
Planning for Fast Connectivity Updates

Mihai Pǎtraşcu
mip@mit.edu

Mikkel Thorup
mthorup@research.att.com

Abstract

Understanding how a single edge deletion can affect
the connectivity of a graph amounts to finding the graph
bridges. But when faced with d > 1 deletions, can we es-
tablish as easily how the connectivity changes? When plan-
ning for an emergency, we want to understand the structure
of our network ahead of time, and respond swiftly when an
emergency actually happens.

We describe a linear-space representation of graphs
which enables us to determine how a batch of edge updates
can impact the graph. Given a set of d edge updates, in time
O(dpolylg n) we can obtain the number of connected com-
ponents, the size of each component, and a fast oracle for
answering connectivity queries in the updated graph. The
initial representation is polynomial-time constructible.

1. Introduction

We ask the following natural combinatorial question:
can we obtain some understanding of the structure of a
graph which allows us to determine how its connectivity is
impacted by a few changes to the edges?

It turns out that edge insertions are easy to handle, so
we concentrate on edge deletions. For the case of one dele-
tion, this is the classic problem of identifying the bridges
of a graph; see [3, Problem 22-1]. For two deletions, we
can observe that they only matter if one or two bridges are
deleted, or if a min-cut in a 2-edge-connected component
gets deleted. To test for the later situation, we can use the
cactus graph. The difficulties start when we delete d ≥ 3
edges from a graph that is not d connected, hence when we
cannot just check if a min-cut is lost. The best known so-
lution is based on a 24-year old algorithm of Frederickson
[6, 5], and handles d updates in O(d

√
n) time. As we dis-

cuss below, known amortized algorithms for dynamic con-
nectivity may easily spend linear time even for d = 1.

In the style of union-find, let find(u) return an identi-
fier for the connected component containing u, so that u

and w are connected iff find(u) = find(w). We describe
a representation of an undirected graph with the following
properties:

(1) the representation requires linear space.

(2) starting from the representation, a batch of d edge up-
dates is handled in O(d lg2 n lg lg n) time.

(3) subsequently, find(u) is evaluated in O(lg lg n) time
per query.

Our algorithms are deterministic. We note that the repre-
sentation is simultaneously good for any d. After process-
ing the updates in (2), the algorithm can output interest-
ing connectivity statistics, such as the number of connected
components and the size of each component. The doubly-
logarithmic running time of find(u) stems from a simple
binary search over levels in a tree of height O(lg n). Inter-
estingly, we can argue a matching lower bound in the cell-
probe model, even for a batch of a deletions in a tree. It
follows that this “understanding of connectivity” (in super-
constant time) is actually the best possible.

In its basic form, our representation is NP-hard to com-
pute as it is strongly related to weighted sparsest cut and
graph partitioning. However, if we use a γ-approximation
to weighted sparsest cut, the recovery time in (2) becomes
O(γ · d lg2 n lg lg n). We can, for example, use the classic
approximation algorithm of Leighton and Rao [12] based
on linear programming, to obtain γ = O(lg n). The more
recent semi-definite programming algorithm of Arora, Rao
and Vazirani [1] yields γ = O(

√
lg n).

Our problem is a fundamental example in the class of
emergency planning problems, and among the first exam-
ples where we can handle more than one update. Our result
also highlights a programme of research for worst-case dy-
namic connectivity, which is perhaps the main challenge in
dynamic graph algorithms today.

1.1. Emergency Planning

Our problem is motivated by emergency planning for a
parallel attack on some edges in a large network. After an
attack, we want to understand the connectivity of the new

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193208451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


graph, without a prolonged period of confusion. The basic
nature of emergency planning is that we are willing to in-
vest a significant amount of resources into preparation, in
order to respond swiftly when an emergency actually hap-
pens. Formally, we translate this into polynomial time for
off-line preparation, in order to respond in polylogarithmic
time per actual change.

In physical networks, one can think of parallel attacks
such as the impact of an earthquake on a road network. In
computer networks, such as an IP backbone, the scenario is
notoriously frequent. Here, a single cable cut can take down
many logical links. Moreover, there are many different pro-
tocol errors that take down several routers simultaneously.
Finally, we have to deal with links being flooded by mali-
cious attacks from worms and viruses.

