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Abstract. We present the first fully dynamic algorithm for maintaining a minimum spanning
forest in time o(

√
n) per operation. To be precise, the algorithm uses O(n1/3 logn) amortized time

per update operation. The algorithm is fairly simple and deterministic. An immediate consequence
is the first fully dynamic deterministic algorithm for maintaining connectivity and bipartiteness in
amortized time O(n1/3 logn) per update, with O(1) worst case time per query.

Key words. dynamic graph, graph algorithm, minimum spanning tree, data structure

AMS subject classifications. 05C85, 68W40, 68Q25, 68P05

PII. S0097539797327209

1. Introduction. We consider the problem of maintaining a minimum spanning
forest during an arbitrary sequence of edge insertions and deletions. Given an n-vertex
graph G with edge weights, the fully dynamic minimum spanning forest problem is to
maintain a minimum spanning forest F under an arbitrary sequence of the following
update operations:

insert(u,v). Add the edge {u, v} to G. Add {u, v} to F if it connects two pre-
viously unconnected trees of F or if it reduces the cost of F . If the latter,
return the edge of F that has been replaced.

delete(u,v). Remove the edge {u, v} from G. If {u, v} ∈ F , then (a) remove {u, v}
from F and (b) return the minimum-cost edge e of G \ F that reconnects F
if e exists or return null if e does not exist.

In addition, the data structure permits the following type of query:
connected(u,v). Determine if vertices u and v are connected.
In 1985 [7], Fredrickson introduced a data structure known as topology trees for

the fully dynamic minimum spanning forest problem with a worst-case cost of O(
√
m)

per update His data structure permitted connectivity queries to be answered in O(1)
time. In 1992, Eppstein, Galil, and Italiano [3] and Eppstein et al. [4] improved the
update time to O(

√
n) using the sparsification technique. If only edge insertions are

allowed, the Sleator–Tarjan dynamic tree data structure [13] can be used to maintain
the minimum spanning forest in time O(log n) per insertion or query. If only edge
deletions are allowed (“deletions-only”), then no algorithm faster than the Ω(

√
n)

fully dynamic algorithm is known.
Using randomization, it was recently shown that the fully dynamic connectivity

problem, i.e., the restricted problem where all edge costs are the same, can be solved
in amortized time O(log2 n) per update and O(log n) per connectivity query [9, 10].
However, this approach could not be extended to arbitrary edge weights, leaving the
question open as to whether the fully dynamic minimum spanning forest problem can
be solved in time o(

√
n).
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In this paper we give a positive answer to this question: We present a fully
dynamic minimum spanning forest data structure that uses O(n1/3 log n) amortized
time per update and O(1) worst case time per query when update time is averaged over
any sequence of Ω(min) updates for min the initial size of the graph. Our technique
is very different from [7].

The result is achieved in two steps: First, we give a deletions-only minimum
spanning forest algorithm that uses O(m′1/3 log n + nε) amortized time per update
and O(1) worst case time per query when the update time is averaged over any
sequence of Ω(min) updates. Here ε is any constant such that 0 < ε < 1/3, and m′ is
the number of nontree edges at the time of the update.

Then we present a general technique which, given a deletions-only minimum
spanning forest data structure with a certain property, generates a fully dynamic
data structure with the same running time as the deletions-only data structure. Let
f(m′, n) be the amortized time per deletion in the deletions-only data structure with
m′ nontree edges and n vertices. The property required is that, upon inserting into
the graph no more thanm′ edges at the same time (a “batch insertion”), the deletions-
only data structure can be modified to reflect these insertions and up tom′ subsequent
deletions can be performed in a total of O(m′f(m′, n)) time.

Using this technique, we develop a fully dynamic minimum spanning forest algo-
rithm with amortized time per update of O(m1/3 log n) for a sequence of updates of
length Ω(min), where m is the size of G at the time of the update. In other words,
letting m(i) denote the size of G (vertices and edges) after update i, the total amount

of work for processing a sequence of updates of length l is O(
∑l

i=0 m(i)
1/3 log n).

We then apply sparsification [3, 4] to reduce the running time for the sequence to
O(ln1/3 log n).

