption, makes SAR particularly sensitive to low-

level target vibrations [5–13]. More specifically, ground target vibrations introduce

a phase modulation, termed the micro-Doppler effect [10], into each returned SAR

signal. Any target, with a strong radar cross section (RCS) relative to its surround-

ings, vibrating in 90o with respect to the flight path will produce observable artifacts

in the image called ghost targets. These ghost targets degrade the image quality. An

example of these ghost targets is shown in Fig. 1.2. While ground target vibrations

may introduce distortion in some regions of a SAR image [5, 10], they contain vital

information about the frequency and amplitude of the vibration of a target. In turn,

the vibration history, if reliably detected, can aid in the identification of the targets

imaged.

1.2 Motivation

During the past few years, the analysis of mechanical vibration (i.e., vibrometry) has

become a prominent field of study. Particularly, the vibratory response of buildings

and machines carries key information that can be exploited to infer their operating

condition and to diagnose failures. Furthermore, since vibration signatures observed

from the exterior surfaces of structures are intrinsically linked to the type of machin-

ery operating inside of them, the ability to monitor vibrations remotely can facilitate

the detection and identification of the machinery.

Mechanical vibrations from machines and buildings are normally low in ampli-

tude (app. 1 mm - 10 cm) and low in frequency (app. 1 Hz - 500 Hz). The

study of this type of vibrations in SAR images is carried out by analyzing slow-

time data. The slow-time data of a SAR image corresponds to all the cross-range

slices of the range-compressed phase history data of the SAR image. To date, many

high-precision vibration-estimation algorithms have been developed for reconstruct-

3
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Figure 1.2: Vibration phenomenology in spotlight SAR. (a) Collection geometry and
vibrating target. (b) SAR image containing a static and vibrating target, both with
strong RCS. The vibration of the target is in the range direction. The induced
ghost artificats are exhibited in the azimuth (cross-range) direction. The SAR image
(b) has a pixel resolution of 4-in and was generated by the GA-ASI Lynx SAR in
collaboration with the University of New Mexico for various vibromtery experiments.
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Chapter 1. Introduction

ing surface-vibration waveforms from SAR images [14–18]. The next challenge to-

wards a complete characterization and understanding of surface vibrations in SAR

images is in the development of algorithms for detecting and classifying vibrating

objects based on their SAR signature.

In the past, a method based on a cyclostationary model and the generalized

likelihood ratio was proposed to detect vibrating objects from slow-time SAR signals

[19]. This detection scheme was based on the correlation between the cyclic spectral

density (CSD) of a slow-time signal and a stored template of the expected CSD of the

vibration. However, the match between a vibration CSD template and the CSD of

the input signal is susceptible to errors because the CSD of SAR signals is impulsive

in nature, it is affected by signal noise and terrain clutter, and it also changes with

the vibration frequency. Furthermore, this detection scheme is unpractical for more

complex types of vibrations, such as chirped vibrations, for which the CSD does not

produce a reliable characterization. Due to the aforementioned weaknesses of the

existing technique for detecting vibrating objects in SAR images, it is clear that new

signal-processing methods are needed for detecting and classifying vibrating objects

in SAR images.

1.3 State of the art

During the last few years, numerous works have been published on the study of the

effects of vibrating objects in SAR images [5–19]. However, among all these works

only one has focused on the development of a detection algorithm for vibrating

objects in SAR images.

In 1998, Subotic et al. proposed a method based on a cyclostationary model and

the generalized likelihood ratio for detecting vibrating objects from slow-time SAR

signals [19]. Specifically, they found that the slow-time signal of a vibrating

5



Chapter 1. Introduction

Magnitude of the complex SAR image

100 200 300 400 500

Cross-range (pixel)

20

40

60

80

100

120

R
a

n
g

e
 (

p
ix

e
l)

(a)

Magnitude of the cyclic spectral density

5 10 15 20 25

Cyclic frequency α (Hz)

160

180

200

220

S
p

e
c

tr
a

l 
fr

e
q

u
e

n
c

y
 f

 (
H

z
)

10

20

30

40

50

(b)

Magnitude of the complex SAR image

100 200 300 400 500

Cross-range (pixel)

20

40

60

80

100

120

R
a

n
g

e
 (

p
ix

e
l)

(c)

Magnitude of the cyclic spectral density

5 10 15 20 25

Cyclic frequency α (Hz)

160

180

200

220

S
p

e
c

tr
a

l 
fr

e
q

u
e

n
c

y
 f

 (
H

z
)

10

20

30

40

50

60

(d)

Magnitude of the complex SAR image

100 200 300 400 500

Cross-range (pixel)

20

40

60

80

100

120

R
a

n
g

e
 (

p
ix

e
l)

(e)

Magnitude of the cyclic spectral density

5 10 15 20 25

Cyclic frequency α (Hz)

160

180

200

220

S
p

e
c

tr
a

l 
fr

e
q

u
e

n
c

y
 f

 (
H

z
)

2

4

6

8

10

12

(f)

Figure 1.3: Analysis of vibrating objects in SAR images using the CSD. (a) SAR
image containing a vibrating point-object with a 1.5 mm, 15 Hz simple sinusoidal
vibration. (c) SAR image containing the same object as in (a) with additive clutter
and noise at SCR=10dB and SNR=10dB. (e) SAR image containing the same object
as in (a) with additional chirp of 1 Hz/s. (b), (d), (f) are the CSD planes of the
corresponding slow-time signals at range 65 of (a), (c) and (e), respectively.
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object exhibited cyclostationary characteristics as result of the phase modulation

that the vibration produces on the slow-time signal. Therefore, if a vibration has

a fundamental period τ0, then the mean and auto-correlation functions of the slow-

time signal are also τ0-periodic. Subotic et al. proposed to use the CSD to exploit

this cyclostationary property. For every cyclic frequency α, the CSD compresses the

periodic information of the cyclic autocorrelation function (CACF) via the Fourier

transform. As result, the periodic vibration-information of the slow-time signal is

mapped to the region of the CSD plane with α 6= 0 whereas the stationary clutter is

restricted to the region α = 0. Subotic et al. proposed to detect vibrations using an

approximation of the generalized likelihood ratio, which correlates the CSD of the

signal under analysis with a CSD template of the expected vibration. The complete

detection scheme is presented in Appx. (A).

Figure 1.3 shows the magnitude of the SAR image and the corresponding CSD

for various types of SAR signals. Figure 1.3 (b) shows the CSD for a slow-time signal

containing a point-object exhibiting a 1.5 mm, 15 Hz simple sinusoidal vibration. As

can be observed, the CSD of this signal exhibits an impulse-like behavior at α = 15

due to the phase modulation that the 15 Hz vibration induces on the SAR signal.

Figure 1.3 (d) shows the CSD for the same signal in presence of additive a clutter

and additive noise at a signal-to-noise ratio (SNR) of 10 dB and signal-to-clutter

ratio (SCR) of 10 dB. As can be observed, even though the clutter and noise are

completely stationary, they presence also alters the definition of the 15 Hz signature

on the CSD plane. Finally, Fig. 1.3 (f) presents the CSD plane for the original 15 Hz

vibration with an extra chirp parameter of 1 Hz/s. In this case, the CSD losses

definition as a result of the chirped vibration.

This detection method based on signatures of the CSD plane has three important

drawbacks. First, the method requires a template of the CSD plane for each vibration

under study and, therefore, it does not scale conveniently for detecting families of
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Chapter 1. Introduction

vibrations such as simple sinusoidal waves, sinusoidal waves of multiple frequency

components, or chirped waves. Second, the quality of the vibration signatures on

the CSD is affected by the stationary noise and clutter which is not exclusively

mapped to the region α = 0. Third, for complex types of vibrations, such as chirp

vibrations, the CSD plane losses definition and becomes ambiguous.

1.4 Contributions

This dissertation focuses on developing novel detection schemes for the detection and

M-ary classification of vibrating objects in SAR images. Specifically, the work per-

formed in this dissertation is conducted around following three central claims. First,

the non-linear transformation that the micro-Doppler return of a vibrating object

suffers through SAR sensing does not destroy its information. Second, the instan-

taneous frequency (IF) of the SAR signal has sufficient information to characterize

vibrating objects. Third, it is possible to develop a detection model that encompasses

multiple scenarios including both mono-component and multi-component vibrating

objects immersed in noise and clutter.

In order to cement these claims, two different schemes are developed for both

the detection and M-ary classification of vibrating objects in SAR images. The

first scheme is data-driven and utilizes features extracted with the help of the dis-

crete fractional Fourier transform (DFRFT) to feed machine-learning algorithms

(MLAs). Specifically, the DFRFT is applied to the IF of the slow-time SAR data,

which is reconstructed using enhanced spectrograms based on the smoothed pseudo

Wigner–Ville time-frequency distribution (SPWVTFD) and the DFRFT. The MLAs

studied in this work are: a linear support-vector machine (SVM), a 3-layer fully-

connected neural network (NN), and a random-forest classifier (RFC). The details

of this vibration detection and classification approach are provided in Chapter 3.1

8



Chapter 1. Introduction

and 4.1. The second scheme is model-based and employs a probabilistic model of

the SAR slow-time signal, the Karhunen-Loève transform (KLT), and a likelihood-

based decision function. Particularly, the KLT is used to decorrelate the samples

of the SAR slow-time signal via singular-value decomposition (SVD). The details of

the probabilistic detection scheme are provided in Chapters 3.2 and 4.2. Figure 1.4

summarizes the proposed detection methodologies in a block diagrams. The perfor-

mance of the two proposed detection schemes is characterized using simulated data

as well as real SAR data collected with the Lynx SAR system. The results shows that

the two proposed schemes can be used to achieve high-performance vibrating-object

detectors and classifiers.

The suitability of SAR for sensing surface vibrations is demonstrated by showing

that the separability of different classes of vibrating objects is preserved even after

non-linear SAR processing. For this purpose, an empirical experiment has been

performed using MLAs, a library of vibration data from real machines (instantaneous

position data) and simulated SAR data. Specifically, the simulated SAR data was

generated using the machine-vibration data as input for the micro-Doppler return of

a vibrating object (point-object). The classification results of a set of two MLAs, one

trained with the real vibration data and the other with the simulated SAR data, show

that the separation of classes produced by the MLA trained with simulated SAR data

is the same that the one provided by the MLA trained with the machine-vibration

data. The details of this work are presented in Chapter 5.

Finally, the proposed algorithms are studied when the SAR slow-time signals are

contaminated with noise and clutter. The results show that the proposed detection

and classification schemes yields reliable results for SNRs and SCRs greater than

−5 dB. To loosen these requirements, the Hankel rank reduction (HRR) technique,

previously used for suppressing ocean clutter in ground-wave radar, is adapted to

suppress clutter-noise in SAR images. The result shows that the proposed detection
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Chapter 1. Introduction

schemes yields reliable results for SNRs and SCRs greater than−10 dB when the SAR

images are pre-processed with the HRR method. This extends the capabilities of the

proposed detection algorithms in presence of noise and clutter, and also corroborates

the fitness of the HRR technique for performing noise and clutter suppression in SAR

imaging.

(a) (b)

Figure 1.4: Block diagram of the proposed methodologies for the detection and
classification of vibrating objects in SAR images. (a) Data-driven approach based
on MLAs. (b) Approach based on a probabilistic model of the SAR slow-time signal.
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Chapter 2

Theoretical background

2.1 Motion model

Figure 2.1 shows a three-dimensional SAR flight geometry for a vibrating target

located at the origin. The nominal line-of-sight distance from the target to the radar

sensor is r0, with the radar sensor located at polar angles ψ and θ to the target. Let

rd(t) denote the projection of the vibration displacement onto the line-of-sight from

the target to the SAR sensor, the range of the vibrating target becomes

r(t) ≈ r0 − rd(t). (2.1)

Due to the change of aspect angle of the target during the SAR data-collection

process, the range r0 also slightly changes. However, modern SAR compensates for

the change via proper modeling and post signal-processing techniques [20–22]. The

projection, rd(t), is also modulated by the change of aspect angle. For broadside

SAR, the projection can be approximated by

rd(t) ≈ rd0 cos θ(t), (2.2)
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Chapter 2. Theoretical background

where rd0 represents the projection of the vibration displacement for θ = 0. The

change of aspect angle θ(t) due to the SAR geometry is known; therefore, rd0(t)

can be estimated from rd(t). For spotlight-mode SAR, the change of aspect angle is

usually small [20]. In this case rd(t) ≈ rd0(t).

Figure 2.1: A three-dimensional SAR flight geometry. The vibrating target is located
at the origin and the radar sensor is located at (r0, ψ, θ).

2.2 Signal model

The small range perturbation of the vibrating target modulates the collected SAR

phase history. Consider a spotlight-mode SAR whose transmitted pulse is a chirp

signal, with carrier frequency and chirp rate fc and K, respectively. Each returned

SAR pulse is demodulated by the transmitted pulse delayed appropriately by the

round-trip time to the center of the illuminated patch. A demodulated pulse can be

12



Chapter 2. Theoretical background

written as [20, Ch. 1]

r(t) =
∑
i

σi exp

[
− j 4π(ri − rc)

c

(
fc +K(t− 2rc

c
)

)]
, (2.3)

where σi is the reflectivity of the ith scatterer, c is the propagation speed of the

pulse, and rc is the distance from the patch center to the antenna. The polar-

to-rectangular resampling approach is then applied to the SAR phase history [20,

Sec. 3.5] to correct for range cell migration. The autofocus is also performed at

this stage. For small vibrations, the vibration-induced phase modulation in range

direction is very small [10, 23, 24]; therefore, it is ignored. Range compression is

applied to the phase history to separate the scatterers in range. Figure 2.2 shows the

magnitude of the range-compressed SAR phase history containing one static point

target and one vibrating point target. Assuming that all scatterers at a specific range

are static, the range-compressed phase history at this specific range can be written

as

s[n] =
∑
i

σi[n] exp
[
j
(
fyyin−

4πfc
c
ri + φi

)]
+ w[n], (2.4)

for 0 ≤ n < N−1, where n is the index of the collected returned pulses, N represents

the total number of collected returned pulses, yi is the cross-range position of the

ith target, φi represents all additional (constant) phase terms and w[n] is the signal

noise. The imaging factor, fy, is known and used to estimate the cross-range of the

target. For spotlight-mode SAR, fy can be written as [20,21]

fy =
4πfc
c

V

R0fprf
, (2.5)

where V is the nominal speed of the SAR antenna, R0 is the distance from the patch

center to the mid-aperture, and fprf is the pulse-repetition frequency (PRF). The

SAR integration time is given by TI = N/fprf .

The signal s[n] in (2.4) is a stationary signal if all scatterers are static. The az-

imuth compression, accomplished by applying the discrete Fourier transform (DFT)
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to s[n], will focus the static scatterers on the correct cross-range positions. However,

when a vibrating scatterer is present, s[n] has a non-stationary component because ri

is now a function of n for the vibrating scatterer. The cross-range yi is also changing

for the vibrating scatterer. However, because R0 is very large (tens of kilometers),

fy is usually much smaller than 4πfc/c; therefore, the phase modulation induced by

time-varying yi is ignored [10, 24]. As such, ȳi is used to denote the average cross-

range position of the vibrating scatterer. For the same reason, a small change in

ri causes a relatively large fluctuation in the Doppler frequency fyyi. It is impor-

tant to emphasize that azimuth compression cannot focus the vibrating scatterer on

the correct cross-range position because the DFT spectrum of the non-stationary

component usually has significant side lobes [25]. Figure 2.2 (b) shows the recon-

structed SAR image by applying azimuth compression to the phase history as shown

in Fig. 2.2 (a). The side lobes near the vibration target are commonly referred to

as the ghost targets [25]. The vibration-induced phase modulation is referred to as

the micro-Doppler effect [10]. Analysis tools other than the DFT are required to

estimate and characterize vibrations and non-stationary targets in general.

The signal of interest (SoI) is defined as the slow-time signal (range line) in the

range-compressed phase history containing vibrating targets. Figure 2.2 (a) shows

the SoI of a static target and a vibrating target displayed in a range-compressed

phase history image, and Fig. 2.3 shows the SoI of a static target and a vibrating

target displayed as functions of the slow time.