We note that the paradigm of emergency planning is also
very relevant to nonemergency situations, where there are
a lot of updates, but only a limited number of net changes
since the last off-line preprocessing (most changes are un-
done). In this case, update times are linear in the number of
net changes. For example, if we preprocess a copy of the
US road network once a year, the picture is never too dif-
ferent from the last preprocessing and we do not care if the
same road is opened and closed many times. Similarly in an
IP backbone, the vast majority of the link updates are links
going down and back up, with relatively few net changes to
the network.

Previous work. There has been a lot of previous work on
preparing for a single update to the network. For connectiv-
ity queries, this is precisely why the notions of bridges and
articulation points are studied. Other queries include reach-
ability in directed graphs [11], the shortest path with fixed
source and destination [9, 15], and all-pairs shortest paths
[4, 2]. Like our algorithm, most of these examples make es-
sential use of the asymmetry of emergency planning: to op-
timize the query, the preprocessing is asymptotically slower
than computing a single answer from scratch.

In general, for the case of a larger batch of updates,
there has been little progress in obtaining very good update
time based on preprocessing. Besides our algorithm, we are
aware of one other example in this direction: the algorithm
of [19] for all-pairs shortest paths, which is the key compo-
nent in a worst-case fully-dynamic algorithm.

An obvious alternative to designing new algorithms is
to use existing work under other paradigms, such as fully-
dynamic or decremental problems. However, due to its
unique constraints, emergency planning is not easily re-
placed by these paradigms. For example, we have been
vastly more successful at designing amortized algorithms
than worst-case algorithms for dynamic graph problems.
But emergency planning has little use for amortization, and
the perspective of spending a lot of time for a few updates

is unacceptable in real-time systems. The cases of short-
est paths [19] or connectivity (Section 1.2) are telling: the
amortized algorithms degenerate into a full reconstruction
in the worst possible moments, when one key edge gets
deleted, significantly disrupting the connectivity of the net-
work.

On the other hand, even if we had good worst-case algo-
rithms, it is somewhat unlikely that they will ever be as effi-
cient as algorithms that benefit from careful preprocessing.
Even in our own example, we remark that theO(lg lg n) up-
per bound for queries is exponentially better than the query
lower bound for the fully-dynamic case [13].

Finally, we find that the challenge of preprocessing pro-
vides significant appeal for studying such problems. The
planning aspect forces us to understand the structure of
graphs in new, algorithmically interesting ways, which in-
evitably leads to appealing combinatorial problems.

1.2. Relation to Fully-Dynamic Connectivity

Worst-case algorithms. A solution to dynamic connec-
tivity with worst-case running times immediately solves our
problem. In STOC’83, Frederickson presented such an al-
gorithm with update time O(

√
m). A general sparsification

technique of Eppstein et al. [5] from FOCS’92 transformed
this bound into O(

√
n). Since then, however, this problem

has seen no improvement, and worst-case dynamic connec-
tivity stands as perhaps the most fundamental challenge in
dynamic graph algorithms today.

Our results provide some hope for this problem, show-
ing how to be worst-case efficient after some preprocess-
ing: if the number of net changes since the preprocessing is
O(n1/2−ε), we obtain a better worst-case running time. In
fact, our approach highlights some explicit challenges, and
possibly a path for future research towards dynamic con-
nectivity with polylogarithmic time per update. See Sec-
tion 1.3.

Amortized algorithms. If we are satisfied with amortized
bounds, significantly better bounds are known. Henzinger
and King [8] were the first to obtain a randomized algorithm
with polylogarithmic update time. Holm, de Lichtenberg
and Thorup [10] provide the best deterministic solution, re-
quiring O(lg2 n) amortized time per update. Thorup [18]
gives the currently best randomized solution, supporting up-
dates in O(lg n(lg lg n)3) time.

Unfortunately, the polylogarithmic amortization in these
results only works if we start from an empty graph. When
starting from an arbitrary graph, these algorithms can hap-
pily spend linear time even on the first edge deletion.

In particular, a central amortization technique originat-
ing in [8] and present in all subsequent algorithms is based
on the following observation: If a component is split in two,



we can afford to investigate all vertices in the smaller half,
since this guarantees that each vertex is investigated only a
logarithmic number of times overall. Amortized over an ar-
bitrary long sequence of deletions, this leads to a total num-
ber of O(n lg n) investigations. However, if we just have
one edge deletion splitting a component in two, this deletion
alone may take linear time. Such accounting is useless for
getting bounds limited in terms of d, the number of edges
actually deleted.