Our result immediately gives faster deterministic fully dynamic algorithms for
the following problems: connectivity, bipartiteness, k-edge witness, maximal spanning
forest decomposition, and Euclidean minimum spanning tree. See [9] for all but the
last reduction; see Eppstein [2] for the last reduction. For these problems, the new
algorithm achieves an O(n1/6/ log n) factor improvement over the previously best
deterministic running time. If randomization is allowed, however, much faster times
are achievable [9, 10].

Additionally, improvements can be achieved in the following static problems
(see [4, 3]): randomly sampling spanning forests of a given graph [6] and finding
a color-constrained minimum spanning tree [8].

The paper is structured as follows: In section 2 we give a deletions-only minimum
spanning forest algorithm. In section 3, we show how to use a sequence of deletions-
only data structures to create a fully dynamic data structure.

2. Maintaining a minimum spanning forest—Deletions-only. In this sec-
tion, we give an algorithm which maintains a minimum spanning forest while edges
are being deleted. The amortized update time is O(m1/3 log n) and the query time is
O(1) for queries of the form “Are vertices i and j connected?”. Let G = (V,E) be an
undirected graph with edge weights. Without loss of generality, we assume that edge
weights are distinct.

Initially, we compute the minimum spanning forest F of G. Let m′
in be the

number of nontree edges in G initially and k = m′1/3
in log n. We sort the nontree edges

by weight and partition them into m′
in/k levels of size k so that the k lightest are in

level 0, the next k lightest are in level 1 and so on. The set of edges in a level i is
denoted by Ei. In addition, all tree edges of the initial minimum spanning forest F
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are placed in level 0. (We omit floors and ceilings to simplify notation; either can be
used without affecting the asympotic analysis.)

Throughout the algorithm, the level of an edge remains unchanged, and F de-
notes the minimum spanning forest. For i = 0, 1, . . . , (m′

in/k) − 1, let Fi denote
the minimum spanning forest of the graph with vertex set V and edgeset ∪j≤iEj .
(Initially, all Fi = F , but in later stages, an edge from any level may become a tree
edge. Thus, F0 ⊆ F1 ⊆ . . . ⊆ F(m′

0/k)−1 = F .) Let Ti(x) denote the tree in Fi which
contains x and let T (x) without the subscript denote the tree in F containing x.

The main idea is the following. If a nontree edge is deleted, then the minimum
spanning forest F is unchanged. Suppose a tree edge {u, v} in level i is deleted. Then
for each Fj , j ≥ i, the deletion splits the tree in Fj containing u and v into Tj(u) and
Tj(v). We search for the minimum weight nontree edge e (called the “replacement
edge”) that connects T (u) and T (v) by gathering and then testing a set S of candidate
edges on level i. If none is found, we repeat the procedure on level i + 1, etc., until
one is found or all levels are exhausted.

We now describe the update operations.
delete(u, v). Delete edge {u, v} from any data structures in which it occurs. If

a tree edge {u, v} from level i is deleted, then remove {u, v} from F and search for
a replacement by calling Replace(i, u, v). We refer to i as the level of the call to
Replace.

In the algorithm below, the subroutine Search when applied to a tree in Fi finds
all nontree edges in level i which are incident to the tree. A phase consists of the
examination of a single edge. (Its exact definition and the details of Search are given
in section 2.2 below.)

Replace(i, u, v).
1. Alternating in lockstep, one phase at a time, Search(Ti(u)) and Search(Ti(v))
until k/ log n phases are executed (Case A) or one of the searches has stopped
(Case B).
• Case A: Let S be the set of all nontree edges in level i.
• Case B: Let S be the set of (nontree) edges produced by the Search
that stopped.

2. Test every edge in S to see if it connects T (u) and T (v).
• If a connecting edge is found, insert the minimum weight connecting
edge into F and the data structures representing the Fj , j ≥ i.

• Else if i is not the last level, call Replace(i+ 1, u, v).