When a vibrating scatterer is well-separated from other scatterers in range, which

may be possible by choosing a proper data collection orientation, the SoI can be

written as

s[n] = σ[n] exp
[
j
(
fyȳn−

4πfc
c
rd[n] + φ

)]
+ w[n] (2.6)

for 0 ≤ n < N − 1. In this model, the signal contribution of all other scatterers have
been collapsed into w[n]. Because of this, w[n] is a clutter-noise signal.
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Figure 2.2: Reconstruction of a SAR image from its range-compressed phase history.
(a) The magnitude of the range-compressed SAR phase history containing one static
target and one vibrating target. The two targets are separated in range after range
compression. (b) The reconstructed SAR image using the SAR phase history in
(a). The vibrations of the target introduces ghost artifacts along the azimuth (cross-
range) direction.

15



Chapter 2. Theoretical background

0 0.1 0.2 0.3 0.4 0.5

Slow time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d

e
 (

A
.U

.)

SoI: Static target

Real(SoI)

(a)

0 0.1 0.2 0.3 0.4 0.5

Slow time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d

e
 (

A
.U

.)

SoI: Static target

Imag(SoI)

(b)

0 0.1 0.2 0.3 0.4 0.5

Slow time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d

e
 (

A
.U

.)

SoI: Vibrating target

Real(SoI)

(c)

0 0.1 0.2 0.3 0.4 0.5

Slow time (s)

-1

-0.5

0

0.5

1
A

m
p

li
tu

d
e

 (
A

.U
.)

SoI: Vibrating target

Imag(SoI)

(d)

Figure 2.3: Example of the slow-time signal for a static and a vibrating targets.
Complex SoI simulated for a (a,b) static target, (c,d) vibrating target. In (c,d) the
target vibration induces phase modulation on the signal of (a,b). The vibration
was assumed to be a sinusoidal function of amplitude 1cm and frequency 3.5Hz.
The Lynx radar parameters of Table 2.1 and the signal model (2.6) were used for
generating the signals.

All the simulations of SAR signals performed in this dissertation make use of 2.6

in conjunction with the Lynx radar parameters of Table 2.1.
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Table 2.1: SAR system parameters for simulations. The paremeters were extracted
from SAR images generated with the Lynx radar oeprating at 1ft. resolution.

Parameter Quantity
Pixel dimension 0.25× 0.25 m2

Nominal resolution 0.3× 0.3 m2

Carrier frequency fc = 16.7 GHz
Slant range R0 = 10 Km

Plane velocity V = 100 m/s
Effective pulse-repetition frequency fprf = 450 Hz

Number of collected pulses N = 1024
SNR 30 dB, unless otherwise specified
SCR 30 dB, unless otherwise specified

2.3 Binary hypothesis testing problem

In the signal model for the SAR SOI (2.6), the term rd[n] is the projection of the

instantaneous position of the target onto the line of sight from the target to the

SAR. Hence, when the target is static, the term rd[n] is a constant for all slow-time

index n, but when the target is vibrating, rd[n] is the projection of the vibration

displacement and, therefore, it varies over time. The only exception to this is when

the vibration is unidirectional and it occurs parallel to the flight path of the sensor.

This will cause the slow-time signal of the vibrating object to be identical as the

slow-time signal of a static object. Nevertheless, this will not be considered as a

concern because when imaging a site using an airborne SAR system, multiple passes

from different azimuthal angles can be performed in order to ensure capturing micro-

Doppler modulation of vibrating objects. Therefore, in consideration of the signal

model (2.6) a binary hypothesis-testing problem is defined as follows. The null

hypothesis, H0, represents the case in which the slow-time signal, s[n], contains the

return s0[n] from a static object; and the alternative hypothesis, H1, represents the

case in which the slow-time signal, s[n], contains the return s1[n] from a vibrating

object. In this first formulation, it will be assumed that rd[n] corresponds to a pure
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sinusoidal function. Also, without loss of generality, the constant phase terms in the

signal model can be combined into a single one. Then, the hypotheses for a point

object in a SAR image can be stated as follows:

H0 : s[n] = s0[n] + w[n] = σ exp
(
jfyȳn+ jφ

)
+ w[n],

H1 : s[n] = s1[n] + w[n] = σ exp
(
jfyȳn+ jφ+ jx[n]

)
+ w[n],

(2.7)

where x[n] = 4πfc
c
rd[n] and it is been assumed that the reflectivity of the target σ

does not change for 0 ≤ n < N − 1. Since in a SAR image the slow-time signal at a

given range position consists of a total of N samples, the hypothesis-testing problem

can be restated in the following vector form

H0 : s =
[
s[0], . . . , s[N − 1]

]T
= s0 + w =


s0[0]

...

s0[N − 1]

+


w[0]

...

w[N − 1]

 ,
vs.

H1 : s =
[
s[0], . . . , s[N − 1]

]T
= s1 + w =


s1[0]

...

s1[N − 1]

+


w[0]

...

w[N − 1]

 .
(2.8)

Therefore, given a slow-time vector s =
[
s[0], . . . , s[N − 1]

]T
from a SAR image, the

ultimate goal is to determine if s belongs either to H0 or H1.

2.4 M-ary hypothesis testing problem

In the previous section, a probabilistic vibration detection model for addressing the

binary hypothesis testing problem for a static object vs an object that exhibits a

simple sinusoidal vibration has been mathematically developed. In this section, the

probabilistic detection model is extended to a M-ary hypothesis testing problem for

a point object in a SAR image. Specifically, the detection model is extended to
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also consider x[n] as multicomponent sinusoidal vibration and/or a multi-component

chirped vibration for each one of the M hypotheses. This is

H0 : s[n] = s0[n] + w[n] = σ exp
(
jfyȳn+ jφ+ jx0[n]

)
+ w[n],

...

HM−1 : s[n] = sM−1[n] + w[n] = σ exp
(
jfyȳn+ jφ+ jxM−1[n]

)
+ w[n],

(2.9)

where xj[n] is a function defining the vibration pattern, i.e., mono-component sinu-

soid, multi-component sinusoid, mono-component chirp, multi-component chirp, or

identically zero in for the case of a static object, 0 ≤ j ≤ M − 1, 0 ≤ n < N − 1.

Since in a SAR image the slow-time signal at a given range position consists of a

total of N samples, the hypothesis-testing problem can be restated in the following

vector form

H0 : s =
[
s[0], . . . , s[N − 1]

]T
= s0 + w =


s0[0]

...

s0[N − 1]

+


w[0]

...

w[N − 1]

 ,
...

HM−1 : s =
[
s[0], . . . , s[N − 1]

]T
= sM−1 + w =


sM−1[0]

...

sM−1[N − 1]

+


w[0]

...

w[N − 1]

 .
(2.10)

Therefore, given a slow-time vector s =
[
s[0], . . . , s[N − 1]

]T
from a SAR image, the

ultimate goal of the M-ary classification problem is to determine if s belongs either

to H0, H1, . . ., or HM−1.
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Binary detection models

3.1 Vibration detection scheme based on

machine-learning classifiers and the DFRFT

This detection scheme corresponds to a model-based data-driven approach for classi-

fying vibration signatures in SAR images. Model-based data-driven approaches are

appealing because they use data generated via simulation to train machine learn-

ing algorithms (detectors/classifiers), supplying in this way the need of thousands

of samples that the training of these type classifiers normally require. For this pur-

pose, SAR data is simulated combining the signal model for the SAR slow-time

history (2.6) with different vibration waveforms. The simulated data goes through

the feature extraction process described in Sec. 3.1.1. The feature data is labeled

(static object, vibrating object) and compiled into datasets for training, validating

and testing the MLA under study.
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3.1.1 Feature extraction

The proposed feature extraction process makes use of an enhaced spectrogram and

the DFRFT. The DFRFT, or more specifically the multi-angle centered-discrete frac-

tional Fourier transform (MA-CDFRFT) [26], is a parametric extension of the cen-

tered DFT that describes the magnitude and phase of signals consisting in sinusoids

of given frequency and chirp-rate. For a given a vector s =
[
s[0], . . . , s[N − 1]

]T
consisting of N samples of the slow-time signal at given range coordinate of the SAR

image, first, the SPWVTFD or a DFRFT-based fractional-spectrogram is applied

to estimate the IF of the slow-time signal. On the one hand, the SPWVTFD is

a bilinear time-frequency transform (time-dependent autocorrelation function) de-

signed to reduce the cross-term interference1 of the Wigner-Ville time-frequency dis-

tribution [10, 27]. On the other hand, a DFRFT-based spectrogram [28–30] is a

linear time-frequency analysis technique that uses the DFRFT to produce sharper

spectrograms for multicomponent chirp analysis. Unlike the SPWVTFD, since the

DFRFT is a linear transformation, DFRFT-based spectrograms does not suffer from

cross-term interference. A more detailed description of these techniques is given in

Appendices B, C, D. Particularly, in App. E a qualitative study is performed, be-

tween the SPWVTFD and a piece-wise linear DFRFT-spectrogram, for reconstruct-

ing vibration-modulated IF signals from simulated SAR data. Similar to the common

Fourier spectrogram, both the SPWVTFD and a DFRFT-based spectrogram does

not yield a direct, quantitative interpretation of IF of the signal but instead it pro-

duces a graphical illustration of it, which must be further interpreted and analyzed

if multiple frequencies or non-stationary frequencies are present in the vibration.

Nevertheless, here it is assumed that the instantaneous position of vibration can be

recovered from the SPWVTFD or a DFRFT-based spectrogram of the SAR slow-

time signal by comparing its magnitude with a threshold. Once an estimation of the

1The Wigner-Ville time-frequency distribution of the sum of two signals is not the sum
of their individual Wigner-Ville time-frequency distributions.
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IF signal is obtained, then the DFRFT is applied to characterize the vibration in

terms of number of components, center-frequency and chirp-rate of each component.

Even though the traditional DFT is sufficient for characterizing simple sinusoidal

vibrations, the use of the DFRFT has the advantage that this same approach can

be used for more complex type of vibrations, such as chirped vibrations, without

the need of changing the feature extraction process. Finally, the feature extraction

process concludes by computing the kurtosis, energy, variance and histogram of the

IF signal. Algorithm 1 summarizes the feature extraction process of this detection

scheme and Fig. 3.1 illustrates the feature extraction process step by step.
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Figure 3.1: Feature extraction using the SPWVTFD and the DFRFT. (a) SP-
WVTFD of a SAR signal generated from a object exhibiting a chirp vibration. (b)
IF recovered from (a) by thresholding. (c) Normalized histogram of (b) using 32
bins. (d) Magnitude plane of the 512-points DFRFT of (b).
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Algorithm 1 Feature extraction using the DFRFT and time-frequency analysis

tools.

1: s =
[
s[0], . . . , s[N − 1]

]T
: a slow-time vector from a SAR image.

2: Apply the SPWVTFD, or the piece-wise linear DFRFT-based spectrogram,

to s to generate a Nb-frequency-bins spectrogram of the slow-time signal (e.g.

Nb=32).

3: The IF curve (vibration waveform) of the slow-time signal is then extracted from

the previous spectrogram using thresholding.

4: Compute the kurtosis, variance and energy on the extracted IF curve.

5: Compute the Nb-bins histogram of the IF.

6: Apply the DFRFT to the IF and store the information of the Nc-most prominent

peaks of magnitude plane (e.g. Nc=6). Specifically, the magnitude of each peak,

its center frequency and its chirp-rate value are considered.

7: Finally, the features computed in 4), 5) and 6) are concatenated in a single feature

vector of dimension N = Nb + 3 + 3Nc (e.g. 53× 1, for Nb=32 and Nc=6).

3.1.2 Machine-learning clasifiers

Three different types of data-driven machine-learning architectures are studied for

sake of the analysis. The first classifier is a linear SVM [31] that divides the feature

space using hyper-planes as boundaries. The second classifier is a 3-layer fully-

connected NN [31]. Specifically, the classifier corresponds to a NN consisting of 2

hidden layers with rectified linear units as activation functions and a “logits” (output)

layer that feeds a softmax function. A general scheme of the NN architecture is

pictured in Fig. 3.2. The total number of neurons per layer is 53:30:10:2:1. The

third classifier is a RFC [31] that averages the predictions of multiple decision trees

on random subsets of the feature space. Both the NN and the RFC produce non-

linear division of the feature space. The linear SVM and the RFC are trained using a
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3-fold procedure with stratification and no hyperparameter tuning. The training of

the NN is carried out in 50 epochs using a data batch of size 50 and minimizing a soft-

max cross-entropy loss function. In order to reduce overfitting and to produce a more

compact network, dropout hyperparameter tunning, at a rate of 50% is considered.

The implementation of these three classifiers is carried out using TensorFlowTM [32].

Figure 3.2: General scheme of the proposed neural network for classification of vibra-
ting objects in SAR images.

3.2 Vibration detection based on a probabilistic

model of the SAR slow-time signal

This detection approach is model-based and uses a probabilistic representation of the

SAR signal under each hypothesis. The detection algorithm is based on a likelihood

ratio function of the SAR slow-time signal. The Karhunen-Loève (KL) expansion is

introduced to pre-process the slow-time signals due to the inconveniences that arise
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when working with the joint probability density functions (PDFs) of the SAR signal.

Specifically, the KL expansion is used to transform the hypothesis testing problem

to an equivalent one, where the samples of transformed signal are now statistically

independent.

3.2.1 Probabilistic model of the binary hypothesis testing

problem

Recall the hypothesis testing problem (2.7) and (2.8) for an N -samples slow-time

vector, where s0[n] is the part of the slow-time signal that corresponds to the return

of a static object, s1[n] is the part of the slow-time signal that corresponds to the

return of a vibrating object, and w[n] is an additive term to represent noise and

clutter. Due to physical properties of a SAR, there are natural constraints for the

variables σ, φ, ȳ for an object within a SAR image. Similarly, due the limitations

of a sensing vibrations with SAR [17], some constraints also apply to the vibration

waveform (instantaneous position) x[n], 0 ≤ n ≤ N − 1. In light of this limitations,

consider the following probabilistic model of (2.7) for a vibration described by a

simple sinusoidal function

H0 : S[n] = S0[n] +W [n] = Σ exp
(
jfyY n+ jΦ

)
+W [n],

H1 : S[n] = S1[n] +W [n] = Σ exp
(
jfyY n+ jΦ + jX[n]

)
+W [n],

(3.1)

where Σ ∼ U [σmin, σmax] (the symbol “∼” means “distributed as”) is the reflectiv-

ity of the object, Y ∼ U [−yo, yo] is its cross-range coordinate (deviation from the

center of the SAR image) with yo > 0, Φ ∼ U [−π, π] is a constant (yet random)

phase term, and W [n] ∼ CN (0, σ2
w) is circularly-symmetric complex Gaussian noise,

0 ≤ n ≤ N − 1. The reasons supporting these assumption on W [n] arise from a

statistical analysis performed on SAR images, see for instance App. F. The term

X[n] = A cos(Φx+2πnF ) is the projection of the instantaneous position of the vibra-

ting object onto the line of sight from the object to the SAR, where Φx ∼ U [−π, π]
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is a vibration phase term, F ∼ U [fmin, fmax] is directly proportional to the vibration

frequency, and A ∼ U [amin, amax] is directly proportional to the vibration ampli-

tude. The scaling factor for the vibration frequency is 1/fprf , and for the vibration

amplitude is 4πfc
c

. It is important to recall that all the parameters that determine

the distribution of these random variables can be estimated from the SAR speci-

fications. In the vector form of the hypothesis testing problem (2.8), the random

variables S[0], S[1], . . . , S[N − 1] are correlated under both hypotheses. However,

the noise samples W [0],W [1], . . . ,W [N − 1] are considered to be independent and

identically distributed.

