17 research outputs found

    Fast Dynamic Graph Algorithms for Parameterized Problems

    Full text link
    Fully dynamic graph is a data structure that (1) supports edge insertions and deletions and (2) answers problem specific queries. The time complexity of (1) and (2) are referred to as the update time and the query time respectively. There are many researches on dynamic graphs whose update time and query time are o(G)o(|G|), that is, sublinear in the graph size. However, almost all such researches are for problems in P. In this paper, we investigate dynamic graphs for NP-hard problems exploiting the notion of fixed parameter tractability (FPT). We give dynamic graphs for Vertex Cover and Cluster Vertex Deletion parameterized by the solution size kk. These dynamic graphs achieve almost the best possible update time O(poly(k)logn)O(\mathrm{poly}(k)\log n) and the query time O(f(poly(k),k))O(f(\mathrm{poly}(k),k)), where f(n,k)f(n,k) is the time complexity of any static graph algorithm for the problems. We obtain these results by dynamically maintaining an approximate solution which can be used to construct a small problem kernel. Exploiting the dynamic graph for Cluster Vertex Deletion, as a corollary, we obtain a quasilinear-time (polynomial) kernelization algorithm for Cluster Vertex Deletion. Until now, only quadratic time kernelization algorithms are known for this problem. We also give a dynamic graph for Chromatic Number parameterized by the solution size of Cluster Vertex Deletion, and a dynamic graph for bounded-degree Feedback Vertex Set parameterized by the solution size. Assuming the parameter is a constant, each dynamic graph can be updated in O(logn)O(\log n) time and can compute a solution in O(1)O(1) time. These results are obtained by another approach.Comment: SWAT 2014 to appea

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    Simple planar graph partition into three forests

    Get PDF
    AbstractWe describe a simple way of partitioning a planar graph into three edge-disjoint forests in O(n log n) time, where n is the number of its vertices. We can use this partition in Kannan et al.'s graph representation (1992) to label the planar graph vertices so that any two vertices' adjacency can be tested locally by comparing their names in constant time

    Maintaining minimum spanning forests in dynamic graphs

    Get PDF
    We present the first fully dynamic algorithm for maintaining a minimum spanning forest in time o(sqrt(n)) per operation. To be precise, the algorithm uses O(n1/3 log n) amortized time per update operation. The algorithm is fairly simple and deterministic. An immediate consequence is the first fully dynamic deterministic algorithm for maintaining connectivity and bipartiteness in amortized time O(n1/3 log n) per update, with O(1) worst case time per query

    Fully Dynamic Effective Resistances

    Full text link
    In this paper we consider the \emph{fully-dynamic} All-Pairs Effective Resistance problem, where the goal is to maintain effective resistances on a graph GG among any pair of query vertices under an intermixed sequence of edge insertions and deletions in GG. The effective resistance between a pair of vertices is a physics-motivated quantity that encapsulates both the congestion and the dilation of a flow. It is directly related to random walks, and it has been instrumental in the recent works for designing fast algorithms for combinatorial optimization problems, graph sparsification, and network science. We give a data-structure that maintains (1+ϵ)(1+\epsilon)-approximations to all-pair effective resistances of a fully-dynamic unweighted, undirected multi-graph GG with O~(m4/5ϵ4)\tilde{O}(m^{4/5}\epsilon^{-4}) expected amortized update and query time, against an oblivious adversary. Key to our result is the maintenance of a dynamic \emph{Schur complement}~(also known as vertex resistance sparsifier) onto a set of terminal vertices of our choice. This maintenance is obtained (1) by interpreting the Schur complement as a sum of random walks and (2) by randomly picking the vertex subset into which the sparsifier is constructed. We can then show that each update in the graph affects a small number of such walks, which in turn leads to our sub-linear update time. We believe that this local representation of vertex sparsifiers may be of independent interest

    Planning for Fast Connectivity Updates

    Get PDF

    Planning for Fast Connectivity Updates

    Full text link
    corecore