2.1. Data structures. The idea here is to use the ET-tree data structure de-
veloped in [9]: (1) to represent and update each tree in F , so that in constant time,
we can quickly test if a given edge joins two trees; and (2) to represent each tree in an
Fi in such a way that we can quickly retrieve nontree edges in Ei which are incident
to the tree. To avoid excessive cost, we explicitly maintain only those Fi where i is a

multiple of m′1/3
in / log n. An undesirable consequence of this is that when retrieving

nontree edges in Ei, other nontree edges are also retrieved.
Below, we refer to input graph vertices as “vertices” and use “node” to mean

nodes of the B-tree in which we store the “ET-sequences.”
ET-trees. An ET-sequence is a sequence generated from a tree by listing each

vertex each time it is encountered (“an occurrence of the vertex”) as a tree is searched
depth-first. Each ET-sequence is stored in a B-tree of degree d. This allows us to
implement the deletion or insertion of an edge in the forest as follows: we split a tree
by deleting an edge or join two trees by inserting an edge in time O(d logd n), using
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a constant number of splits and joins on the corresponding B-trees. Also we can test
two vertices of the forest to determine whether they are in the same tree in time
O(logd n), by searching up to the roots and testing for equality. See, for example,
[1, 11] for operations on B-trees. If d = nα, for α a positive constant, then the join
and split operations take time O(d) and the test operation takes time O(1). We refer
to the B-trees used to store ET-sequences as ET-trees.

This data structure allows us to keep information about a vertex so that the
cumulative information about all vertices in a tree can be maintained. To do so, we
make one arbitrary occurrence of each vertex a “designated” occurrence and, in each
internal node of the ET-tree, we keep cumulative information about the designated
occurrences in the subtree of the ET-tree rooted at that node. Here, for example,
we want to know if there is at least one nontree edge incident to a vertex in a tree.
We mark the vertex’s designated occurrence in the ET-tree if there is a nontree edge
in the graph incident to that vertex. We mark each internal node of the ET-tree if
some node in its subtree is marked. We can find the endpoint of a nontree edge by
starting at the root of the ET-tree and following a path of marked nodes down to
a marked designated occurrence. In a degree d ET-tree, each split or join operation
or each change to the number associated with an occurrence requires the adjustment
of O(logd n) internal nodes with each adjustment taking O(d) timesteps. For other
applications of ET-trees, see [9].

We maintain the following data structures.
• Each edge is labelled by its level and a bit which indicates if it is a tree edge.
• Let dF = max{m′1/3

in log n, nε}, for any constant 0 < ε ≤ 1/3. Each tree in F
is represented as an ET-sequence which is stored in a degree dF B-tree. Note
that these B-trees have a constant number of levels, so that two vertices can
be tested to determine if they lie in the same tree of F in O(1) time.

• Let c = m′1/3
in / log n. We partition consecutive levels into classes of size c.

Each class is represented by the smallest level in the class, i.e., the level j such
that c|j (“c divides j”). That is, level i is mapped to the class f(i) = c
i/c�.
For each representative level j,

– we represent each tree in Fj as an ET-sequence which is stored in a
binary B-tree;

– for each vertex v, we create a list Lj(v) which contains
(i) all nontree edges incident to v which are in any level i ∈ f−1(j) and
(ii) all tree edges incident to v which are in any level i > j, i ∈ f−1(j);

– we mark each designated occurrence of a vertex v whose list Lj(v) is
nonempty. Each internal node of the ET-tree is marked if its subtree
contains a marked occurrence.

2.2. The Search routine. Search(Ti(u)) returns all nontree edges in level i
incident to Ti(u). It begins by searching Tf(i)(u) which is a subtree of Ti(u). It
proceeds by examining all edges in Lf(i)(v) for all vertices v in the tree being searched.
Nontree edges in level i are picked out and tree edges in levels i′, f(i) < i′ ≤ i, are
followed to other trees of Ff(i) which are then searched in turn. Note that all such
tree edges lead to other trees of Ff(i) which are subtrees of Ti(u); and all subtrees
of Ti(u) will be found by this procedure. A phase of the algorithm consists of the
examination of one edge e in a list L.