3.2.2 Direct detection approach

This detection approach is based on the likelihood ratio between the PDFs of the

SAR signal under the two hypothesis. In order to compute the joint PDF of the

random slow-time vector S = [S[0], S[1], . . . , S[N − 1]]T under both hypotheses,i.e.,

fS
∣∣
H0

and fS
∣∣
H1

, one can employ the fact that the noise samples are independent and,

therefore, the PDF of S for a given realization of the remaining random variables is

the collective product of the noise PDFs. This is

fS|Σ,Φ,Y
(
s|σ, φ, y

)∣∣
H0

=

=
∏N−1

n=0

(
1

πσ2
w

)
exp

(
− |s[n]−s0[n]|2

σ2
w

)
=

∏N−1
n=0

(
1

πσ2
w

)
exp

(
− |s[n]−σ exp

(
jfyyn+jφ

)
|2

σ2
w

)
,

(3.2)

fS|Σ,Φ,Y,A,F,Φx
(
s|σ, φ, y, a, f, φx

)∣∣
H1

=

=
∏N−1

n=0

(
1

πσ2
w

)
exp

(
− |s[n]−s1[n]|2

σ2
w

)
=
∏N−1

n=0

(
1

πσ2
w

)
exp

(
− |s[n]−σ exp

(
jfyyn+jφ+ja cos(φx+2πnf)

)
|2

σ2
w

)
.

(3.3)

The next step on determining fS
∣∣
H0

and fS
∣∣
H1

consists on integrating the expressions

above using the marginal probability distributions of the random variables that the
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define the vibration signature under each hypothesis. This is performed in App. G.

Finally, in consideration of (G.11) and (G.20), it is possible to define a binary de-

tector for the hypothesis testing problem (2.8) based on the likelihood ratio of these

probability density functions as

L(s) =
fS(s)

∣∣
H1

fS(s)
∣∣
H0

=
R1(s)

L0(s)
. (3.4)

The likelihood ratio detector (3.4) produces an optimal detector for the hypothesis

testing problem (2.8), [33]. However, its implementation is unappealing because of

the elevated number of iterated numerical integrations that are required to evaluated

L(s) for a given slow-time vector s. Particularly, this approach requires of 2 numerical

integrations for computing fS(s)
∣∣
H0

and 5 for computing fS(s)
∣∣
H1

. Even though the

number of numerical integrations can be slightly reduced by collapsing the terms

of the form (Φ + fyY n) and (Φx + 2πnF ) into a single random variable using a

trapezoidal distribution, the complexity of the algorithm still remains high. This is

mainly due to the fact that the random samples S[0], S[1], . . . , S[N − 1] of the slow-

time signal are correlated. In order to overcome this issue and reduce the complexity

of the proposed detection algorithm, in the next section an equivalent detector is

developed using the KLT, which is capable of removing the temporal correlation of

S[0], S[1], . . . , S[N − 1] by diagonalizing the auto-covariance matrix of the random

slow-time vector S.

3.2.3 Detection approach using the KL expansion

The KL expansion allows one to decorrelate the components of the slow-time vector

S and, at the same time, it permits one to work with simpler probability density

functions. Specifically, in the KL expansion the eigenvectors of the covariance matrix

of the signal capture the temporal correlation of the signal. The randomness of S

is captured in the KL coefficients which correspond to the projections of S onto the
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set of eigenvectors of the covariance matrix.

Recall the hypothesis testing problem (3.1) defined in Sec. 3.2.1, where the re-

flectivity, phase and position of a point object are modeled as random variables

as well as the amplitude, frequency and phase of the simple sinusoidal vibration

X[n] = A cos(Φx + 2πnF ). In order to construct a detection scheme based on the

KL expansion the first step is to compute the covariance matrices of the slow-time

vector S under both hypothesis, H0 and H1. This is performed in App. H. Then,

based on the previous KL expansion, App. I, it is possible to define a new likelihood

ratio as a decision tool for detecting vibrating objects in SAR images. For this pur-

pose, given a signal S from a SAR image, a likelihood ratio function of using its KL

coefficients is defined.

A slow-time signal s =
[
s[0], . . . , s[N − 1]

]T
can be expanded using the eigen-

vectors of the covariance matrix computed under each hypothesis. This is, given a

slow-time vector s from a SAR image, one can compute the KL coefficients under H0,

z0
k = (v0

k)
∗s, and under H1, z1

k = (v1
k)
∗s, for k = 0, 1, 2, . . . , N − 1. If S is assumed

to be complex-normal distributed, then resulting KL coefficients are also complex-

normal distributed (and zero-mean, because S is zero-mean) since they are a linear

combination of complex-normal distributed random variables (I.3). Therefore, they

can be completely described by their first- and second-order statistics. Furthermore,

since E{Zj
kZ

j
m} = vj∗k E{SST}vj∗Tm = 0 because E{SST} = 0 for Hj, j = 0, 1; the

pseudo-covariance matrix of Z is 0N×N under H0 and H1. Since the KL coefficients

are independent, then

Z0
k ∼ CN (0, λ0

k), and Z1
k ∼ CN (0, λ1

k), (3.5)

where λ0
k and λ1

k are the eigenvalues of cov{S} under H0 and H1, respectively.

Therefore, an equivalent hypothesis testing problem to (3.1) can be stated as

H1 : Z = {Zk}N−1
k=0 , Zk’s independent, with Zk ∼ CN (0, λ1

k)

H0 : Z = {Zk}N−1
k=0 , Zk’s independent, with Zk ∼ CN (0, λ0

k).
(3.6)
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Algorithm 2 Vibration detection scheme using a probabilistic model and the KLT.

1: Determine the distributions of Σ, Y,Φ, A, f,Φx based on radar specifications.

2: Compute the covariance matrices under hypothesis H0 and H1 using (H.15) and

(H.24), respectively.

3: Perform the spectral decomposition of the two covariance matrices (I.1).

4: For every slow-time vector s =
[
s[0], . . . , s[N − 1]

]T
, compute {z0

k}N−1
k=0 and

{z1
k}N−1

k=0 using (I.3) and the eigenvectors of cov(S) under H0 and H1, respec-

tively.

5: Compute the likelihood ratio (3.8).

6: Compare the likelihood ratio with a threshold to determine if s belongs either to

H0 or H1.

Since the KL coefficients are independent, it is possible to define a likelihood ratio

for a slow-time vector s consisting of N samples, i.e., consisting of N KL coefficients

under each hypothesis, as

L(s) =
fS(s)

∣∣
H1

fS(s)
∣∣
H0

=
fZ(z)

∣∣
H1

fZ(z)
∣∣
H0

=

∏N−1
k=0

1
πλ1k

exp

(
− |z

1
k|

2

λ1k

)
∏N−1

k=0
1
πλ0k

exp

(
− |z

0
k|2
λ0k

) , (3.7)

L(s) =
N−1∏
k=0

λ0
k

λ1
k

exp

(
| z0

k |2

λ0
k

− | z
1
k |2

λ1
k

)
. (3.8)

The latter expression defines a likelihood ratio that can be compared with a threshold

in order to decide if the slow-time signal s, via its KL coefficients {z0
k}N−1

k=0 and

{z1
k}N−1

k=0 , corresponds to a signal generated by a vibrating object or a static object.

Algorithm 2 summarizes the steps involved in this detection scheme.
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3.3 Performance evaluation

In this section, the performance of the proposed detection schemes is evaluated.

Specifically, the performance of the proposed algorithms is tested using both simu-

lated and real SAR data. The purpose of this study is: (i) to understand the limits

of the proposed detection schemes, (ii) to characterize their performance in terms

of the receiver operating characteristic (ROC) curve, (iii) to study their robustness

against a mixed dataset of real SAR data, which contains data from a collection

of different vibrometry experiments, and (iv) to characterize its performance in the

presence of noise and clutter at different intensity levels.

3.3.1 Dataset description

Two datasets are used to study the performance of the binary detectors. A simulated

dataset, consisting of SAR images generated via simulation using the parameters of

the Lynx Radar, see Table 2.1, is used to test the proposed detectors. Specifically,

80% of the dataset is used for training and validation of the MLAs. The remaining

20% is used to evaluate the performance of the all the proposed detectors. A second

dataset, consisting of real SAR images collected with the Lynx Radar is also used to

report the performance of the proposed detectors. The purpose of these two datasets

is, one, to study how feasible it is to develop data-driven model-based detectors for

the vibrating objects in SAR images and two, to test the performance of the pro-

posed detectors using real SAR data. The details of each one of these two datasets

is provided below.

Simulated dataset:

The vibrating objects were simulated using single-component sinusoidal vibrations

with amplitude between 8 mm and 1.5 cm, and frequency between 2 Hz and 10 Hz.
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For the two classes of objects, the simulated data was contaminated with additive

noise and additive clutter at a SNR of 30 dB and a SCR of 30 dB. The noise was

simulated as independent, circularly symmetric, complex Gaussian distributed sam-

ples. The clutter magnitude was generated by performing circular averaging filter

on uniformly random distributed clutter matrix of the same dimensions of the radar

synthetic aperture. The circular averaging filter employed a kernel of size of 3×3 pix-

els. The clutter phase was considered to be uniformly distributed between −π and

π. A total of 5,000 samples per class were generated. The division of samples within

the dataset was 50% and 50% between static objects and vibrating objects. The

objects were simulated assuming a deviation no greater than 15% from the center

of the SAR image. Figure 3.3 shows an example of a pair of SAR images generated

with these specifications.

Lynx dataset:

This dataset contains a total of 200 samples of SAR slow-time signals collected in

previous vibrometry experiments. One hundred of this samples correspond to static

objects and the remaining 100 samples correspond to vibrating objects. This dataset

is heterogeneous in terms of resolution and contains SAR signatures collected with

resolution of 1foot and 4in. Also, the plane velocity parameter varies from 80 m/s to

100 m/s and the pulse repetition frequency between 200 Hz - 500 Hz. The SNR of the

samples of this dataset is 30 dB. Similarly, the SCR of the samples of this dataset is

also 30 dB. The carrier frequency and R0, the distance to the center of the patch, are

as in Table 2.1. Quad-corner reflectors were used as study objects (point-objects).

The vibrations were induced by off-balanced motors and had frequency in the range

2 Hz - 6 Hz and amplitude between 2 mm and 5 cm. The position of the objects

had a deviation less than 15% from the center of the SAR image. Figure 2.2 shows

an example of a SAR image containing a static object and a vibrating object used

in this dataset.
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Figure 3.3: Examples of the 2 different types of SAR signatures simulated. SAR
image and slow-time signal (range line 65 of the SAR image) of an (a,b) static point-
object, (c,d) point-object with a single-component sinusoidal vibration. Note: for
display purposes SAR images of size 128×256 pixels were generated.
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3.3.2 Performance metrics

The performance of the proposed vibration-detection algorithms is mainly measured

using the ROC curve and its convexity as indicators. Specifically, the ROC curve

reports how well a detector performs in terms of detection ratio vs false-alarm ratio.

The ROC curve, in the case of the MLAs, is computed by recording the performance

while moving boundaries in the feature space and, in the case of the likelihood-ratio-

based probabilistic detector, by increasing and decreasing the threshold. The con-

vexity of the ROC curve is quantified by the area under the ROC curve (AUROCC).

In addition, the feature usage in the construction of the random forest classifier is

also analyzed for studying the suitability of the feature extraction process proposed

in Sec. 3.1.

3.3.3 Demonstration and performance evaluation

The performance evaluation of the proposed detectors is presented in Figs. 3.4 and

3.5, and Table 3.1. First, as can be observed in Fig. 3.4 and Table 3.1, among the

three machine-learning detectors implemented, the RFC is the one with the highest

performance. Even though, the three MLAs perform similarly on the simulated

dataset, on the Lynx dataset their performance drops about 0.2 to 0.3 in terms of the

AUROCC. Also, similar to the case of the MLAs, the performance of the probabilistic

detector also drops on the Lynx dataset. Specifically, the performance decreases

about 0.076 points in terms of the AUROCC. These mismatches in performance

may be attributed to several modeling errors including: (i) Imperfect radar cross-

section modeling, since the objects contained in the Lynx dataset are quad-corner

reflectors and not ideal point-objects; and (ii) variations of radar parameters across

the Lynx dataset, since the Lynx dataset contains data from different vibrometry

experiments collected at different PRF and resolution.
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Figure 3.4: ROC of the MLAs for the binary detection problem. (a) Performance
evaluation on the simulated dataset. (b) Performance evaluation on the Lynx dataset.
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Figure 3.5: ROC curves of the probabilistic detector for the binary detection problem.
(a) Performance evaluation on the simulated dataset. (b) Performance evaluation on
the Lynx dataset.

Another interesting point is that the performance of the MLAs is slightly better

than the performance the probabilistic detector on the simulated dataset. The reason

behind this is the high SNR and SCR of this test. A completely different situation
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Table 3.1: Area under the ROC curve of the proposed detectors for the binary
detection problem.

Classifier Simulated dataset Lynx dataset
Linear SVM 0.991 0.676

Neural Network 0.999 0.761
RFC 1.000 0.808

Prob. detector 0.975 0.899

occurs in the performance evaluation of the proposed detectors on the Lynx dataset.

In this case, the probabilistic detector overperforms the MLAs by 0.04-0.1pts in terms

of the AUROCC. This indicates that among all the tested detection algorithms, the

probabilistic detector tend to be more robust against modeling errors in the data. For

example, on the Lynx dataset for a false-alarm ratio of 10%, the linear SVM achieves

a true positive rate of 45%, the NN 40%, the RFC 50%, and the probabilistic detector

75%.

Figure 3.6: Feature usage of the constructed Random Forest classifier for the binary
classification problem. The features #1-32 correspond to histogram values. The
features #33-35 are statistics. The features #36-53 are the relative magnitude,
frequency index and chirp rate index of the 6 highest peaks in the DFRFT plane

Finally, when analyzing the feature usage in the construction of the Random
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Forest classifier, Fig. 3.6, it can be noted that the information contained in the

peaks of the DFRFT plane are the most relevant features for classifying IF curves

of slow-time history data (features #36-53). The central part of the histogram also

contributes with useful features (features #10-20, the histogram range from feature

#1 to #32) and, among the statistics contained in the feature vector, only the energy

of the signal contributes with useful information (feature #35).

3.3.4 Characterization of performance in the presence of

noise and clutter

In this section, the performance of the proposed detection algorithms is evaluated in

the presence of noise and clutter at different intensity levels. This task is done using

datasets of the same characteristics as the simulated dataset describe in Sec. 3.3.1

but with different values of SNR and SCR. Specifically, two experiments are per-

formed. First, while keeping SCR = ∞, the performance of the proposed classifiers

is measured in terms of the AUROCC at different SNR values. Second, while keeping

SNR = ∞, the performance of the proposed classifiers is measured in terms of the

AUROCC at different SCR values. The results are shown in Fig. 3.7.

As can be observed in Fig. 3.7, the RFC is the detector that exhibits the highest

performance over all the tested SNR and SCR values. Particularly, in the range of

-20 dB to -10 dB, the probabilistic detector overperforms the remaining MLAs, which

have a drastic drop in performance. In contrast, the performance of the probabilistic

detector drops at a lower rate as the SNR and SCR decreases. Finally, one can

observe that the proposed detection algorithms have similar performance curves for

clutter contamination and noise contamination.
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Figure 3.7: Performance characterization of the proposed detector in terms of the
AUROCC at various noise and clutter intensity levels. (a) Performance vs. noise.
(b) Performance vs. clutter.
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M-ary detection models

4.1 Vibration classification scheme based on

machine-learning classifiers and the DFRFT

The vibration detection scheme proposed in Sec. 3.1 is based on a feature extrac-

tion process utilizing the DFRFT. Such feature extraction procedure enables one to

characterize not only simple sinusoidal vibrations but also more complex types of

vibrations such as multi-component sinusoidal functions and multi-component chirp

functions. Therefore, the detection procedures described in Sec. 3.1 can be directly

applied to address the m-ary detection problem. The only modification that is re-

quired to address the M-hypothesis case is that the training dataset, now containing

features from SAR signatures of M different types of vibration modes, has to contain

the labels of each one of the new M hypotheses for the training of the MLAs.
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4.2 Maximum-likelihood M-ary detector based on

a probabilistic model of the SAR signal and

the Karhunen-Loève expansion

In the previous chapter, a probabilistic vibration detection model for addressing

the binary hypothesis testing problem for a static object vs an object that exhibits

a simple sinusoidal vibration has been mathematically developed. In this section,

the probabilistic detection model is extended to a M-ary hypothesis testing problem

for a point object in a SAR image. Specifically, the detection model is extended

to consider multicomponent sinusoidal vibrations and chirped vibrations. Also, the

decision function becomes a maximum-likelihood operation as a natural extension of

the previously described likelihood-ratio detector.

