4 research outputs found

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for q≥αd+βq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large β=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree

    Local convergence of random graph colorings

    Get PDF
    Let G=G(n,m)G=G(n,m) be a random graph whose average degree d=2m/nd=2m/n is below the kk-colorability threshold. If we sample a kk-coloring σ\sigma of GG uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called {\em condensation threshold} dc(k)d_c(k), the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for kk exceeding a certain constant k0k_0. More generally, we investigate the joint distribution of the kk-colorings that σ\sigma induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem

    Local convergence of random graph colorings

    Get PDF
    Let G(n,m) be a random graph whose average degree d=2m/n is below the k-colorability threshold. If we sample a k-coloring \SIGMA of G(n,m) uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called {\em condensation threshold} \dc, the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k_0. More generally, we investigate the joint distribution of the k-colorings that \SIGMA induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem
    corecore