Search(Ti(u)).
1. S′ ← ∅;
2. treelist← Tf(i)(u);



368 MONIKA R. HENZINGER AND VALERIE KING

3. Repeat until treelist is empty:
• Remove an ET-tree from the treelist.
• For each marked vertex x in the ET-tree and for each edge {x, y} in each

Lf(i)(x),
– if {x, y} is a nontree edge on level i, add it to the set S′ of edges to
return;

– else if {x, y} is a tree edge on level l such that l ≤ i, then add
Tf(i)(y) to treelist.

2.3. Analysis. Initialization. We compute the minimum spanning forest F ,
create the ET-trees for Fj , for each j such that c|j, and partition the nontree edges
by weight. Recall that m′

in is the number of nontree edges in the initial graph. Let t
be the number of edges in the initial minimum spanning forest. The creation of all the
lists L takes time proportional to the number of nontree edges m′

in. The building of
ET-trees for F and all Fj such that c|j and the marking of internal nodes takes time
proportional to the size of each forest or O(((m′

in/k)/c)t+m′
in) = O(m′1/3

in t+m′
in).

Deletions of nontree edges. Deleting a nontree edge on any level may require
unmarking a designated occurrence of a vertex in some ET-tree, which may require
unmarking internal nodes on the path to the root in O(log n) time.

Deletions and insertions of tree edges. Deleting a tree edge takes worst-case time
O(dF ) to delete it from the ET-tree of F and worst-case time O(log n) to delete it
from the ET-tree of each Fj such that c|j, for a total of O(dF + ((m′

in/k)/c) log n)
time per edge. Inserting a replacement edge takes the same time.

Finding a replacement edge. We first analyze the cost of Search. Let the weight
w(T ) of a tree T of some Fi be

∑ |Lf(i)(v)| summed over all vertices v in T . It
costs O(log n) to move down the path from the root to a leaf in an ET-tree to find a
marked occurrence of a vertex, or to move up a tree from an occurrence to the root.
Thus, the cost of Search(Ti(x)) is O(log n) times the number of edges examined, or
O(w(Ti(x)) log n), if Search is carried out until it ends, and O(k), if it is run for
k/ log n phases.

In Replace(u, v, i), if w(Ti(u)) ≤ w(Ti(v)), then we refer to Ti(u) as the smaller
component T1; otherwise, T1 is Ti(v). The cost of a call to Replace(u, v, i) is the
cost of the Search plus the cost of testing each edge in S. The number of edges in S
is O(min{k,w(T1)}). We can use the dF -degree ET-tree representation for F to test
each edge at cost O(1). Thus the cost of a call to Replace is O(min{k,w(T1) log n}).

To pay for these costs, If a replacement edge is found on level i then we charge the
cost of Replace(u, v, i) to the deletion. In addition, we charge the cost of modifying
F to the deletion so the total cost charged to the deletion is O(min{k,w(T1) log n}+
((m′

in/k)/c) log n+ dF ) = O(((m′
in/k)/c) log n+ dF ).

If no replacement edge is found on level i then a tree of Fi which was split by the
deletion remains split. We use the following.

Claim 2.1. O(
∑

w(T1)) summed over all smaller components T1 which split
from a tree T on any given level during all Replace operations is O(w(T ) log n).

The proof of the claim follows [5]. The first time a smaller component T1 of
a tree T is searched, it can have weight no greater than w(T )/2. Between two
successive times that |Lf(i)(v)| contributes to the weight of a smaller component
T1 and that component splits off, the weight of a smaller component T1 contain-
ing v is no more than half its weight the previous time. Hence |Lf(i)(v)| con-
tributes to the weight of any T1 no more than log2w(T ) = O(log n) times. That
is, O(

∑
w(T1)) = O(

∑
v∈T |Lf(i)(v)|) log n) = O(w(T ) log n).
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There are at most k edges per level (except for level 0, which has at most
k nontree edges). Each Lj(v) consists of edges from c levels. Since level 0 tree
edges do not belong to any list Lj(v), the maximum weight of a tree w(T ) is ck.
Thus the total cost charged to a level is O(ck log2 n). Summing over all levels we
have O((m′

in/k)(ck log
2 n) = O(m′

inc log
2 n), or an amortized cost per deletion of

O(c log2 n) = O(m′1/3
in log n), if Ω(m′

in) edges are deleted.
The cost charged to each deletion is O((m′

in/ck)(log n) + dF ). For dF = max

{m′1/3
in log n, nε} and c = m′1/3

in / log n, this is O(m′1/3
in log n+ nε).