To make matters worse, note that this amortization
scheme tends to be slow precisely when the state of affairs
is already bad enough. If a central hub in the network goes
down, affecting the graph structure significantly, the algo-
rithm degenerates into a linear scan.

Amortization starting with an arbitrary graph. An in-
teresting question is whether we can in fact obtain an amor-
tized algorithm starting from an arbitrary graph, not just an
empty graph. We would like to handle an arbitrary num-
ber of updates, spending polylogarithmic time per update
on the average. Our algorithm does not quite achieve that,
but gives some noteworthy bounds. After d updates, we can
recover connectivity information in O(d · polylg(n)) time,
but this does not mean that a single new change will take
less than O(d · polylg(n)) time. Nevertheless, if the total
number of changes is O(m1/2−ε), our total update time is
sublinear, beating previous approaches. Obviously, our im-
provement is bigger if the number of net changes is small,
or the changes come in batches, like parallel attacks.

1.3. Technical Contributions

The starting point for our algorithm is the amortization of
Henzinger and King [8]. The main idea of that algorithm is
to classify edges into lgm levels, with at most m/2i edges
on level i. The algorithm maintains a spanning tree of the
graph, which is minimal with respect to level numbers. If an
edge of the spanning tree is deleted, we search for a replace-
ment at the edge’s level. That is done by sampling edges,
and testing if they cross the cut that was just induced on
the tree. If we fail to find a replacement edge after a num-
ber of trials, we can conclude with high probability that the
cut is sparse. Then, we can promote all edges of the cut
to the next level, without violating the constraint on level
sizes. Paying for the promotion is done by the amortization
technique of promoting things in the smaller half. After this
promotion, the search for a replacement edge continues on
the next level.

We view the levels of this analysis as a hierarchical de-
composition of a graph. As discussed previously, the ob-
vious problem with the algorithm of [8] is the amortization
technique: promoting all edges of a sparse cut can be trig-
gered by one delete, and it can be very expensive if the cut is

close to linear size. To avoid this possibility one would intu-
itively want to “preload” the hierarchy such that no promo-
tion is necessary. This is roughly equivalent to guaranteeing
that every level of the hierarchy is an expander, i.e. contains
no sparse cut to promote.

It is probably not a surprise that such a preloading
scheme fails. Roughly speaking, deletion of some d edges
on level 1 can “split”, say, 2d edges on level 2: these edges
are no longer in the same connected component. Once these
edges are disconnected, they can induce a split of 4d edges
on level 3, and so on. The point is that locally in the hi-
erarchy, the effects of a delete may outnumber slightly the
deleted edges, and things can spiral out of control. This ex-
ample again emphasizes the contrast to amortization, where
we would be happy that a lot of edges get promoted to high
levels at once, since the total number of promotions over
time is bounded anyway.

Our suggestion is to preload everything, so that on ev-
ery level i, even deep cuts (cuts including edges from levels
≤ i) are not sparse. This enforces a global constraint, and
thus guarantees that the magnitude of side effects does not
cascade. To put things in a different light, we view the levels
as a reweighting of the graph, where weight is concentrated
on increasingly fewer, but more critical edges. We then ex-
clude sparse cuts with respect to this weighting. This deep-
cut approach induces many important changes, including
unfortunate ones like reliance on weighted sparsest cut.

Finally, we need to warn the reader that our actual im-
plementation of this combinatorial idea is totally divorced
from [8]. Our algorithm is deterministic, and faster by a
logarithmic factor. Our representation uses linear-space, in
the spirit of [18].

Somewhat surprisingly, our algorithm manages to an-
swer connectivity queries without maintaining a certificate
for connectivity, i.e. without even implicitly maintaining a
spanning forest. If an explicit spanning forest is requested,
we can still maintain one using a randomized algorithm with
a slightly larger running time ofO(γd lg3 n). To our knowl-
edge, ours is the first dynamic connectivity algorithm which
can benefit from nonexplicit understanding of connectivity.