4.2.1 Probabilistic model of the M-ary hypothesis testing

problem

For an illustrative purpose consider the following five hypotheses. Let the hypothesis

H0 represent the case in which the SAR slow-time signal S0[n] is generated from a

static object. Let the hypothesis H1 represent the case for which the slow-time

signal S1[n] is generated from an object exhibiting a simple sinusoidal vibration.

Let the hypothesis H2 represent the case for which the slow-time signal S2[n] is

generated from an object exhibiting a multicomponent sinusoidal vibration with K

components. Let the hypothesis H3 represent the case for which the slow-time signal

S3[n] is generated from an object exhibiting a chirped vibration. Finally, let H4

represent the case for which the slow-time signal S4[n] is generated from an object

exhibiting a multicomponent chirp-sinusoidal vibration, consisting of Kc chirps and

Ks sinusoids. The hypotheses for a random slow-time signal S[n] of a point object
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in a SAR image can be stated as in (4.1) where Σ ∼ U [σmin, σmax] is the reflectivity

of the object, Y ∼ U [−yo, yo] is its cross-range coordinate (deviation from the center

of the SAR image) with yo > 0, Φ ∼ U [−π, π] is a constant (yet random) phase

term, and W ∼ CN (0, σ2
w) is circularly-symmetric complex Gaussian clutter-noise,

0 ≤ n ≤ N − 1. The reasons supporting these assumptions on W [n] arise from a

statistical analysis performed on SAR images, see App. F.

H0 : S[n] = S0[n] +W [n] =

Σ exp
(
jfyY n+ jΦ

)
+W [n],

H1 : S[n] = S1[n] +W [n] =

Σ exp
(
jfyY n+ jΦ + jA cos(Φx + 2πnF )

)
+W [n],

H2 : S[n] = S2[n] +W [n] =

Σ exp
(
jfyY n+ jΦ + j

∑K
k=1Ak cos(Φk

x + 2πnFk)
)

+W [n],

H3 : S[n] = S3[n] +W [n] =

Σ exp
(
jfyY n+ jΦ + jA cos(Φx + 2πn(F + Crn))

)
+W [n],

H4 : S[n] = S4[n] +W [n] =

Σ exp
(
jfyY n+ jΦ + j

∑I
i=1Ai cos(Φi

x + 2πnFi)

+j
∑L

l=1 Al cos(Φl
x + 2πn(Fl + C l

rn))
)

+W [n],

(4.1)

The terms in blue color are the corresponding vibration induced-phase modu-

lation under each hypothesis. They represent the projection of the instantaneous

position of the vibrating object onto the line of sight from the object to the SAR.

The random variables that determine these vibration waveforms are defined as indi-

cated below.
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• Φx, Φi
x, Φk

x and Φl
x are ∼ U [−π, π] vibration phase terms, for 1 ≤ i, k, l ≤

I,K, L, respectively.

• F ∼ [fmin, fmax], Fi ∼ [fimin, fimax], Fk ∼ [fkmin, fkmax] and Fl ∼ [flmin, flmax]

are directly proportional to the vibration frequency (Hz), with scale factor

1/fprf , for 1 ≤ i, k, l ≤ I,K, L, respectively.

• A ∼ [amin, amax], Ai ∼ [aimin, aimax], Ak ∼ [akmin, akmax] andAl ∼ [almin, almax]

re directly proportional to the vibration amplitude (m), with scale factor

4πfc/c, for 1 ≤ i, k, l ≤ I,K, L, respectively.

• Cr ∼ [crmin, crmax] and Cr
l ∼ [clrmin, c

l
rmax], are directly proportional to the

vibration chirp-rate (Hz/s), with scale factor (1/fprf )
2, for 1 ≤ l ≤ L.

It is important to recall that all the parameters that determine the distribution

of these random variables can be estimated from the SAR specifications and the

characteristics of the vibration under study. In this work, all the aforementioned

random variables are assumed to be independent. In the case of a specific dependency

between different components (harmonics) of a vibration pattern, then the proposed

model is still valid by introducing the corresponding relations between the involved

random variables.

Since in a SAR image the slow-time signal of a point object at a given range

position consists of a total of N samples, the previous hypotheses can be expressed

as

Hj : S =
[
S[0], . . . , S[N − 1]

]T
= Sj + W =


Sj[0]

...

Sj[N − 1]

+


W [0]

...

W [N − 1]

 (4.2)

In this representation, the samples S[0], S[1], . . . , S[N−1] are not uncorrelated under

any hypothesis. However, the clutter-noise samples W [0],W [1], . . . ,W [N − 1] are

independent and identically distributed.
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4.2.2 M-ary maximum-likelihood detector based on the KL

expansion

Similar to the case of the probabilistic binary detector of Sec. 3.2, the covariance

matrices under each one of the M hypotheses are required for performing the KL

expansion. This is performed in detail in App. J. Then, based on the KL expansion

described in App. I, a likelihood test can be defined as a decision tool for detecting

different types of vibrating object in a SAR image. For this purpose, given a SAR

image the KL coefficients of the signal under all M hypotheses are determined. Once

this has been done, a likelihood function proportional to the probability density

function of the KL coefficients under every hypothesis is evaluated. In other words,

every probability density function is weighted by the prior probability of the SAR

signal belonging to that particular class. Finally, the maximum is taken over the

weighted likelihood functions of all hypothesis in order to determine the winner

hypothesis. The details of this procedure are given below.

A random slow-time signal S = [S[0], . . . , S[N − 1]]T can be expanded using the

eigenvectors of the covariance matrix computed under each hypothesis. In other

words, given S, the corresponding KL coefficients under Hj, Z
j
k = (vjk)

∗S are deter-

mined, for k = 0, 1, 2, . . . , N − 1, and 0 ≤ j ≤ M − 1 hypotheses. If S is zero-mean

and Gaussian (i.e., zero-mean complex-normal distributed), then resulting KL co-

efficients are also zero-mean and Gaussian since they are a linear combination of

complex-normal distributed random variables (I.3). Therefore, they can be com-

pletely described by their first- and second-order statistics. This conclusion leads

to

Zj
k ∼ CN (0, λjk), k = 0, 1, 2, . . . , N − 1, and j = 0, 1, 2, . . . ,M − 1, (4.3)

where λjk are the eigenvalues of cov{S} under Hj, 0 ≤ j ≤M−1, respectively. Since

the KL coefficients are independent among them, it is possible to compute the value
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of the probability density function for a given slow-time signal s = [s[0], . . . , s[N−1]],

i.e., consisting of N KL coefficients under each hypothesis, as

pj(s) = pj(z) = pNj ({zjk}
N
k=1) =

N∏
k=1

1

πλjk
exp

(
−|zjk|2

λjk

)
, 0 ≤ j ≤M − 1. (4.4)

Then, the maximum likelihood M-ary detector for the slow-time vector s can be

succinct as

arg max
0≤j≤M−1

πjpj(s) = arg max
0≤j≤M−1

πj

N−1∏
k=0

(
1

πλjk

)
exp

(
−|zjk|2

λjk

)
, (4.5)

where 0 ≤ πj ≤ 1 and
∑M−1

j=0 πj = 1. If no prior information about the likelihood of

the hypothesis is available, then the prior probabilities can be set to πj = 1/M , 0 ≤

j ≤M − 1, so each hypothesis is equally likely. For implementation purposes and in

order to avoid scaling issues arising from the high-magnitude radar parameters (e.g.,

high-magnitude reflectivity parameters and large SCR or SNR), it is recommendable

to group the terms of the form 1/πλjk together with the respective prior probabilities

πj. This is possible since the eigenvalues of the covariance matrix of the SAR slow-

time signal are fixed under each hypothesis. Then, the equation for the maximum-

likelihood M-ary detector can be stated as

arg max
0≤j≤M−1

πjpj(s) = arg max
0≤j≤M−1

πj

N−1∏
k=0

exp

(
−|zjk|2

λjk

)
, (4.6)

with 0 ≤ πj ≤ 1 and
∑M−1

j=0 πj = 1.

4.2.3 Optimal data-driven approach for determining

the prior probabilities

If one also considers a dataset of SAR signals that have been properly labeled under

one of the M hypotheses (e.g., this is possible by generating a SAR dataset using

the signal model described before), then it is possible to obtain an optimal solution
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Algorithm 3 M-ary detection of vibrations using a probabilistic model of the SAR

signal and the KLT.

1: Based on radar specifications, determine the distributions of the random variables

involved (Σ, Y,Φ, A, f,Φx, etc).

2: Compute the covariance matrices under each one of the M hypotheses Hj, 0 ≤

j ≤M − 1, using (J.15).

3: For every slow-time vector s =
[
s[0], . . . , s[N−1]

]T
, compute {zjk}

N−1
k=0 using (I.3)

and the eigenvectors of cov(S) under Hj, for every j hypothesis, 0 ≤ j ≤M − 1.

4: Initialize the priors πj or determine their optimal values using (4.7), 0 ≤ j ≤

M − 1.

5: Finally, the class of s is determined by (4.6).

for the priors πj’s of the previously described maximum-likelihood M-ary detector.

Consider a dataset {sk}Nsk=1 consisting of Ns samples of SAR slow-time vectors s =

[s[0], . . . , s[N − 1]]. Then the set of priors {πj}M−1
j=0 can be determined as the ones

that minimizes the classification error over the dataset. This is

[π∗0, . . . , π
∗
M−1] = arg min

πj

Ns−1∑
k=0

pd
(
arg max

0≤j≤M−1
πjpj(sk), C(sk)

)
(4.7)

where 0 ≤ πj ≤ 1 and
∑M−1

j=0 πj = 1, and sk is the k-th element of the dataset (sk is

a vector of N samples) with class (label) C(sk), 0 ≤ C(sk) ≤ M − 1. The discrete

metric pd is zero if the label and the predicted class coincide and one otherwise, i.e.,

pd(x, y) =

0, x = y

1, x 6= y
∀x, y ∈ Z (4.8)

Finally, Alg. 3 summarizes all the steps involved in the implementation of the pro-

posed m-ary detector, based on the probabilistic model of the SAR signal and the

KLT, for vibrating objects in SAR images.
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4.3 Performance Evaluation

In this section, the performance of the proposed M-ary detection schemes is eva-

luated. Specifically, the performance of the proposed algorithms was tested using

simulated SAR data only. This is because at the time this experiment was con-

ducted the author did not count with enough real SAR data to compute statistics

for characterizing the performance of the proposed M-ary detectors. The purpose of

this study is: (i) to understand the limits of the proposed detection schemes,(ii)to

characterize their performance in terms of the overall classification accuracy, and

(iii) to characterize its performance in the presence of noise and clutter at different

intensity levels. Particularly, the capabilities of the proposed M-ary detectors are

demonstrated using the following quaternary hypothesis testing problem.

• H0: Static object.

• H1: Vibrating object exhibiting a simple sinusoidal vibration pattern.

• H2: Vibrating object exhibiting a multicomponent sinusoidal vibration pattern.

• H3: Vibrating object exhibiting a simple chirped vibration pattern.

4.3.1 Specification of classes and dataset description

As indicated in the previous section, four different classes of SAR signatures are in-

vestigated. These classes are: (i) static objects (ST), (ii) objects exhibiting a single-

component sinusoidal vibration (SC), (iii) objects exhibiting a multi-component si-

nusoidal vibration (MC), and (iv) objects exhibiting a chirp vibration (CR). The

parameters defining the vibratory motion of samples of class (ii), (iii), and (iv) were

chosen randomly while assuming uniform distributions. More specifically, the single-

component vibration had amplitude defined between 8 mm and 1.5 cm, and frequency
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Figure 4.1: Examples of the 4 different types of SAR signatures simulated. SAR
image of an (a) static point-object, (b) point-object with a single-component sinu-
soidal vibration, (c) point-object with a multi-component sinusoidal vibration and
(d) point-object with a chirp vibration. Note: for display purposes SAR images of
size 128×256 pixels were generated.

between 2 Hz and 10 Hz. The multi-component vibrations were formed by 3 sinu-

soids with amplitudes between 5 mm and 1 cm, and frequencies in the ranges 2 Hz

- 5 Hz, 7 Hz - 10 Hz, 12 Hz - 15 Hz. The chirped vibrations had amplitude defined

between 8 mm and 1.5 cm, center frequency between 2 Hz and 10 Hz, and a linear

chirp-rate in the range ±5 Hz/s to ±10 Hz/s. The simulated data was contaminated
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Figure 4.2: Signal of interest of the 4 different types of SAR signatures simulated.
Range line 65 of the SAR images of Fig. 4.1 for a (a) static point-object, (b) point-
object with a single-component sinusoidal vibration, (c) point-object with a multi-
component sinusoidal vibration and (d) point-object with a chirp vibration.

with additive noise at a SNR of 30 dB, and additive clutter at SCR of 30 dB. The

noise is simulated as independent circularly symmetric complex Gaussian distributed

samples. The clutter magnitude is generated by performing circular averaging filter

on uniformly random distributed clutter matrix of the same dimensions of the radar

synthetic aperture. The circular averaging filter utilizes a kernel of size of 3×3 pixels.
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The clutter phase is uniformly distributed between −π and π. In order to generate

realistic SAR data, the following parameters were used to emulate the collection

process of the Lynx radar in spotlight mode. Figures 4.1 and 4.2 show samples of

simulated SAR images for these four different types of objects. As can be observed,

especially in the presence of vibrations, it is not easy to distinguish between the

different types of signals in the slow-time domain nor in the frequency domain (SAR

image).

Two datasets, each one containing of 10,000 slow-time vectors were generated via

simulations. Each dataset contained 2,500 samples of each class. One data set is

used for testing the final performance of the proposed detection schemes. The other

one is used a training dataset for the MLA and also for determining the optimal

priors for the maximum-likelihood detector.

4.3.2 Performance metrics

The metric selected for characterizing the classification performance of the selected

m-ary detectors is the overall accuracy, which measures the average accuracy of the

detection rate of each class ( i.e., average percentage of correct classified samples).

This metric is computed from the diagonal of the confusion matrix of each classifier.

4.3.3 Demonstration and performance evaluation

Classification using MLAs:

The performance results of these classification algorithms is presented in Tab. 4.1

and Fig. 4.3. Among the classifiers implemented, it must be noted that the linear

SVM classifier is the one with the lower performance. This is an indicator that the

features are distributed in a non-linear fashion in the feature space. Nevertheless, for
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(a) (b)

(c)

Figure 4.3: Confusion matrices of the MLAs for the quaternary classification prob-
lem. (a) Linear support-vector machine. (b) Artificial neural network. (c) Random
Forest classifier.

this demonstrative test with high SNR and high SCR, the three MLAs are capable

of separating the data based on the features extracted from the SAR signatures.

When analyzing the feature usage of the Random Forest Classifier, Fig. 4.4 , it can
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Table 4.1: Overall accuracy of the proposed M-ary classifiers for the quaternary
classification problem.

Classifier Accuracy
Linear SVM 77.5%

Neural Network 92.6%
RFC 99.8%
MLC 86.3%

be noted that not all the features contribute to the creation of decision boundaries.

Specifically, not the whole histogram, but only its outer region is relevant as shown in

the usage of features 1-32. Also, the figure shows that the statistics (features 32-35)

and the 6 peaks extracted from the DFRFT plane (features 36-53) are all relevant

for this classification problem.

Figure 4.4: Feature usage of the constructed Random Forest classifier for the qua-
ternary classification problem. The features #1-32 correspond to histogram values.
The features #33-35 are statistics. The features #36-53 are the relative magnitude,
frequency index and chirp rate index of the 6 highest peaks in the DFRFT plane

Classification using the maximum-likelihood classifier (MLC):

Three different cases are studied for the priors that weight the likelihood functions.
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Figure 4.5: Confusion matrices of the maximum-likelihood M-ary classifier for the
quaternary classification problem. (a) Case of equal priors. (b) Case of priors de-
termined by trial-and-error. (c) Case of priors determined by the proposed optimal
approach.