To summarize the cost of initialization when amortized over Ω(min) operations

is O(m′1/3
in ) and the cost per deletion of an edge and finding replacement edges, when

amortized over Ω(m′
in) operations is O(m′1/3

in log n + nε). Thus for a sequence of

Ω(min) operations, the amortized time per update is O(m
′1/3
in log n+ nε).

Finally, we note that the query of the form “Are vertices i and j connected?” can
be answered using the ET-tree data structure for F in O(1) time.

3. From deletions-only to fully dynamic. In this section, we show a general
technique to develop a fully dynamic data structure using several deletions-only data
structures with an added operation. (We call these “extended” deletions-only data
structures.) As before, we assume the edge weights are distinct.

First, we define the following operation on a deletions-only data structure A.
batch add(G,E′, F ′): Given a graph G = (V,E) with minimum spanning forest

F , insert all edges of E′ into G, if they are not already there. The resulting spanning
forest F ′ is given.

We refer to the period of time which occurs between two consecutive calls to
batch add on a graph G, or between the start of the algorithm and the first batch add
on G as a period of G. Alternatively, a period may be terminated prematurely (see
below).

We prove the following theorem.
Theorem 3.1. Suppose for any value of n andm′

in, there is an extended deletions-
only data structure for any dynamic graph G = (V,E) with |V | = n and the number
of nontree edges in the edgeset E is initially m′

in, such that (n +m′
in)f

0(m′
in, n) is

the worst case time needed to initialize A, and (y +m′
in)f(m

′
in, n) is an upper bound

on the time to process y deletions.
Suppose we can process a batch add(H,E′, F ′), following any period in which y

edges were deleted from G, in time O((y +m′
in + |F ′ \ F |)fB(m′

in, n)), where m′
in is

an upper bound on the total number of nontree edges in G after the batch add.
We also assume that f0, f , fB are monotone nondecreasing functions.
For any value d there is a fully dynamic minimum spanning forest data structure

that runs in amortized cost per edge deletion or insertion of O(d logd n +
∑s

i=0(s −
i+ 1)[f0(2i, n) + f(2i, n) + fB(2i, n)]) where s ≤ 3 + lgm and m is the size (vertices
plus edges) of the dynamic graph at the time of the update. Here, costs are amortized
over a sequence of min update operations, where min is the size of the initial graph.

In section 3.4, we show that the following corollary holds by choosing d = nε for
any constant 1/3 ≥ ε > 0 and using the data structure of the previous section.

Corollary 3.2. A minimum spanning forest can be maintained in a fully dy-
namic graph with amortized cost per update of O(m1/3 log n), where m is the size of
the graph at the time of the update, for a sequence of Ω(min) operations.

Noting that the function f(m,n) = O(m1/3 log n) is “well behaved” in the sense
of Theorem 3.3.2 of [4] gives the main result of the paper.
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Corollary 3.3. A minimum spanning forest can be maintained in a fully dy-
namic graph with amortized cost per update of O(n1/3 log n), where n is the number of
vertices in the graph at the time of the update, for a sequence of Ω(min) operations.

We prove our theorem by constructing a fully dynamic data structure from ex-
tended deletions-only data structures.

Definitions. We refer to the current minimum spanning forest of G as the (global)
MSF . Let m′ be the number of nontree edges in the current graph, m′

in denote the
number of nontree edges in the initial graph, and m denote the current size (vertices
and edges) of G.

During the course of the algorithm, we simultaneously maintain up to s ≤
max{lg n, lg(4m′)} extended deletions-only data structures A0, A1, . . . , As, where each
Ai is an extended deletions-only minimum spanning forest data structure for a sub-
graph Gi + (V,Ei) of the global graph G = (V,E). We call this the composite data
structure. We maintain each tree of the MSF as a Sleator–Tarjan dynamic tree [13]
and also as an ET-tree of degree d.