Challenges for Future Research. Depending on the
reader’s mood, our solution brings renewed hope for
dynamic connectivity with worst-case polylogarithmic
bounds, or highlights some major roadblocks which keep
us away from such a result. Here are some of these chal-
lenges:

1. Obtain an amortized algorithm starting from any
graph. Without insisting that our hierarchy be made
fully dynamic, we can ask at least that it provide a
smooth transition into maintaining a hierarchy with an
amortization technique. One reason this is difficult is



that our recovery algorithm needs to examine deleted
edges in a strict order through the hierarchy.

2. Reduce the preprocessing time to O(npolylg n). This
is clearly required before any dynamization is at-
tempted. One way to do this would be to first give a
polylg n approximation for weighted sparsest cut in
almost linear time. This was recently achieved by
Spielman and Teng [16] for the unweighted version.
However, extending combinatorial approaches similar
to theirs to the weighted case appears to be a difficult
problem.

3. Show that (something similar to) the hierarchical de-
composition of this paper can be maintained dynami-
cally with few edges moving. This is unclear even if in
each step we can take linear time to examine the whole
graph.

2. Edge-Expanding Graphs

As a warm-up before the general algorithm, we show
how to solve our problem in the case of an edge expander,
defined as follows:

Definition 1 For Φ ∈ [0, 1], a graph G = (V,E) is an Φ-
edge-expander if for any vertex subset U ⊂ V, |U | ≤ 1

2 |V |,
the number of edges leaving U is more than a fraction Φ
of the number of edges incident to U , where an edge in-
ternal to U is counted twice. Formally |E ∩ (U × U)| >
Φ

∑
v∈U deg(v). The edge expansion of G is the maximal

such Φ.

We note that random regular graphs of degree > 2 are
Ω(1)-edge-expanders with high probability. Finding the ex-
act edge expansion is NP-hard, but we can use approxima-
tion algorithms to get a lower-bound Φ on the edge expan-
sion. For the recovery below, we assume that such a Φ is
known for G.

2.1. Handling Insertions

First we once and for all show that insertions are trivial.
Suppose we are given a set D of deletions and a set I of
insertions, and suppose we first recover from the D dele-
tions with a find-routine findD. Next, we take each inserted
edge (u,w) and view it as an edge (findD(u),findD(w))
over findD(V ). We identify the connected components of
this graph in time proportional to |I|, and name each non-
trivial component. Now find(u) = findD(u) if findD(u) did
not get connected by I; and otherwise, find(u) is the name
of the component of findD(u). Thus we recover from the
inserts using |I| calls to findD, and then this slows down the
final find by only an additive constant.

2.2. Recovery from Edge Deletions

We now get a set D of edges to be deleted. We are going
to grow components in G \D = (V,E \D), starting with
vertices that have lost incident edges. At some stage we
will stop growing. At that point we will have isolated some
of the components as (maximal) connected components of
G\D, and we will conclude that everything else belongs to
the same “giant component” of G \D.

To grow components, we will explore edges from G\D.
The components spanned by the explored edges are referred
to as explored components. An unexplored edge is under-
stood not to be deleted.

If U is a set of vertices, we define deg(U) as the num-
ber of all incident edges in G, including deleted ones, and
del(U) as the number of incident deleted edges from D.
The recovery algorithm classifies an explored component
C as one of the following:

isolated if it has no unexplored incident edges.

active if the following three conditions are satisfied: (1) C
has unexplored incident edges; (2) C contains at most
half the vertices of G; (3) del(C) > Φ deg(C).

passive otherwise.

As long as there is some active component C, the recov-
ery algorithm proceeds by considering any unexplored edge
(u,w) incident to C. If one of the end-points, say w, is not
in C, it unites C with the component of w. In either case
(u,w) is now considered explored, and it is contained in an
explored component.

Since an active component requires an unexplored edge,
and since each of the above iterations explores an edge, the
recovery algorithm must terminate with no active compo-
nents left. Trivially each isolated component forms a maxi-
mal connected component of G \D. When no active com-
ponents remain, we declare that each vertex that is not in an
isolated component belongs to the same giant component of
G \D.

2.3. Analysis

The following lemma established that the our recovery
algorithm is correct.

Lemma 1 If no active components are left, the vertices in
the passive components all belong to the same component
of G \D.