The first case assumes that all the hypothesis has been weighted equally by the priors,

i.e., π1 = π2 = π3 = π4 = 0.25. For the second case, the weights are π1 = π2 =

π3 = 0.3 and π4=0.1, and they were obtained by a trial-and-error procedure on the

training dataset. The third case makes use of the optimal solution described in the

previous section and produces the following weights π1 = 0.3157, π2 = π3 = 0.2955
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and π4 = 0.0933. Figure 4.5 presents the confusion matrices for each one of these

two cases. As observed in Fig. 4.5 (a), the use of equal priors does not produce a

balanced classifier. This is caused by the fact that the eigenvalues that scale each

exponential function have been removed for easing the computation of the likelihood

function. However, this operation is necessary since numerical issues tend to arise

due to the high number of multiplications involved in the computation of the PDFs

(For a SAR signal consisting of 1024 samples, the joint pdf of the slow-time vector

is the multiplication of the 1024 PDFs corresponding to each sample). Fig. 4.5 (b)

shows that by removing weight from hypothesis 3 (the hypothesis that captured the

most number of samples in Fig. 4.5 (a)) a more balanced detector can be obtained.

As shown in Figure 4.5 (c), the proposed procedure for optimally determining the

priors for the likelihood ratio function is the one that produces the best classifier

with an overall accuracy of 86.26%. Finally, when comparing the performance of

the maximum-likelihood classifier with the performance of the MLAs as shown in

Tab. 4.1, one can observe that the situation is similar to the binary detection problem.

In particular, the maximum-likelihood classifier ranks third in performance in this

demonstrative example using simulated SAR data.

4.3.4 Characterization of the performance in presence of

noise and clutter

In this section, the performance of the proposed classification algorithms is eva-

luated in the presence of noise and clutter at different intensity levels. This task is

done using datasets of the same characteristics as the simulated dataset describe in

Sec. 4.3.1 but with different values of SNR and SCR. Specifically, two experiments

are performed. First, while keeping SCR = ∞, the performance of the proposed

classifiers is measured in terms of the overall classification accuracy at different SNR

values. Second, while keeping SNR =∞, the performance of the proposed classifiers
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Figure 4.6: Performance characterization of the proposed M-ary detectors in terms
of the overall classification accuracy at various noise and clutter intensity levels. (a)
Performance vs. noise. (b) Performance vs. clutter.

is measured in terms of the overall accuracy at different SCR values. The results are

shown in Fig. 4.6.

As can be observed in Fig. 4.6, the RFC is the detector that exhibits the best

performance over all the tested SNR and SCR values. Particularly, the RFC shows

to be reliable up to an SNR and SCR of −5 dB. For SNR and SCR values higher

than 20 dB, the maximum-likelihood classifier ranks third. For any other SNR and

SCR value, the maximum-likelihood classifier is the one that exhibits the lowest

performance among the 4 tested classifiers. Finally, as in the case of the binary

detection methodologies, the proposed classification algorithms have similar similar

performance curves for clutter contamination and noise contamination.

54



Chapter 5

Preservation of class-separability

of vibrations in SAR images

Preservation of class-separability of vibrations in SAR images is one important

characteristic to study because it is an indicator of how appropriate is SAR as a

tool for studying vibrations. Particularly, it is interesting to confirm that vibration

waveforms, that are well-separable as displacement functions, remains well-separable

as slow-time signals collected by a SAR. This study is performed by training MLAs

with a library of vibrations of machinery from the Ford Utility Building (FUB)

and the Structural Engineering and Materials Laboratory at The University of New

Mexico (UNM). The analysis focuses on a library of machine vibrations containing

vibration history data from 8 different sources: a car engine, an industrial cooling

fan, an industrial exhaust, a power generator, a laboratory mixer, an industrial venti-

lation system, a turbine enclosure, and a laboratory ventilation system. Specifically,

the MLAs presented in Sec. 3.1 are used to study the capability to separate these

types of vibrations. First, the separability of these 8 types of vibrations is analyzed

by studying MLAs trained with features extracted directly from the displacement

waveforms. In other words, Alg. 1 is applied directly to the vibration displacement
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history data instead of IF curves. Second, the preservation of the separability of

these classes is studied using MLAs trained with features extracted from simulated

SAR images generated by the recorded displacement history data and the SAR signal

model (2.6). In this case, the feature extraction process is performed on simulated

SAR slow-time data via estimation of the IF of the signal as its indicated in Alg. 1.

Finally, the classification performance of the MLAs is studied to analyze the effect

that SAR produces as a sensor. Figure 5.1 summarizes all the steps involved in this

analysis.

Source of vibration:

Engines, turbines, etc.

Acceleration history data

Displacement history data

Simulated SAR data

Feature 

extraction (1)

Feature 

extraction (2)

MLA

MLA

Comparison

Measured with accelerometer

Time-domain integration

SAR signal model

Figure 5.1: Steps involved in the study of the preservation of class-separability of
vibrations in SAR images. The feature extraction process (2) uses the IF of the
slow-time signal as an estimation of the displacement history data in Alg. 1. The
feature extraction process (1) uses directly the displacement history data instead of
the IF in Alg. 1.

5.1 Library of machine vibrations

For this study a library consisting of machine vibrations of 8 different sources was

compiled. The vibration history data was collected at the Ford Utility Building
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(UNM’s power plant) and the Structural Engineering and Materials Laboratory at

UNM. The 8 classes of vibrations are: (i) a car engine idling, (ii) an industrial cooling

fan, (iii) an industrial exhaust, (iv) a power generator, (v) a laboratory mixer, (vi)

an industrial ventilation system, (vii) a turbine enclosure and (viii) a laboratory

ventilation system. The library contains a total of 6960 samples (870 samples per

class) and each sample is a 1 second acceleration history data. In order to study the

separability and its preservation under SAR processing, a total of 5600 samples (700

samples per class) are used to train classifiers and the remaining 1360 samples (170

samples per class) are used to test their performance. Prior feature extraction and

SAR processing, the acceleration history data is converted to displacement history

data via time-domain integration. Figures 5.2, 5.3, and 5.4 presents pictures of the

8 classes of machines and plots of their respective displacement history data. As can

be observed, some vibration patterns are very unique, e.g. class 1 and 4, but others

have certain resemblance, e.g. class 3 and 7.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Classes that conform the machine vibration library, Fig. No. 1 of
3. Left-handside column: machine, right-hanside column: its respective vibration
displacement waveforms. (a,b) Car, (c,d) cooling fan (Ford Utility Building), (e,f)
exhaust (Ford Utility Building). The displacement functions have been normalized
by their standard deviation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Classes that conform the machine vibration library, Fig. No. 2 of 3.
Left-handside column: machine, right-hanside column: its respective vibration dis-
placement waveforms. (a,b) steam power generator (Ford Utility Building), (c,d)
mixer (Structural Engineering and Materials Laboratory), (e,f) square vent (Ford
Utility Building). The displacement functions have been normalized by their stan-
dard deviation.
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(a) (b)

(c) (d)

Figure 5.4: Classes that conform the machine vibration library, Fig. No. 3 of 3.
Left-handside column: machine, right-hanside column: its respective vibration dis-
placement waveforms. (a,b) turbine (Ford Utility Building), (c,d) vent (Structural
Engineering and Materials Laboratory). The displacement functions have been nor-
malized by their standard deviation.

5.2 Separability test

This study is carried out by using displacement history data recovered from the

integration of the vibration acceleration data. Then, the feature extraction process

described in Sec. 3.1 directly applied on the vibration displacement waveform instead

of the IF. As studied in Sec. 3.1, a linear SVM classifier, a neural network with 2

hidden layers and a random forest classifier are trained for comparison. The perfor-
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mance of each classifier is reported using the accuracy metric, confusion matrices and

ROC curves. The feature usage in the construction of the random forest classifier is

also investigated.

As can be observed in Table 5.1 and Figs. 5.5 and 5.6, the random forest and the

neural network achieve high performance on this classification problem. The lower

performance of the linear classifier is in direct relation with features distributed

in a non-linear in the feature space. Also, Fig. 5.7 reveals that the most important

features for the classification of these 8 type of vibrations are the vibrations statistics

and peaks in the DFRFT plane. However, it seems that the histogram is also assisting

the classification process. Based on the results reported here, it can be established

that the classes are separable and that the feature extraction approach ensures high-

performance classification of machine-specific types of vibrations.

Table 5.1: Separability of displacement waveforms. Average accuracy (%) of the
classifiers when distinguishing between 8 classes.

Classifier Simulated training set Simulated testing set
Linear SVM 58.31 47.94
Neural Network 73.33 64.20
RFC 93.56 93.89
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(a) (b)

(c)

Figure 5.5: Normalized confusion matrices evaluated on a testing set formed by
vibration displacement waveforms. (a) Linear classifier. (b) Neural Network. (c)
Random Forest.
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Figure 5.6: Eight-class average ROC curve evaluated on a testing set formed by
vibration displacement waveforms. The corresponding area under the ROC curve is
0.848 for the Linear SVM, 0.947 for the Neural Network and 0.995 for the Random
Forest classifier.

Figure 5.7: Feature usage of the constructed Random Forest classifier, 8-class clas-
sification problem. The training was performed on a dataset formed by vibration
displacement waveforms. The features #1-32 correspond to histogram values. The
features #33-35 are statistics. The features #36-53 are the relative magnitude, fre-
quency index and chirp rate index of the 6 highest peaks in the DFRFT plane.
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5.3 Preservation of the separability

in SAR sensing

For this study simulated slow-time SAR data is generated using displacement history

data from the 8 classes of vibrating objects. Then, the feature extraction process

described in Sec. 3.1 is applied. The goal is to verify that the SAR processing does

not cause detriment on the separability of the 8 classes. As in the previous case, a

linear classifier, a neural network with 2 hidden layers and a random forest classifier

are trained for comparison. The performance of each classifier is reported using

the accuracy metric, confusion matrices and ROC curves. The feature usage in the

construction of the random forest classifier is also studied.

Table 5.2: Separability of SAR signals generated from displacement waveforms. Av-
erage accuracy (%) of the classifiers when distinguishing between 8 classes.

Classifier Simulated training set Simulated testing set
Linear SVM 53.64 51.61
Neural Network 86.66 77.90
RFC 94.75 95.00

As can be observed in Table 5.2 and Figs. 5.8 and 5.9, the performance of clas-

sifier trained with the new SAR simulated data is similar to the performance of the

previous classifiers trained directly with the displacement waveforms. More speci-

fically, it can be observed a small drop in performance in the linear classifier and

an improvement in the performance of the neural network and random forest. The

increment in performance is caused by the non-linear processing of the SAR signal

which employs the Pseudo-Wigner Ville time-frequency distribution to estimate the

IF (vibration displacement waveform). This shows that non-linear processing of a

vibration waveform can help to improve the classification performance of some clas-

sifiers. Also, Fig. 5.10 reveals that the most important features for the classification
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of these 8 type of vibrations are the vibrations statistics and peaks in the DFRFT

plane. However, in contrast with the previous case, we observe that less relevance is

assigned to the histogram values in comparison with the statistic and DFRFT peaks.

Based on the results reported here, it can be establish that SAR processing preserves

the separability property of different types of vibrations. Furthermore, the results

show that the approach used here can be employed to build robust classifiers that

can deal with machine-specific types of vibrations
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(a) (b)

(c)

Figure 5.8: Normalized confusion matrices evaluated on a testing set formed by SAR
signals generated from vibration displacement waveforms. (a) Linear classifier. (b)
Neural Network. (c) Random Forest.
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Figure 5.9: Eight-class average ROC curve evaluated on a testing set formed by SAR
signals generated from vibration displacement waveforms. The corresponding area
under the ROC curve is 0.808 for the Linear SVM, 0.980 for the Neural Network and
0.997 for the Random Forest classifier.

Figure 5.10: Feature usage of the constructed Random Forest classifier using sim-
ulated SAR data, 8-class classification problem. The training was performed on a
dataset formed by SAR signals generated from vibration displacement waveforms.
The features #1-32 correspond to histogram values. The features #33-35 are statis-
tics. The features #36-53 are the relative magnitude, frequency index and chirp rate
index of the 6 highest peaks in the DFRFT plane.
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5.4 Classification test using pre-built classifiers

The simulated SAR data generated with the the library of machine vibration was also

tested using the MLAs trained to distinguish between vibrating and non-vibrating

object of Sec. 3.1. It must be noted that for this experiment all the data correspond

to simulated SAR signals from vibrating objects, since the library of machine of

vibration do not contain static objects. The classification results are summarized

in Table 5.3. As can be observed, the overall classification performance is high.

Particularly, the NN overperforms the RFC and the linear SVM, being the last one

the worse of the three. The reason behind the poor performance of the linear classifier

may be mainly attributed to a non-linear distribution of the features of these 8 classes

in the feature space.

Table 5.3: Classification of machine vibration data using the binary MLA of Sec. 3.1.
Each column contains the total % of samples classified in each class.

Class \Classifier Linear SVM Neural Network RFC
Static Object 36.44% 3.26% 10.53%
Vibrating Object 63.56% 96.74% 89.47%

68



Chapter 6

Clutter-noise suppression via

Hankel rank reduction

The HRR is a technique that, by pre-arranging the data in a Hankel matrix and

performing rank reduction via singular value decomposition, suppresses noise of

a time-history vector comprised of the superposition of a finite number of sinu-

soids [16,34–36]. Previously in [16], the author of this dissertation demonstrated the

capabilities of the HRR technique for enhancing a DFRFT-based vibration estima-

tion algorithm for SAR. In this chapter, the HRR technique is studied for aiding on

the detection and classification of vibrating objects in SAR images at low values of

SNR and SCR. Specifically, the SAR data is pre-processed using the HRR technique

before it is presented to the detection and classification algorithms.

6.1 The Hankel rank reduction method

Let s[n], n = 1, ..., N be a sampled signal composed of m superimposed sinusoids,

whose instantaneous frequencies vary slowly with time. Then, the Hankel matrix of
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size (N − L+ 1)× L of the time series s[n] can be written as

H =


s[1] s[2] . . . s[L]

s[2] s[3] . . . s[L+ 1]
...

...
. . .

...

s[N − L+ 1] s[N − L+ 1] . . . s[N ]

 , (6.1)

where L � N and L is of order 3m. It has been demonstrated that when the

instantaneous frequencies of the sinusoids do not vary significantly over L time steps,

the rank of H will be close to 2m, [34]. On the other hand, if the instantaneous

frequencies are strongly time-varying, H will be full rank. By means of SVD, the

Hankel matrix H can be expressed as

H = USVT =
P∑
j=1

σjujv
T
j (6.2)

where S = diag[σ1, . . . , σP ] and σ1, . . . , σP are the singular values of H in decreasing

order of magnitude; and U and V are matrices containing the left- and right-singular

vectors, uj and vj, j = 1, . . . , P , respectively. If the instantaneous frequencies of

the sinusoids do not present significant variations and if the intensity of the noise

is moderate or low, then most of the power of the signal s[n] will be concentrated

in the largest K singular values. Then, the P − K smallest singular values can be

neglected and H can be approximated by

H̃ = U1S1V
T
1 =

K∑
j=1

σjujv
T
j . (6.3)

Since H̃ contains an ordered time structure, similar to that of H in (6.1), then an

approximation of s[n] (after rank reduction) can be constructed by concatenating

the first row with the last column of H̃. In this manner, for cases in which the

true signal s[n] is contaminated with additive clutter and noise, one can recover a

cleaner version of the s[n] whenever the singular values of these perturbations have

magnitude less than the largest K singular values of s[n], [34–38].
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6.2 Application to the machine-learning-based

detection and classification framework

The objective of this study is to characterize the improvement in performance that

the HRR technique provides to the detection and classification techniques based on

MLAs when the SAR data presents low SCR and low SNR. Specifically, the study of

performance described in Chapters 3.3 and 4.3 is repeated for SNR and SCR values

from −20 dB to 0 dB. In this range of SNR and SCR, only a few singular values

contain information from the return of the vibrating object, while the rest correspond

to the clutter-noise signal. In consideration of this, a Hankel matrix of order 128

was constructed and only the 3 most significant singular values were preserved in the

rank reduction step.

Figure 6.1 shows a comparison of the performance of the proposed detection

and classification algorithms before and after pre-processing the SAR data with the

HRR technique. As can be observed, there is a substantial improvement of the

performance of all the studied algorithms. Particularly, in the detection problem the

proposed algorithms now reach the 0.5 AUROCC barrier at −15 dB for both SNR

and SCR. This extends the use of this algorithms to −10 dB. Besides of extending the

operating region of the proposed detectors, these results demonstrate the capabilities

of the HRR for suppressing noise and clutter in the problem detecting and classifying

vibrations in SAR images. A completely different situation happens in the m-ary

classification problem where the proposed algorithms tend to perform worse in terms

of the overall accuracy when the SAR data is pre-processed with the HRR technique.