The minimum spanning forest of Gi as maintained by Ai is referred to as a local
spanning forest and denoted F i. A local nontree edge of Ai is an edge of G

i which is
not in Ai’s local spanning forest or the MSF. We maintain xi to be the number of
local nontree edges in ∪j≤iAj .

Whenm′ falls below 2s/4 and s > lg n, s is reset and the composite data structure
is reinitialized. Between two consecutive resets, we define the period of time which
occurs between two consecutive calls to batch add on a graph G, or between the
initialization or reinitialization of the composite data structure and the first batch add
on G as a period of G. A reset terminates all periods.

The size of a graph refers to the number of vertices plus edges.

We maintain the following invariants.

Invariant. (1) Every edge in the local forest of some Ai is (a) in the MSF or (b)
is a local nontree edge in some Aj , j �= i.

(2) E = (∪Ei) ∪MSF .

We now describe the algorithm.

To initialize, Let the initial value of s = �lgm′
in�. We initialize As as an extended

deletions-only data structure for Gs = G with F s =MSF and the set of local nontree
edges being all nontree edges of G.

To perform an insertion operation, insert(u, v) is called, where (u, v) is an edge
to be inserted into G.

insert(e):

1. Use the dynamic tree to determine if e should be added to the MSF:
Determine if there is a path between e’s endpoints in the MSF. If so, set f to
the maximum weight edge on the path.

2. If e is lighter than f , remove f from the MSF.
If there is no path between e’s endpoints, either because f has been removed
or there was none previously, call insert nontree(f), and add e to the MSF.

3. Else call insert nontree(e).

The following subroutine inserts a nontree edge e into the composite data struc-
ture.

insert nontree(e). Let i = min{ j | xj < 2j}. Let E′ be the set of local nontree
edges in ∪j<iE

j ∪ {e} .
1. Delete the edges of E′ from Aj , j < i.
Set xj = 0.
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2. If Ai is not initialized, initialize Ai on the empty graph Gi consisting of n
vertices and no edges.

3. Call batch add(Gi, E′ ∪MSF,MSF ).
Adjust xi accordingly.

After the procedure, the local nontree edges of Gi are the nontree edges previously
contained in ∪j≤iAj . Its local forest F i = MSF . Note that at the beginning of a
period of Gi, xj = 0 for j < i.

To delete an edge e from G:

delete(e):

1. Delete e from all data structures in which it appears, including all Gi, and
update corresponding Ai accordingly. Thus for each local spanning forest F

i

which contained e, the local replacement edge e′ is determined, if there is one.
2. If e was in the MSF, use the ET-tree representation of the tree containing e in
the MSF to determine which of those local replacement edges reconnect the
two subtrees which result from the deletion of e. Insert the lightest connecting
edge into the MSF.

3. All other local replacement edges are reinserted into the composite data struc-
ture using the procedure insert nontree.

4. If n < xs ≤ 2s−2, reinitialize the composite data structure. That is, set
s = �lg xs�; initialize As as an extended deletions-only data structure for
Gs = G with F s =MSF and the set of local nontree edges being all nontree
edges of G.

3.1. Proof of correctness. It is easy to see that the invariants are maintained,
by induction on the number of operations. Initially, the invariants hold since Gs = G.
Invariant (2) is preserved after each insertion, since each edge when added to G is
either added to the MSF or some Gi. Each edge, when deleted from G, is deleted
from all data structures in which it appears. Invariant (1) holds for Ai when Ai is
initialized or a batch add is executed since the local forest Fi =MSF . The local forest
of Ai changes only when an edge is deleted and is replaced by some edge e. Edge e is
then either put into the MSF or reinserted into the composite data structure. In that
case, it is added to some Aj by a batch add operation. If e is not in the MSF, then e
becomes a local nontree edge of Aj . In either case, invariant (1) is preserved.