Proof: Let H be the subgraph of G \ D induced by the
vertices in the passive components. IfH is not connected in
G \D, there is a component B of G \D containing at most



half the vertices. The vertices in the same passive com-
ponent are connected, so B must be the disjoint union of
some passive components. For each of these passive com-
ponents C, we know that del(C) ≤ Φ deg(C), but then
del(B) ≤ Φ deg(B). However, G was a Φ-edge-expander,
and |B| ≤ n/2, so G had more than Φ deg(B) edges leav-
ing B. With del(B) ≤ Φ deg(B), we conclude that G \D
has some edge leavingB, contradicting thatB is a maximal
connected component of G \D.

The next lemma will be used to bound the running time
needed by the recovery.

Lemma 2 The number of edges explored is at most 2/Φ
times the number of edges deleted.

Proof: For the amortization, we consider final active
components, meaning active components that never again
becomes part of an active component. The final active
components are thus disjoint. If an edge (u,w) is explored,
it is because an endpoint u is in an active component, and
then there must be a last active component C containing
u. We allow here that the edge (u,w) was explored
before C was created by the union of other components.
Each explored edge is thus counted in the degree of at
least one last active component C, and since C is active,
deg(C) < del(C)/Φ. The factor 2 comes from that fact that
each deleted edge makes a contribution in two end-points.

Theorem 3 Given a Φ-edge-expander G, after linear time
preprocessing, we can recover from the deletion of d edges
in O( d

Φ · α( d
Φ , d)) time, and subsequently answer find(·)

queries in constant time.

Proof: The component number of each vertex, returned
by find(·), is stored in an array, which is initialized to
0 at preprocessing (all vertices are in the giant compo-
nent). Since each isolated component is spanned by ex-
plored edges, the recovery algorithm only need to change
O(d/Φ) entries in this table. In the preprocessing phase,
we compute an array with the degrees deg(u). At recovery
time, we can compute all nonzero del(u) inO(d) time. Dur-
ing the recovery exploration, we maintain a queue of active
components, and a concatenation of the incidence lists for
each component. To know whether an edge goes outside an
active component, we maintain a union-find data structure
[3, 17] over vertices in the explored components.

The running time is dominated by the calls to the union-
find data structure. By Lemma 2 we have at most 2d/Φ
such calls, hence a recovery time of O(d/Φ · α(d/Φ)). We
can improve this to O(d/Φ · α(d/Φ, d)), where α(d/Φ, d)
is O(1) if e.g. Φ = Ω(lg∗ n). At preprocessing, we choose
an arbitrary spanning tree T , and explore non-deleted

edges of this tree before exploring any other edges. In
the tree, the union-find data structure spends only con-
stant time per operations [7]. Afterward, we can have d/Φ
finds, but only d unions in the regular union-find structure.

3. General Graphs

3.1. Edge-Expanding Hierarchies

Our strategy is to decompose a general graph into a “hi-
erarchy of expanders”, and apply the above recovery algo-
rithm. During preprocessing of the input graphG = (V,E),
we assign each edge e ∈ E to a level `(e) > 0. The graph
G|i is induced by the edges of level i. We defineG|≤i, G|<i

etc. in the intuitive fashion, and extend the notation freely
to other objects (e.g. deg>i counts degrees in G|>i). Note
that G|≤0 consists of singleton vertices.

The hierarchy is a rooted tree whose height h is the max-
imal level of an edge. On level i = 0, . . . , h of the hierarchy
(tree), we have the components of G|≤i, and the parent of
such a component C is the component of G|≤i+1 subsum-
ing it.

The goal of preprocessing is to assign levels which in-
duce a Φ-edge-expander hierarchy:

Definition 2 A hierarchical level-i cut is defined by a subset
U with at most half of the vertices of a component C of
G|≤i. The density of the cut is the ratio of the number of
cut edges leaving U , over the number of all level i edges
incident to U , i.e. |E≤i ∪ (U × U)| /

∑
v∈U degi(v). We

have a Φ-edge-expander hierarchy if, for each level i, there
is no hierarchical level-i cut with density ≤ Φ.