Similar results were obtained when retaining 6, 12 and 24 singular values in the rank

reduction process. The reason behind this phenomenon is likely to be the fact that the

signal subspace is different for each one of the classes under study and, consequently,

the number of singular values that correspond to the signal is not the same in all
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the cases. Therefore, since the class of each slow-time signal is not known, the ideal

number of singular values cannot be known a priori. This conclusion renders the HRR

unusable for the M-ary classification problem using MLAs unless a methodology for

addressing this issue is developed.
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Figure 6.1: Performance characterization of the detection and classification algo-
rithms based on MLAs using the HRR technique for noise and clutter suppression.
(a,b) Performance of the MLAs for the detection problem in the presence of noise and
clutter, respectively. (c,d) Performance of the MLAs for the classification problem
in the presence of noise and clutter, respectively.
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6.3 Application to the probabilistic

detection and classification framework

The objective of this study is to characterize the improvement in performance that

the HRR technique affords to the probabilistic detection and classification techniques

when the SAR data presents low SCR and low SNR. Specifically, the study of per-

formance described in Chapters 3.3 and 4.3 is repeated for SNR and SCR values

from −20 dB to 0 dB. Similarly to the previous section, a Hankel matrix of order

128 was constructed and only the 3 most significant singular values were preserved

in the rank reduction step.

Figure 6.2 shows a comparison of the performance of the proposed detection and

classification algorithms before and after pre-processing the SAR data with the HRR

technique. As can be observed, there is a substantial improvement in the performance

of all the studied algorithms. Particularly, there is an improvement of 0.15 to 0.20

points in terms of the AUROCC of the detection algorithm and an improvement

of 3% to 8% in terms of the overall accuracy of the classification algorithm. These

results extend the operating region of the proposed detectors and classifiers, and

demonstrate the capabilities of the HRR for suppressing noise and clutter in the

problem detecting and classifying vibrations in SAR images.
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Figure 6.2: Performance characterization of the probabilistic detection and classifi-
cation algorithms using the HRR technique for noise and clutter suppression (a,b)
Performance of the prob. detector in the presence of noise and clutter, respectively.
(c,d) Performance of the prob. M-ary classifier in the presence of noise and clutter,
respectively.
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Conclusions

7.1 Summary and conclusions

In this dissertation, novel algorithms have been developed to classify and detect

vibrating objects using SAR images. The capability of remote detection and clas-

sification of vibration signals would greatly benefit both the diagnosis of failures

and the characterization of operating condition of structures and machines with lim-

ited physical accessibility. Since the vibrations observed on the exterior surface of

buildings and structures are intrinsically linked to the machinery and equipment op-

erating inside of them, the capability of remotely detect vibrations also enables one

to perform identification of concealed machinery. Furthermore, the introduction of

this new functionality to SAR enriches the diversity of applications for which a SAR

would be preferred over other remote-sensing technologies.

The work perfomed in this dissertation was conducted around following three

central claims. First, the non-linear transformation that the micro-Doppler return

of a vibrating object suffers through SAR sensing does not destroy its information.

Second, the IF of the SAR signal has sufficient information to characterize vibrating
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objects. Third, it is possible to develop a detection model that encompasses multiple

scenarios including both mono-component and multi-component vibrating objects

immersed in noise and clutter.

These claims have been cemented by the development and study of two different

schemes for both the detection and M-ary classification of vibrating objects in SAR

images. The first scheme is data-driven and utilizes features extracted with the help

of the DFRFT to feed MLAs. Specifically, the DFRFT is applied to the IF of the

slow-time SAR data, which is reconstructed using enhanced spectrograms based on

the SPWVTFD and the DFRFT. The MLAs studied in this work are: a linear SVM,

a 3-layer fully-connected NN, and a RFC. The second scheme is model-based and

employs a probabilistic model of the SAR slow-time signal, the KLT, and a likelihood-

based decision function. Particularly, the KLT is used to decorrelate the samples of

the SAR slow-time signal via SVD. The performance of the two proposed detection

schemes is characterized using simulated data as well as real SAR data collected with

the Lynx SAR system. The results shows that the two proposed schemes can be used

to achieve high-performance vibrating-object detectors and classifiers for SNRs and

SCRs greater than −5 dB. Among the proposed detection methodologies, the data-

driven detection scheme based on MLAs showed to be superior to the probabilistic

detection scheme for moderate to high SNR and SCR values. In the case of low

SNR and SCR and, in the presence of modeling errors, the probabilistic detection

methodology was shown to be superior to the machine-learning-based methodology.

The suitability of SAR for sensing surface vibrations is demonstrated by showing

that the separability of different classes of vibrating objects is preserved even after

non-linear SAR processing. For this purpose, an empirical experiment has been

performed using MLAs, a library of vibration data from real machines (instantaneous

position data) and simulated SAR data. Specifically, the simulated SAR data was

generated using the machine-vibration data as input for the micro-Doppler return of
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a vibrating object (point-object). The classification results of a set of two MLAs, one

trained with the real vibration data and the other with the simulated SAR data, show

that the separation of classes produced by the MLA trained with simulated SAR data

is the same that the one provided by the MLA trained with the machine-vibration

data.

Finally, in order to loosen the SNR and SCR requirements, the HRR technique,

previously used for suppressing ocean clutter in ground-wave radar, was adapted to

suppress clutter-noise in SAR images. The result shows that the proposed detection

schemes yields reliable results for SNRs and SCRs greater than−10 dB when the SAR

images are pre-processed with the HRR method. This extends the capabilities of the

proposed detection and classification algorithms in presence of noise and clutter, and

also corroborates the fitness of the HRR technique for performing noise and clutter

suppression in SAR imaging.

7.2 Suggestions for future work

The experimental and theoretical results presented in this dissertation in regard to

the problem of detection and classification of vibrating objects in SAR images open

numerous possibilities for future research including:

• The extension of the proposed detection models to multiple objects exhibiting

different vibrations patterns, which can be coupled or not. This will render

the proposed detection techniques useful in a larger number of scenarios not

limited to the case of isolated objects.

• The extension of the detection model from a point object to more complex

object-models, such as cars, fans, or any piece of equipment of interest, will
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certainly improve the performance of the proposed detection methodologies in

a real-case scenario.

• The study of more advanced types of MLAs such as complex kernels for SVMs,

recurrent neural networks, long short-term memory networks, or convolutional

neural networks, can also improve the performance of the proposed methodol-

ogy based on MLAs in the case of low SNR and low SCR, and be useful for

overcoming modeling errors in the datasets. Also, another possibility when

features do not provide an evident separation of the classes, is the usage of

feature weighting as proposed in [39].

• The adaptation of the proposed detection and classification methodologies to

a displaced-phase-center antenna (DPCA)-SAR framework is also of great in-

terest since this remote sensing technique provides for clutter and noise sup-

pression in a natural way by combining the information of two perfectly timed

SAR images. This will certainly improve the performance of the detection and

classification of vibrating objects at very low SNRs and SCRs.

• The development of computationally-optimized forms of the proposed detec-

tion and classification methodologies is also very appealing for their implemen-

tation in real-time applications in SAR systems. For instance, most of the

computational load of the proposed technique based on MLAs is in the feature

extraction step that uses the DFRFT. In this regards, it would be appealing

to develop new algorithms to reduce the computational burden of constructing

the matrix of Grünbaum (or QMFD) eigenvectors.
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Vibration detection based on the

CSD of the SAR signal

Consider the signal model presented in Chapter 2. The detection model proposed

by Subotic et al. [19] can be summarized as follows:

Algorithm 4 Vibration detection via the generalized likelihood ratio of the CSD.

1: s =
[
s[0], . . . , s[N − 1]

]T
: a slow-time vector from a SAR image.

2: Regenerate all the cyclic frequencies contained in the slow-time vector via CSD,

i.e.:

3: for all α ∈ {k/T}∞−∞: cyclic frequencies do

4: Compute the CACF: Rα
s (τ)

5: Compute the CSD: Sαs (f)

6: end for

7: ∀α ∈ {k/T}∞−∞, correlate Sαs (f) with a stored template Sαv (f) of the expected

SAR signal of the vibration.

8: Sum all the correlation results for α ∈ {k/T}∞−∞.

9: Compare the sum with a threshold to determine if s belongs either to H0 or H1.
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Smoothed pseudo Wigner-Ville

time-frequency distribution

Below the description of the Wigner–Ville time-frequency distribution (WVTFD) and

SPWVTFD is presented. The implementation of these time-frequency distributions

for a discrete-time signal is straightforward and the details are provided in [40].

The WVTFD of an analytic signal x(t) is a bilinear transform defined as the

Fourier transform of the time-dependent autocorrelation function

Wx(t, ω) =

∫ ∞
−∞

x

(
t+

τ

2

)
x∗

(
t− τ

2

)
exp

(
− jωτ

)
dτ, (B.1)

where x
(
t+ τ/2

)
x∗
(
t− τ/2

)
is a time-dependent autocorrelation operation, [10, 27,

40, 41]. The WVTFD has better joint time-frequency resolution than any linear

transform, but suffers from a problem of cross-term interference, i.e., the WVD

of the sum of two signals is not the sum of their individual WVDs, [10, 27]. If

a signal contains more than one component in the joint time-frequency domain,

its WVD will contain cross terms that occur halfway between each pair of auto-

terms. The magnitude of these oscillatory cross terms can be twice as large as the
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auto-terms [10]. To reduce the cross-term interference, while maintaining high time-

frequency resolution, a couple of filtered versions of the WVD has been proposed.

Particularly, the pseudo WVTFD with sperable-smoothing, [27, 40], also known as

SPWVTFD, is defined as

SPWx(t, ω) =

∫ ∞
−∞

h′(τ)

[∫ ∞
−∞

g(s−t)x

(
s+

τ

2

)
x∗

(
s−τ

2

)
ds

]
exp

(
−jωτ

)
dτ, (B.2)

which employs a window of the form h′(τ) = h∗(τ/2)h(−τ/2) and a window g(t)

for providing frequency and temporal smoothing on (B.1), respectively. Here the

separable smoothing function can be succinct as k(ε, τ) = G(ε)h′(τ) or equivalently

by its Fourier transform K(t, ω) = g(t)H ′(−ω).

Note: If g(t) = δ(t), (B.2) is reduced to the commonly known pseudo WVTFD and

if, in addition, h(τ)→ 1, then the resulting time-frequency distribution tends to the

original WVTFD with no smoothing applied.
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Multi-angle centered-discrete

fractional Fourier transform

The continuous-time fractional Fourier transform is a time-frequency analysis tool

for non-stationary signals that was first introduced by V. Namias in 1980 [42]. San-

thanam and McClellan [43] were the first to introduce a formulation of the DFRFT.

While a variety of formulations of the DFRFT can be found in the literature [44], the

DFRFT formulation used in this work is specifically referred to as the MA-CDFRFT

in the literature [45]. Without ambiguity, the term DFRFT is used to refer to the

MA-CDFRFT for the rest of this work.

Let W denote the transformation matrix of the centered-DFT. The fractional

power of W is defined as Wα = VGΛ
2α
π VT

G where VG is the matrix of Grünbaum

eigenvectors of W, and Λ
2α
π is a diagonal matrix with the fractional powers of the

eigenvalues of W. Assume x[n] is a sequence of N samples. The DFRFT of x[n] is

the DFT of an intermediate signal x̂k[p] for each index k, that is

Xk[r] =
N−1∑
p=0

x̂k[p] exp

(
−j 2π

N
pr

)
, (C.1)
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where r = 0, 1, . . . , N − 1 is the angular index and the corresponding α equals to

2πr/N . The intermediate signal x̂k[p] is calculated by

x̂k[p] = v(k)
p

N−1∑
n=0

x[n]v(n)
p , (C.2)

where v
(k)
p is the kth element of vp, and vp is the pth column vector of VG.

The DFRFT has the ability to concentrate a linear chirp into a few coefficients,

producing an impulse-like transform analogous to what the DFT produces for a

sinusoid, [45–47]. It has also been proven that the mapping from the angular position

of the peak in the DFRFT plane to the chirp rate of a signal is one-to-one [45].

Because the chirp rates induced by mechanical vibrations tend to be very small, a

resolution enhancement algorithm, called the the chirp z-transform (CZT), is usually

incorporated as a final step of the DFRFT. Specifically, the CZT produces a more

finely spaced interpolation of the DFT spectrum and its application to the DFRFT

is intended for enhancing the angular resolution of the transform, [48–50].

Note: The description of the DFRFT presented here corresponds to the common

form of the MA-CDFRFT. For implementation purposes is highly recommendable to

use the formulations provided in [51, 52].
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DFRFT-based spectrogram

The DFRFT-based spectrograms [28–30] are improved spectrogram that assumes a

multicomponent chirp model over the analysis frame by using the centered DFRFT

and the MA-CDFRFT to decompose the signal frame into a superposition of chirp

signals. Particularly, a fractional spectrogram overcomes the problem that tradi-

tional spectrograms have for focusing chirp signals. Among the reported fractional

spectrogram [30], one of the most appealing implementations is the piece-wise li-

near fractional spectrogram due to its simplicity and performance. Specifically, a

piece-wise linear fractional spectrogram is constructed as follows. For every analysis

frame, first the DFRFT is computed. Then, the peaks on the DFRFT plane are

connected via a piece-wise linear fitting. Then, the points on the piece-wise linear

function are used to populate the spectrogram for that particular frame. Finally, by

applying this procedure over each frame, a spectrogram with sharper features than

the conventional spectrogram is constructed. The mathematical details of this are

provided below.

Piece-wise linear fractional spectrogram, [29]

The chirp term of signals manifest as peaks in the DFRFT plane. When one has
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prior knowledge of the number of chirps in the signal, one can use the location of

all the peaks while calculating the spectrogram rather than using only the largest

peak. This enables one to construct a sharp spectrogram even if the peaks do not

lie on the same line. The piece-wise linear spectrogram uses the coordinates of the

chirp peaks to calculate line segments. Let [kip, r
i
p] be the coordinates of peaks in the

DFRFT-plane, M the number of chirps terms and N the size of DFRFT. Then, the

piece-wise linear spectrogram rpw for a frame is calculated as:

r1
pw(k) =

r2p−r1p
k2p−k1p

(k − k1
p) + r1

p, 0 ≤ k < k2
p

r2
pw(k) =

r3p−r2p
k3p−k2p

(k − k2
p) + r2

p, k2
p ≤ k < k3

p

ripw(k) =
ri+1
p −rip
ki+1
p −kip

(k − kip) + rip, kip ≤ k < ki+1
p

...

rM−1
pw (k) =

rMp −r
M−1
p

kMp −k
M−1
p

(k − kM−1
p ) + rM−1

p , kM−1
p ≤ k < N

(D.1)

Applying this method to each frame, we construct the piece-wise linear spectro-

gram that is sharper than a common slanted fractional spectrogram [28–30]. For real

signals, the DFrFT spectrum is mirrored, therefore one can only have an even num-

ber of peaks, while for a complex signal one can have either an even or odd number

of peaks. In the special case, a complex signal having only one chirp component, the

line is calculated using the the zero chirp-rate and zero frequency coordinates.
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Recovering IF signals: SPWVTFD

and DFRFT-based spectrogram

In this section, a qualitative analysis between the SPWVTFD and the piece-wise

linear DFRFT-based spectrogram is performed for recovering the IF of SAR slow-

time signals. Particularly, the following cases are analyzed in which the IF of the slow-

time signal contains a vibration-induced term by: a static object (i.e., no vibration),

vibrating object with a single-component sinusoidal vibration, vibrating object with a

multi-component sinusoidal vibration and vibrating object with a chirped vibration.

Figure E.1 shows the real displacement functions used for the generation of the

simulated SAR returns. Figure E.2 shows the results of applying the SPWVTFD to

each one respective SAR signals.