The correctness of the algorithm follows easily from the invariants. We use the
well-known fact that an edge is in the minimum spanning tree iff it is not the heaviest
edge in any cycle (“red rule” [14]). We also note that every edge in the composite
data structure is an edge in G.

Let e be an edge of the MSF which is deleted. Let e′ be the correct replacement
edge. Consider the state of the composite data structures right before the deletion of
e. By the invariant, since e′ was not in the MSF, it was a local nontree edge in some
Ai.

Suppose e′ is a local nontree edge in Ai. Since e′ is the correct replacement edge
for e in the MSF, then after e’s deletion, e′ is not the heaviest edge in any cycle of G
and therefore is not the heaviest edge of any cycle of Gi. Hence, after e’s deletion, e′

becomes a local forest edge, i.e., e′ is a local replacement edge for e in Gi. Recall that
e′ is the minimum weight edge which connects the two subtrees of the MSF resulting
from the deletion of e. Thus, e′ is the lightest connecting edge from the set of local
replacement edges and is chosen in Step 2 of the delete algorithm.
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3.2. Analysis. We first prove the following claims.

Claim 3.4. During any full period of Gi, there were at least 2i−1/(s − i + 1)
updates to G.

Proof. For i > 0, immediately before batch add is executed on Gi, xi−1 ≥ 2i−1.
Immediately afterwards, xi−1 = 0.

We examine the types of insertions into the composite data structure to see how
they affect xi: (a) when a nontree edge is inserted into G, (b) when an edge is replaced
in the MSF after an insertion, and (c) when an edge is deleted in G and it is replaced
in up to s local spanning forests. The first two cases cause xi to increase by no more
than one. The third case may cause up to s insertions. However, the s insertions do
not affect all Ai the same. Each insertion in this case results from a local nontree edge
e becoming a local forest edge. Hence if this occurs in some Aj , j ≤ i, the increase of
xi resulting from the insertion of a copy of e into the composite data structure is offset
by the decrease of xi caused by the change in status of e from a local nontree edge
to a local tree edge. Thus xs is unchanged by a case-(c) insertion into the composite
data structure, xs−1 is increased by at most 1, and in general, xi is increased by at
most s− i.

Hence, at least 2i−1/(s − i + 1) insertions or deletions occurred during any full
period of Gi. This concludes the proof of the claim.

We are now ready to analyze the costs of the algorithm.

Initialization. Since each Ai is initialized once, the cost for initialization during
the algorithm is (n + 2i)f0(2i, n). Note that Ai is initialized only if the number of
nontree edges exceed 2i−1.

We amortize the initialization costs of the first data structure As and all Ai for
i < lg n by requiring there to be Ω(min) operations, where min is the size (vertices
and edges) of the initial graph. We note that for at least half these operations, the
current size of the graph m ≥ min/2.

We amortize the cost of initializing Ai, i ≥ lg n over the operations of the preced-
ing period when at least 2i−1/(s− i+ 1) operations occurred.

The cost of reinitialization of the composite data structure can be charged to the
2s/2 deletions which must have occurred since the previous reset. Note that a reset
only occurs when 2s > n, so that the initialization cost of (n+2s−2)f0(2s−2, n) results
in a charge of f0(2s−2, n) per operation.

Execution of batch add. By assumption, (y + 2i + |MSF \ F i|)fB(2i, n) is an
upper bound on the time to perform batch add(Gi, E′ ∪MSF \ F i,MSF ), where y
is the number of deletions performed on Gi in the preceding period.

We can charge the cost of yfB(2i, n) to the y deletions for a cost of fB(2i, n)
each.

To charge the 2ifB(2i, n), by the claim, batch add is called on Gi after at least
2i−1/(s− i+ 1) insertions and deletions occurred in the preceding period. Charging
the 2ifB(2i, n) to those updates gives a cost per update of (s− i+ 1)fB(2i, n).

To charge the |MSF \ F i|fB(2i, n), we note that at the start of the period,
F i = MSF , and for each i, each insertion or deletion in G can cause at most one
edge to be added to and/or one edge to be deleted from F i. Thus we can charge
the |MSF \ F i|fB(2i, n) to the operations in the preceding period, for a cost of
O(fB(2i, n)) each.