Note that for the above density, we compare all cut edges
from G|≤i, i.e. edges from all levels up to i, against the
incident edges on level i alone. This accounting is crucial
to our efficient recovery algorithm. In [8], the level-i cuts
were well-behaved in that they could not cut components of
G|<i. They only counted cut edges on level i against inci-
dent edges on level i, and that sufficed for their amortized
and randomized algorithm. It our case, reasoning about the
cuts is more tricky, but we can still adapt the accounting
scheme from [8] to show the existence of a 1/(2 lg n)-edge-
expander hierarchy with at most lgm+ 1 levels.

Below, we will sometimes refer to the Φ-edge-expanders
considered in the last section as flat Φ-edge-expanders, so
as to more clearly distinguish them from the expander hier-
archies defined over arbitrary graphs. If a graphG is itself a
flat Φ-edge-expander, we get a Φ-edge-expander hierarchy
of height 1, if we simply assign all edges to level 1.



3.2. Constructing the Hierarchy

Given an arbitrary graph G, we start with all edges on
level 1. We say we promote a hierarchical level-i cut if
for all cut edges, we increase their level to i + 1. The fol-
lowing lemma states that the number of levels remain loga-
rithmic as long as we only promote cuts of density at most
1/(2 lg n).

Lemma 4 If all edges start at level 1, and we only pro-
mote hierarchical cuts of density at most 1/(2 lg n), then
the height is at most 1 + lgm.

Proof: Letmi be the number of edges that end up on level
i or higher. Since the level of an edge can only go up, this
is a bound for the number of edges at level i or higher at
any moment of time before the end. We have m1 = m
by the starting conditions. Inductively, we will prove that
mi+1 ≤ mi/2. In particular, this will imply that we can get
at most lgm+ 1 nonempty levels.

Consider a hierarchical cut on level i. When the cut
edges are moved up to level i+1, we want to pay $1 for each
edge by charging the current level-i edges within the smaller
side of the cut. By the sparsity guarantee, each level-i edge
on the smaller side has to pay at most 1/(2 lg n). Now, how
many times can one level-i edge be charged? Each time this
happens, the smaller side of the cut becomes a new con-
nected component in G|≤i because the cuts are hierarchi-
cal. This component is half the size of the old component
of G|≤i which contained the charged edge. Furthermore,
such a component size cannot increase, because edges only
move up. Then, a fixed edge can only be charged lg n times
while it is at level i. This means that edges at level i pay at
most 1/2 for edge promotions over time, so mi+1 ≤ mi/2.

Lemma 4 implies that promoting cuts of density be-
low 1/(2 lg n) is a bounded process, leading to at most
O(m lgm) increases to edge levels. Hence, we are free
to promote any hierarchical level-i cut of density 1/(2 lg n)
that we identify, eventually leading to a 1/(2 lg n)-expander
hierarchy. This shows that such a hierarchy exists.

Finding a sparse hierarchical level-i cut of a component
from G|≤i can be done using a weighted sparsest cut algo-
rithm. We assign to each vertex a weight corresponding to
number of incident level-i edges. Using γ-approximation
algorithm for this weighted sparsest cut problem, we are
guaranteed to find a cut of sparsity at most 1/(2 lg n) if
there is one with sparsity at most 1/(γ · 2 lg n). Repeating
this as long as possible, we exclude all hierarchical level-i
cuts of density 1/(γ2 lg n). Then, we have a 1/(γ · 2 lg n)-
expander hierarchy, which by Lemma 4 has at most loga-
rithmic height. We have shown:

Lemma 5 Using an γ approximation algorithm for vertex-
weighted sparsest cut, we can construct a 1/(γ · 2 lg n)
edge-expanding hierarchy of height most lgm + 1. If the
approximation algorithm runs in polynomial time, then so
does the preprocessing algorithm.

The sparsest cut algorithm of [1] allows vertex weights
and has an approximation factor of γ = O(

√
lg n). This

leads to a 1/O(lg3/2 n)-expander hierarchy with lgm + 1
levels in polynomial time.

3.3. Recovery from Edge Deletions

Starting with a Φ-edge-expanding hierarchy of height h,
we will show how to recover from the deletion of a set D of
d edges, relating the number of operations to Φ, h, and d.
We now describe the algorithm at an abstract graph theoretic
level, leaving implementation details to later. The recovery
is going to be done bottom–up in the hierarchy, on levels
i = 1, . . . , h. When we start on level i, we assume that
we know the new connected components of (G \ D)|<i.
The components on level i are still the old components of
G|≤i. The parent of a new level-(i − 1) component is the
old level-i component subsuming it. If no edges of level
≤ i were deleted from an old component H of G|≤i, then
H remains a level-i component. Thus, it suffices to consider
components H which lose some edges.