Figure E.3 shows the results of applying the piece-wise linear DFRFT-based spec-

trogram to each one respective SAR signals. As can be observed when analyzing the

three figures, the results of both techniques are quite similar in every case and both

techniques are capable of reconstructing the original vibration waveform almost per-

fectly. The only case in which both techniques produce slightly distorted results, is
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Appendix E. Recovering IF signals: SPWVTFD and DFRFT-based spectrogram

the case of the SAR signal containing a vibration-induced modulation from an object

exhibiting a chirped vibration. In this case, the amplitude of the original signal is

scaled as its frequency varies. Nevertheless, the representation produced in this case,

even it is distorted, it is sufficiently good to be distinguished from the other cases. Fi-

nally, it can be observed that definition of the Piece-wise linear spectrogram is higher

than the one produced by the SPWVTFD. This is due to the parameters required to

tune these time-frequency analysis to the SAR signal model simulated with the Lynx

specifications, Tab. 2.1. Specifically, the SPWVTFD requires to be computed with a

transformation of 32 samples, while the piece-wise linear DFRFT-based spectrogram

requires at least the use of a transformation of 256 samples. Nevertheless, because

of the same previous reason, the computation of the SPWVTFD is faster than the

DFRFT-based spectrogram for this problem.
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Figure E.1: Displacement functions used for the characterization of the SPWTFD
and the Piece-wise linear DFRFT-based spectrogram. (a) Static object. (b) Mono-
component sinusoidal vibration. (c) Multi-component sinusoidal vibration. (d)
Chirped vibration.
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Figure E.2: SPWTFD applied to slow-time signals with different vibration mod-
ulation. (a) Static object. (b) Mono-component sinusoidal vibration. (c) Multi-
component sinusoidal vibration. (d) Chirped vibration.
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Figure E.3: Piece-wise linear DFRFT-based spectrogram applied to slow-time sig-
nals with different vibration modulation. (a) Static object. (b) Mono-component
sinusoidal vibration. (c) Multi-component sinusoidal vibration. (d) Chirped vibra-
tion.
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Appendix F

Statistical analysis of clutter-noise

in SAR images

In this dissertation, it is assumed that clutter-noise term W [n] in the probabilistic

models (3.1) and (4.1) is zero-mean, circularly-symmetric complex normal, indepen-

dent and identically distributed for 0 ≤ n ≤ N −1. This assumption is supported by

the following analysis. Figure F.1 shows a SAR image acquired with Lynx-SAR sys-

tem in a vibrometry experiment and its respective range-compressed phase history

data. Four points of analysis were chosen at the cross-range points 250, 750, 1250

and 1750. Then, a normalized histogram was computed using the range data along

each one of these four selected points. These histograms are shown in Fig. F.2. As

can be observed, in the totality of the presented cases the histograms have a normal

shape, the center value is zero and the spread (variance) is the same. In fact, the

kurtosis of the analyzed data varies from 2.6 to 3.2 and its skewness from -0.05 to

0.08. Since the kurtosis of a standard gaussian distribution is 3 and its skewness is

zero, the results suggest that the data is normal distributed. Furthermore, as shown

in Fig. F.3, the distribution of the real part and the imaginary part of the samples

in the complex plane is circularly symmetric. Finally, the independence assumption
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Appendix F. Statistical analysis of clutter-noise in SAR images

can be proven in a similar fashion by showing that the joint PDF of W [n] and W [m]

(i.e., joint histogram) is the product of their marginal PDFs (simple histograms),

∀0 ≤ n 6= m ≤ N − 1.

SAR image

500 1000 1500 2000

Cross-range

500

1000

1500

2000

2500

3000

3500

R
a
n

g
e

(a)

Slow-time phase history image

P
o

in
t 

1

P
o

in
t 

2

P
o

in
t 

3

P
o

in
t 

4

500 1000 1500 2000

Cross-range

500

1000

1500

2000

2500

3000

3500

R
a
n

g
e

(b)

Figure F.1: SAR image used for clutter-noise characterization (a) and its respective
range-compressed phase-history data (b). In (b) the four analysis points at the cross-
range values 250, 750, 1250 and 1750 and the corresponding lines of range data used
for computing the histograms are highlighted in red color.
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Figure F.2: Analysis of the clutter-noise signal using histograms. (a,b,c,d) Histogram
of the real part of the range slices at the cross-range points 250, 750, 1250 and 1750,
respectively. (e,f,g,h) Histogram of the imaginary part of the range slices at the
cross-range points 250, 750, 1250 and 1750, respectively.
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Figure F.3: Distribution of the real part of the clutter-noise signal vs its imaginary
part in the complex plane (a,b,c,d) Range slices at the cross-range points 250, 750,
1250 and 1750, respectively.
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Appendix G

Probability density functions of

the direct binary-detection

approach

In order to compute the probability density functions of the direct binary-detection

approach, the following reduction is introduced. Let s[n] = cn exp(jβn) be the com-

plex value of the n-th sample of the slow-time signal in Euler’s notation. Then, under

H0 it can be obtained that

| s[n]− s0[n] |2 = | s[n]− σ exp
(
jfyyn+ jφ

)
|2

= c2
n + σ2 − 2cnσ cos

(
φ+ fyyn− βn

)
,

(G.1)

and under H1,

| s[n]− s1[n] |2=| s[n]− σ exp
(
jfyyn+ jφ+ ja cos(φx + 2πnf)

)
|2

= c2
n + σ2 − 2cnσ cos

(
φ+ fyyn+ a cos(φx + 2πnf)− βn

)
.

(G.2)
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Now, integrating over the marginalized random variables in (3.2):

fS(s)
∣∣
H0

= fS(s[0], s[1], . . . , s[N − 1])
∣∣
H0

=

∫
Σ,Φ,Y

fS|Σ,Φ,Y
(
s|σ, φ, y

)∣∣
H0

=

(
1

πσ2
w

)N ∫
Σ,Φ,Y

exp

(
−

N−1∑
n=0

| s[n]− s0[n] |2

σ2
w

)
=

(
1

πσ2
w

)N ∫
Σ,Φ,Y

exp

(
−

∑N−1
n=0 c

2
n

σ2
w
−

∑N−1
n=0 σ

2−2cnσ cos
(
φ+fyyn−βn

)
σ2
w

)
=

(
1

πσ2
w

)N
exp

(
−

∑N−1
n=0 c

2
n

σ2
w

)
· I1,

(G.3)

where

I1 =

∫
Σ,Φ,Y

exp

(
−
∑N−1

n=0 σ
2 − 2cnσ cos

(
φ+ fyyn− βn

)
σ2
w

)
. (G.4)

In I1 the integration with respect to Σ is the only one that produces a closed-form

expression. The integration with respect to Φ and Y must be carried out numerically

no matter if it is done before or after the integral with respect to Σ. The integral of

I1 with respect to Σ is of the form

I =
1

b− a

∫ b

a

exp

(
Nx2 − xd

c

)
dx, (G.5)

with a = σmin, b = σmax, c = −σ2
w and d = 2

∑N−1
n=0 cn cos

(
φ + fyyn − βn

)
. The

solution of this integral is given by

I =

√
π exp

(
− d2/(4cN)

)
2
√
−N/c

(
erf

(
2bN − d

2N

√
−N/c

)
− erf

(
2aN − d

2N

√
−N/c

))
,

(G.6)

and

erf(x) =
2√
π

∫ x

0

exp
(
− t2

)
dt. (G.7)

After computing the integral with respect to Σ, the integrand of I1 is a function of φ

and y. This function is redefined as G0(y, φ; c0, . . . , cN−1, β0, . . . , βN−1) = G0(y, φ; s),
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and the PDF of S under the hypothesis H0 can be written as

fS(s)
∣∣
H0

=

(
1

πσ2
w

)N
exp

(
−
∑N−1

n=0 c
2
n

σ2
w

)∫
Φ,Y

G0(y, φ; s). (G.8)

Let

K0(y; s) =

∫
Φ

G0(y, φ; s) =
1

2π

∫ π

−π
G0(y, φ; s)dφ, (G.9)

and

L0(s) =

∫
Y

K0(y; s) =
1

2yo

∫ yo

−yo
K0(y; s)dy. (G.10)

Then, the PDF for the hypothesis H0 (static object) can be stated as

fS(s)
∣∣
H0

=

(
1

πσ2
w

)N
exp

(
−
∑N−1

n=0 c
2
n

σ2
w

)
L0(s) (G.11)

where s = [s[0], . . . , s[N − 1]]T and s[n] = cn exp(jβn) for n = 0, . . . , N − 1. The

procedure to determine fS
∣∣
H1

is similar to the previous one, with the only exception

that there are 3 extra random variables that model the vibration of the object.

fS(s)
∣∣
H1

= fS(s[0], s[1], . . . , s[N − 1])
∣∣
H1

=

∫
Σ,Φ,Y,A,F,Φx

fS|Σ,Φ,Y,A,F,Φx
(
s|σ, φ, y, a, f, φx

)∣∣
H1

=

(
1

πσ2
w

)N ∫
Σ,Φ,Y,A,F,Φx

exp

(
−

N−1∑
n=0

| s[n]− s1[n] |2

σ2
w

)
=

(
1

πσ2
w

)N ∫
Σ,Φ,Y,A,F,Φx

exp

(
−
∑N−1

n=0 c
2
n

σ2
w

−
∑N−1
n=0 σ

2−2cnσ cos
(
φ+fyyn+a cos(φx+2πnf)−βn

)
σ2
w

)
=

(
1

πσ2
w

)N
exp

(
−

∑N−1
n=0 c

2
n

σ2
w

)
· I2,

(G.12)

where

I2 =
∫

Σ,Φ,Y,A,F,Φx
exp

(
−

∑N−1
n=0 σ

2−2cnσ cos
(
φ+fyyn+a cos(φx+2πnf)−βn

)
σ2
w

)
. (G.13)
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Similar to the previous case, the integral with respect to Σ is of the form of (G.5),

with solution given by (G.6) and with a = σmin, b = σmax, c = −σ2
w and d =

2
∑N−1

n=0 cn cos
(
φ+fyyn+a cos(φx + 2πnf)−βn

)
. After computing the integral with

respect to Σ, the integrand of I2 is a function of φ, y, a, f , and φx. Let this function

be denoted as G1(y, φ, a, f, φx; c0, . . . , cN−1, β0, . . . , βN−1) = G0(y, φ, a, f, φx; s), then

the PDF of S under H1 can be written as

fS(s)
∣∣
H1

=

(
1

πσ2
w

)N
exp

(
−
∑N−1

n=0 c
2
n

σ2
w

)∫
Φ,Y,A,F,Φx

G1(y, φ, a, f, φx; s). (G.14)

Next, consider the following definitions for ease of notation.

K1(y, a, f, φx; s) =

∫
Φ

G1(y, φ, a, f, φx; s) =
1

2π

∫ π

−π
G1(y, φ, a, f, φx; s)dφ (G.15)

L1(a, f, φx; s) =

∫
Y

K1(y, a, f, φx; s) =
1

2yo

∫ yo

−yo
K1(y, a, f, φx; s)dy (G.16)

P1(f, φx; s) =

∫
A

L1(a, f, φx; s) =
1

amax − amin

∫ amax

amin

L1(a, f, φx; s)da (G.17)

Q1(φx; s) =

∫
F

P1(f, φx; s) =
1

fmax − fmin

∫ fmax

fmin

P1(f, φx; s)df (G.18)

R1(s) =

∫
Φx

Q1(φx; s) =
1

2π

∫ π

−π
Q1(φx; s)dφx (G.19)

Then, the probability density function for hypothesis H1 (vibrating object) can be

stated as

fS(s)
∣∣
H1

=

(
1

πσ2
w

)N
exp

(
−
∑N−1

n=0 c
2
n

σ2
w

)
R1(s) (G.20)

where s = [s[0], . . . , s[N − 1]]T and s[n] = cn exp(jβn) for n = 0, . . . , N − 1.
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Appendix H

Covariance matrices for the binary

probabilistic detector

Recall that the hypothesis testing problem can be written in vector form as in (2.8).

Under hypothesis H0 the slow-time vector S = S0 + W. Thus, the mean value

(expected value) of S is given by

E{S} = E{
[
S[0], . . . , S[N − 1]

]T} =
[
E{S[0]}, . . . , E{S[N − 1]}

]T
=

[
E{S0[0]}, . . . , E{S0[N − 1]}

]T
,

(H.1)

where

E{S0[n]} =

∫
Σ,Φ,Y

σ exp
(
jfyn+jφ

)
fΣ,Φ,Y (σ, φ, y)d(σ, φ, y), 0 ≤ n ≤ N−1. (H.2)

Since Σ, Φ and Y are independent random variables with uniform distributions, then

E{S0[n]} =
1

σmax − σmin
1

2yo

1

2π

∫ yo

−yo

∫ σmax

σmin

∫ π

−π
σ exp

(
jfyn+ jφ

)
dφdσdy. (H.3)

Note that the integral is zero because∫ π

−π
σ exp

(
jfyn+ jφ

)
dφ = 0, (H.4)
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then, E{S0[n]} = 0, 0 ≤ n ≤ N − 1, and therefore

E{S} = 0N×1. (H.5)

Since S is zero-mean, the auto-covariance of S is given by

cov{S} = E{SS∗}, (H.6)

where the symbol “ ∗ ” represents the conjugate transpose.

cov{S} = E{(S0 + W)(S0 + W)∗},

= E{S0S
∗
0}+ E{S0W

∗}+ E{WS∗0}+ E{WW∗},

= E{S0S
∗
0}+ E{WW∗},

(H.7)

because E{W} = 0N×1, and S0 and W are independent. The value for the entry in

the n-th position of the diagonal of the covariance matrix cov{S} is given by

cov{S[n], S[n]} = E{S0[n]S∗0 [n]}+E{W [n]W ∗[n]} = E{| S0[n] |2}+E{| W [n] |2},

(H.8)

where E{| W [n] |2} = σ2
w and

E{| S0[n] |2} = E{| Σ exp
(
jfyY n+ jΦ

)
|2} = E{| Σ |2| exp

(
jfyY n+ jΦ

)
|2}

= E{| Σ |2}
(H.9)

E{| Σ |2} = 1
σmax−σmin

∫ σmax

σmin

σ2dσ

= 1
3

(
σ2
max + σmaxσmin + σ2

min

)
=: 1

3
kσ

(H.10)

Hence, cov{S[n], S[n]} = 1
3
kσ +σ2

w. The value for off-diagonal entries of cov{S} are

given by

cov{S[n], S[k]} = E{S0[n]S∗0 [k]}+ E{W [n]W ∗[k]} = E{S0[n]S∗0 [k]}, (H.11)
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because the clutter-noise samples are assumed to be independent.

cov{S[n], S[k]} = E{S0[n]S∗0 [k]}

= E{
(
Σ exp

(
jfyY n+ jΦ

))(
Σ exp

(
jfyY k + jΦ

))∗}
= E{| Σ |2}E{exp

(
jfyY (n− k)

)
},

(H.12)

because the random variables Σ, Φ and Y are independent. Since

E{exp
(
jfyY (n−k)

)
} =

1

2yo

∫ yo

−yo
exp

(
jfyy(n−k)

)
dy =

sin(yofy(n− k))

yofy(n− k)
, (H.13)

then

cov{S[n], S[k]} =
1

3
kσsinc(yofy(n− k)), ∀n 6= k. (H.14)

Finally, the (n, k)th entry of the N ×N covariance matrix of S under H0 is

cov{S[n], S[k]} =

 1
3
kσ + σ2

w, 0 ≤ n = k ≤ N − 1

1
3
kσsinc(yofy(n− k)), ∀n 6= k.

(H.15)

Under hypothesis H1 the slow-time vector S = S1 + W. Proceeding in the same

fashion as before, it is possible to obtain that

E{S1[n]} = 0, 0 ≤ n ≤ N − 1. (H.16)

Therefore,

E{S} = 0N×1. (H.17)

Then, because S is zero-mean, the covariance matrix of S under H1 is given by

cov{S} = E{SS∗}

= E{(S1 + W)(S1 + W)∗}

= E{S1S
∗
1}+ E{S1W

∗}+ E{WS∗1}+ E{WW∗}

= E{S1S
∗
1}+ E{WW∗},

(H.18)
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because E{W} = 0N×1 and W and S1 are independent. The value for the entry in

the n-th position of the diagonal of cov{S} is given by

cov{S[n], S[n]} = E{S1[n]S∗1 [n]}+ E{W [n]W ∗[n]}

= E{| S1[n] |2}+ E{| W [n] |2},
(H.19)

where E{| W [n] |2} = σ2
w and

E{| S1[n] |2} = E{| Σ exp
(
jfyY n+ jΦ + jA cos(Φx + 2πnF )

)
|2}

= E{| Σ |2| exp
(
jfyY n+ jΦ + jA cos(Φx + 2πnF )

)
|2}

= E{| Σ |2}

= 1
3
kσ.