Performing deletions during a period of Gi. The cost of maintaining Ai during
a period containing y deletions of edges in Gi is, by assumption, bounded above by
(y+2i)f(2i, n). These costs can be charged in the same way as the costs for batch add
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were charged to the operations of the preceding period.

In the unique case of the initial As, where s = �lgm′
in� when there was no

preceding period, costs are amortized over the initial sequence of Ω(min) deletions
and insertions, as in the analysis of the initialization costs.

After a reset of s, the cost of performing deletions in As, after As is reinitial-
ized, is charged to the deletions which resulted in the reset, as in the analysis of the
reinitialization costs.

Summary. For each i, the cost per operation is therefore O((s− i+1)[f0(2i, n)+
f(2i, n) + fB(2i, n)]).

Except for the initialization and reinitialization of As, we have charged operations
of the preceding period for all costs incurred in the following period. Since the pre-
ceding periods occur in between resets of the value of s, we know that for the indices
of the Ai, i ≤ s ≤ max{lg 4m′, lg n}. Hence s ≤ 2 + lgm, m being the size of the
graph at the time of the operation.

For the initialization and reinitialization of As, we charge operations which oc-
curred when s may have been smaller by 1. Hence s ≤ 3 + lgm, m is the size of the
graph at the time of the operation.

Each operation requires a constant number of updates in the dynamic tree data
structure and the degree-d ET-tree data structure storing the MSF. This takes time
O(d logd n).

Summing over i, we have of O(d logd n +
∑s

i=0(s − i + 1)[f0(2i, n) + f(2i, n) +
fB(2i, n)], where m is the current size of G at the time of the operation, when amor-
tized over a sequence of min update operations and min is the size of the initial
graph.

3.3. Implementing batch add. In this section, we show how a deletions-only
data structure A in section 2 for a graph G which initially had m′

in nontree edges can
be extended so that the operation batch add which occurs after a sequence σ of y edge

deletions can be implemented in time O((y +m′
in + |F ′ \ F |)(m′

in
1/3
log n)).

We begin by restoring the ET-trees of A toMSFold, the minimum spanning forest
of G before the start of the sequence σ of deletions. The cost of joining two ET-trees
is asympotically the same as splitting them; thus the calculations of section 2 apply.

For each deletion, the cost of restoration is O((m′1/3
in ) log n+ nε).

We next transformMSFold toMSF by again modifying the ET-trees. We remove
every edge in MSFold \MSF and insert every edge in MSF \MSFold for a cost of

O(m′1/3
in log n+ nε).

To determine the transformations required, we keep a list of sorted changes which
occurred since the last batch add .

We remove all nontree edges which are stored in A and sort the nontree edges of
E ∪ E′, assign them to levels, and store them with the appropriate list L. The cost
per edge of removing, sorting, and then storing is O(log n) per edge for the unique
(binary) ET-tree in which the edge is stored.

Let f ′(m,n) = m1/3 log n+ nε. We have shown an extended deletions-only data
structure such that O((n+m′

in)f
′(min, n)) is an upper bound on the worst case time

needed to initialize A, and O((y +m′
in)f

′(min, n)) is an upper bound on the time to
process y deletions.

We can process a batch add(G,E′, F ′), following any period in which y edges were
deleted from G, in time O((y + m′

in + |F ′ \ F |)f ′(m′
in, n)), where m′

in is an upper
bound on the total number of nontree edges in G after the batch add.
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3.4. Proof of corollary. Choose d = nε for any constant ε with 0 < ε ≤
1/3. Substituting f ′ for fB , f , and f0, we conclude that there is a fully dynamic
minimum spanning forest data structure that runs in amortized cost per edge deletion
or insertion of O(

∑s
i=0(s− i+ 1)f ′(2i, n)), where s ≤ 3 + lgm.

Substituting for f ′ and 2i, we have O(
∑s

i=0(i + 1)(2s−i)1/3 log n + nε) =

O((2s)1/3 log n+ nε log n) = O(m1/3 log n+ nε′) for ε′ any constant.
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