(H.20)

Hence, cov{S[n], S[n]} = 1
3
kσ +σ2

w. The value for off-diagonal entries of cov{S} are

given by

cov{S[n], S[k]} = E{S1[n]S∗1 [k]}+ E{W [n]W ∗[k]} = E{S1[n]S∗1 [k]}, (H.21)

because the clutter-noise samples are assumed to be independent.

cov{S[n], S[k]} = E{S1[n]S∗1 [k]}

= E{
(
Σ exp

(
jfyY n+ jΦ + jA cos(Φx + 2πnF )

))(
Σ exp

(
jfyY k + jΦ + jA cos(Φx + 2πkF )

))∗}
= E{| Σ |2} · E{exp

(
jfyY (n− k)

)
}·

E{exp
(
jA(cos(Φx + 2πnF )− cos(Φx + 2πkF ))

)
},

(H.22)

because all the involved random variables are independent. The expected value

gA,F,Φx = E{exp
(
jA(cos(Φx + 2πnF ) − cos(Φx + 2πkF ))

)
} does not have a closed-

form solution and it has to be carried out by numerical integration. Since

E{| Σ |2}E{exp
(
jfyY (n− k)

)
} =

1

3
kσsinc(yofy(n− k)), ∀n 6= k, (H.23)

the (n, k)th entry of the N ×N covariance matrix of S under H1 is given by

cov{S[n], S[k]} =

 1
3
kσ + σ2

w, 0 ≤ n = k ≤ N − 1

1
3
kσsinc(yofy(n− k))gA,F,Φx , ∀n 6= k.

(H.24)
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Note:

(1) Both resulting covariance matrices under hypothesis H0 (H.15) and H1 (H.24)

are real-valued.

(2) A similar procedure can be followed to show that the pseudo-covariance matrix of

S under both hypothesis, H0 and H1, is zero, i.e., EHj{SST} = 0N×N , j = 0, 1.
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Karhunen-Loève transform

The KL expansion, also known as KLT in finite dimensional spaces, provides a

mechanism for converting a discrete-time random process (i.e., random vector) into

an equivalent sequence with diagonal autocovariance matrix. This is, the samples of

the equivalent sequence are statistically independent among them. Specifically, the

KL expansion of a random vector is carried out by projecting it onto the eigenvectors

of its autocovariance matrix. Given a zero-mean random vector S =
[
S[0], . . . , S[N−

1]
]T

, with N × N autocovariance matrix cov{S}, the spectral decomposition of its

autocovariance matrix is given by

cov{S} =
N−1∑
k=0

λkvkv
∗
k, (I.1)

where {λk}N−1
k=0 and {vk}N−1

k=0 are the eigenvalues and the orthonormal eigenvectors

of cov{S}, respectively. The KL expansion of S [33] (pp. 274-277) is defined as

S =
N−1∑
k=0

Zkvk, (I.2)

where the KL coefficients are

Zk = v∗kS, 0 ≤ k ≤ N − 1. (I.3)
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The KL expansion provides for a separation of the randomness and the time-

variation characteristic of the discrete-time random process S =
[
S[0], . . . , S[N −

1]
]T

. In particular, the randomness in S is summarized in the sequence Z = {Zk}N−1
k=0

while the time variation in the process is captured in the sequence of eigenvectors

{vk}N−1
k=0 . In this way, the expansion (I.2) combines these two properties to represent

the process. Since {Zk}N−1
k=0 is determined from S via (I.3) and S is determined from

{Zk}N−1
k=0 via (I.2), the sequence Z is an equivalent observation of the discrete-time

process S. Also, note that

E{Zk} = E{v∗kS} = v∗kE{S} = 0, (I.4)

and

cov{Zk, Zm} = E{ZkZ∗m} = E{v∗kS×
(
v∗mS

)∗}
cov{Zk, Zm} = E{v∗kSS∗vm} = v∗kcov{S}vm.

(I.5)

Since v∗kvm = δk,m where δk,m is the Kronecker delta function and cov{S} is given

by (I.1), then

cov{Zk, Zm} =

 λk, k = m

0, k 6= m.
(I.6)

Hence, cov{Z} = diag
(
{λk}N−1

k=0

)
. Finally, since under both hypotheses H0 and H1

the covariance matrices are real, then eigenvectors {vk}N−1
k=0 are real. Furthermore,

since E{Zk, Zm} = 0, the KL coefficients are uncorrelated.
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Covariance matrices of the M-ary

detection problem

For the implementation of a M-ary vibration detection framework based on the KL

expansion, it is important to compute the covariance matrix of the slow-time signal

S under every hypothesis. This is because the KL transformation is based on the

eigenvectors of such covariance matrices. The computation of such covariance matri-

ces is divided into two steps, diagonal entries and off-diagonal entries. For simplicity

of notation, consider that the slow-time vector S consisting of N samples has the

following form

S[n] = Sj[n] +W [n] = Σ exp
(
jfyY n+ jΦ + jXv[n]

)
+W [n], (J.1)

for 0 ≤ j ≤ 4 and 0 ≤ n ≤ N − 1, where Xv[n] represents the corresponding vibra-

tion waveform for each hypothesis, being identically zero for H0.

Diagonal entries of the covariance matrix of S

Under all hypothesis, the diagonal terms of the covariance matrix cov{S} is given
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by

E{S[n]S∗[n]} = E{(Sj[n] +W [n])(Sj[n] +W [n])∗}

E{S[n]S∗[n]} = E{Sj[n]S∗j [n]}+ E{W [n]W ∗[n]} = E{|Sj[n]|2}+ E{|W [n]|2},
(J.2)

because Sj[n] and clutter-noise are zero-mean and independent. Since

E{|Sj[n]|2} = E
{
|Σ|2

∣∣ exp
(
jfyY n+ jΦ + jXv[n]

)∣∣2} = E{|Σ|2} (J.3)

and

E{| Σ |2} =
1

σmax − σmin

∫ σmax

σmin

σ2dσ =
1

3
kσ, (J.4)

then E{S[n]S∗[n]} = 1
3
kσ + σ2

w, for all hypothesis Hj, 0 ≤ j ≤ 4.

Off-diagonal entries of the covariance matrix of S

Since the involved random variables are independent, we have that

E{S[n]S∗[m]} = E{(Sj[n] +W [n])(Sj[m] +W [m])∗} = E{Sj[n]S∗j [m]}, (J.5)

for j 6= m. because Sj[n] and the clutter-noise are zero-mean and independent, and

the noise samples are independent among them.

Case H0: Static object

E{S0[n]S∗0 [m]} = E
{(

Σ exp
(
jfyY n+ jΦ

))(
Σ exp

(
jfyY n+ jΦ

))∗}
E{S0[n]S∗0 [m]} = E

{
Σ2 exp

(
jfyY (n−m)

)}
= E{Σ2}E

{
exp

(
jfyY (n−m)

)}
,

(J.6)

because the random variables Σ and Y are independent. Since

E
{

exp
(
jfyY (n−m)

)}
=

1

2yo

∫ yo

−yo
exp

(
jfyY (n−m)

)
=

sin
(
yofy(n−m)

)
yofy(n−m)

(J.7)
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then

E{S[n]S∗[m]} =
1

3
kσsinc

(
yofy(n−m)

)
, 1 ≤ n 6= m ≤ N (J.8)

Case H1: Vibrating object exhibiting a simple sinusoidal vibration

E{S1[n]S∗1 [m]} =

= E
{(

Σ exp
(
jfyY n+ jΦ + jXv[n]

))(
Σ exp

(
jfyY n+ jΦ + jXv[n]

))∗}
= E

{
Σ2 exp

(
jfyY (n−m)

)
exp

(
jXv[n]− jXv[m]

)}
=E{Σ2}E

{
exp
(
jfyY (n−m)

)}
E
{

exp
(
jA
(

cos(Φx+2πFn)−cos(Φx+2πFm)
))}

= 1
3
kσsinc

(
yofy(n−m)

)
gA,Φx,F (n,m), 1 ≤ n 6= m ≤ N,

(J.9)

where gA,Φx,F (n,m) = E
{

exp
(
jA
(

cos(Φx + 2πFn) − cos(Φx + 2πFm)
))}

must be

computed via numerical integration. Then,

E{S[n]S∗[m]} =
1

3
kσsinc

(
yofy(n−m)

)
gA,Φx,F (n,m), 1 ≤ n 6= m ≤ N (J.10)

Case H2: Vibrating object exhibiting a multicomponent sinusoidal vibration

Proceeding in a similar fashion as in the previous case,

E{S2[n]S∗2 [m]} =

= E
{(

Σ exp
(
jfyY n+ jΦ + jXv[n]

))(
Σ exp

(
jfyY n+ jΦ + jXv[n]

))∗}
= E

{
Σ2 exp

(
jfyY (n−m)

)
exp

(
jXv[n]− jXv[m]

)}
=E{Σ2}E

{
exp
(
jfyY (n−m)

)}
E
{

exp
(∑K

k=1 jAk

(
cos(Φkx+2πFkn)−cos(Φkx+2πFkm)

))}
= 1

3
kσsinc

(
yofy(n−m)

)∏K
k=1 gAk,Φkx,Fk(n,m), 1 ≤ n 6= m ≤ N,

(J.11)

Therefore,

E{S[n]S∗[m]} =
1

3
kσsinc

(
yofy(n−m)

) K∏
k=1

gAk,Φkx,Fk(n,m), 1 ≤ n 6= m ≤ N

(J.12)
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Case H3: Vibrating object exhibiting a chirp vibration

E{S3[n]S∗3 [m]} =

= E
{(

Σ exp
(
jfyY n+ jΦ + jXv[n]

))(
Σ exp

(
jfyY n+ jΦ + jXv[n]

))∗}
= E

{
Σ2 exp

(
jfyY (n−m)

)
exp

(
jXv[n]− jXv[m]

)}
=E{Σ2}E

{
exp
(
jfyY (n−m)

)}
E
{

exp
(
jA
(

cos(Φx+2π(F+Crn)n)−cos(Φx+2π(F+Crm)m)
))}

= 1
3
kσsinc

(
yofy(n−m)

)
hA,Φx,F,Cr(n,m), 1 ≤ n 6= m ≤ N,

(J.13)

where hA,Φx,F,Cr(n,m) = E
{

exp
(
jA
(

cos(Φx + 2π(F + Crn)n) − cos(Φx + 2π(F +

Crm)m)
))}

must be computed via numerical integration. Then,

E{S[n]S∗[m]} =
1

3
kσsinc

(
yofy(n−m)

)
hA,Φx,F,Cr(n,m), 1 ≤ n 6= m ≤ N (J.14)

Case H4: Vibrating object exhibiting a multicomponent chirp-sinusoidal vibration

By repeating the same procedure as in the case of H2 and H3 it can be obtained that

the off-diagonal entries of the covariance matrix for the hypothesis H4 are

E{S[n]S∗[m]} = 1
3
kσsinc

(
yofy(n−m)

)∏I
i=1 gAi,Φix,Fi(n,m)

∏L
l=1 hAl,Φlx,F l,Clr(n,m),

0 ≤ n 6= m ≤ N − 1.

(J.15)

In summary, the vibration-induced phase-modulation on the slow-time vector S only

affects the off-diagonal entries of the resulting covariance matrices. Furthermore, as

the complexity of the vibration increases due to the addition of independent compo-

nents, the resulting expression for the covariance matrix is modulated in amplitude

by a function gA,Φx,F (n,m) in the case of the addition of a sinusoidal component or

by a function hA,Φx,F,Cr(n,m) in the case of the addition of a chirp component. Under

all hypothesis and for any type of vibration, the diagonal entries of the covariance

matrix of the slow-time vector S are identical with value 1
3
kσ + σ2

w.
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Remarks

1. All the covariance matrices for Hj, 0 ≤ j ≤ 4, are symmetric-toeplitz matrices.

This symmetry can be exploited to save time while computing their entries via

numerical integration. Also all these matrices are real since gA,Φx,F (n,m) and

hA,Φx,F,Cr(n,m) are always real.

2. For Hj, 0 ≤ j ≤ 4, the entries of the corresponding pseudo-covariance matrices

of the complex random vector S are defined by

E{S[n]S[m]} = E
{

Σ2 exp(2jΦx) exp(jfyY (n+m)) exp(jXv[n] +Xv[m])
}

E{S[n]S[m]} = E
{

exp(2jΦx)
}
E
{

Σ2 exp(jfyY (n+m)) exp(jXv[n] +Xv[m])
}

E{S[n]S[m]} = 0,∀ 0 ≤ n,m ≤ N − 1, because E
{

exp(2jΦx)
}

= 0,

since Φx ∼ U [−π, π].

3. Since under all hypothesis Hj, 0 ≤ j ≤ 4, the covariance matrices are real,

finite and the corresponding pseudo-covariance matrices are all zero, then S is

always a proper complex random vector.

110



References

[1] A. W. Doerry and F. M. Dickey, “Synthetic aperture radar,” Opt.
Photon. News, vol. 15, no. 11, pp. 28–33, Nov 2004. [Online]. Available:
http://www.osa-opn.org/abstract.cfm?URI=opn-15-11-28

[2] S. I. Tsunoda, F. Pace, J. Stence, M. Woodring, W. H. Hensley, A. W.
Doerry, and B. C. Walker, “Lynx: a high-resolution synthetic aperture
radar,” in Proc. SPIE, vol. 3704, 1999, pp. 20–27. [Online]. Available:
http://dx.doi.org/10.1117/12.354602

[3] S. Chiu, “An analysis of radarsat2 sar-gmti performance for standard beam
mode,” DTIC Document, Tech. Rep., 2000.

[4] A. W. Doerry, “Basics of polar-format algorithm for processing synthetic aper-
ture radar images,” Sandia National Laboratories report SAND2012-3369, Un-
limited Release, 2012.

[5] R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-7, no. 3, pp. 499–
505, May 1971.

[6] T. Sparr and B. Krane, “Micro-doppler analysis of vibrating targets in sar,”
IEE Proceedings - Radar, Sonar and Navigation, vol. 150, no. 4, pp. 277–83–,
Aug 2003.

[7] B. D. Rigling, “Image-quality focusing of rotating sar targets,” IEEE Geoscience
and Remote Sensing Letters, vol. 5, no. 4, pp. 750–754, Oct 2008.

[8] M. Ruegg, E. Meier, and D. Nuesch, “Constant motion, acceleration, vibration,
and rotation of objects in sar data,” in Proc. SPIE, vol. 5980, 2005, pp.
598 005–598 005–12. [Online]. Available: http://dx.doi.org/10.1117/12.626529

111



References

[9] ——, “Vibration and rotation in millimeter-wave sar,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, no. 2, pp. 293–304, Feb 2007.

[10] V. C. Chen, F. Li, S. S. Ho, and H. Wechsler, “Micro-doppler effect in radar:
phenomenon, model, and simulation study,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 42, no. 1, pp. 2–21, Jan 2006.

[11] X. Bai, M. Xing, F. Zhou, G. Lu, and Z. Bao, “Imaging of micromotion targets
with rotating parts based on empirical-mode decomposition,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 46, no. 11, pp. 3514–3523, Nov
2008.

[12] Q. Wang, M. Xing, G. Lu, and Z. Bao, “High-resolution three-dimensional radar
imaging for rapidly spinning targets,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 46, no. 1, pp. 22–30, Jan 2008.

[13] X. Li, B. Deng, Y. Qin, H. Wang, and Y. Li, “The influence of target micromo-
tion on sar and gmti,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 49, no. 7, pp. 2738–2751, July 2011.

[14] Q. Wang, M. Pepin, R. Dunkel, T. Atwood, A. W. Doerry, B. Santhanam,
W. Gerstle, and M. M. Hayat, “Reduction of vibration-induced artifacts in
synthetic-aperture-radar imagery using the fractional fourier transform,” in 2012
19th IEEE International Conference on Image Processing, Sept 2012, pp. 2677–
2680.
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