To find the connected (sub)components of (H \ D)|≤i,
we essentially use the algorithm for flat edge expanders
from Section 2.2, treating the components of (H \D)|<i as
vertices. These vertices form the initial components to be
grown by exploration of live level-i edges. To grow compo-
nents, we will explore level-i edges from H \D. As before,
explored components represent components spanned by the
explored edges. The recovery algorithm classifies an ex-
plored component C as one of:

isolated if it has no unexplored incident edges at level ≤ i.

active if the following three conditions are satisfied: (1) C
has unexplored incident level i edges;
(2) C contains at most half the vertices from H; (3)
del≤i(C) > Φ · degi(C).

passive otherwise.

The recovery algorithm runs as long as there is some ac-
tive component C. It considers any unexplored level-i edge
incident to C, and unites C with another component if the
edge leaves C. Since each iteration explores an edge, the
recovery algorithm must terminate with no active compo-
nents left. Each isolated component forms a component of
H \D. When no active components remain, we declare that
each vertex that is not in an isolated component belongs to
the same giant component of H \D.



Returning to the hierarchy, we create a new node in the
tree at level i, for each isolated component C ofH \D. The
parent of each node is the old parent of H . The old level-i
node that represented H will now represent the giant com-
ponent of H \D. For each isolated component C, we have
explored edges connecting the level-(i − 1) components it
subsumes. We make the new node for C the new parent of
these nodes at level i− 1.

On the highest level h, we end up with a root node for
each component of G \ D. If the preprocessing algorithm
stores the size of each component in its node of the hier-
archy, the recovery algorithm can sum sizes along the way,
and output the size of each connected component of G \D.
To answer a query find(u), we (conceptually) follow parent
pointers from the hierarchy leaf corresponding to u to its
root.

3.4. Analysis

Our analysis is similar to that for the flat hierarchy in
Section 2.3. The following lemma shows correctness:

Lemma 6 If no active components are left, the vertices in
the passive components all belong to the same component
of H \D.

Proof: Let I be the subgraph of H \ D induced by the
vertices in the passive components. If I is not connected
in H \ D, there is a component B of H \ D containing
at most half the vertices. The vertices in the same passive
component are connected, so B must be the disjoint union
of some passive components. For each of these passive
components C, we know that del≤i(C) ≤ Φ degi(C),
so del≤i(B) ≤ Φ degi(B). However, H was a level-i
component in a Φ-edge-expander hierarchy, and B con-
tained at most half its vertices. Therefore B had more
than Φ degi(B) edges at level ≤ i, leaving it. With
del≤i(B) ≤ Φ degi(B), we conclude that H \D has some
edge level ≤ i leaving B, contradicting that B is a maximal
connected component of H \D.

Lemma 7 On every level i, the number of level-i edges ex-
plored is at most 2d/Φ.

Proof: When an edge is explored, it belongs to an
active component. Consider the final active compo-
nent it belonged to, even if it was explored before this
component was created. These final active components
are disjoint. By definition, an active component C has
degi(C) < del≤i(C)/Φ. Finally, the sum of del≤i(C) over
the final active components is twice the number of deleted
edges on levels ≤ i.

3.5. Implementation

We first describe an implementation using O(nh2 + m)
space, O(d(h2 + hα(d))/Φ) update time, and O(h) query
time. Remember that this ultimately means O(m+n lg2 n)
space, O(d lg3 n) update time, and O(lg n) query time. In
the next section, we sketch how to improve all of these
bounds.

Before the deletions arrive, we have the rooted tree rep-
resenting the Φ-edge-expander hierarchy, with the nodes on
level i identifying components of G|≤i. With each level i
node C, we store the number of vertices in C, as well as
the number degi(C). For each level j ≥ i, the node C also
stores pointers to the head and tail of a doubly linked list
with the edges on level j incident to the component.

The representation of the lists of level-j incident edges
is in fact more subtle. For each level j, we in fact have
single global list with level j edges appearing twice (once
per end-point). This global list respects the hierarchy in the
sense that the level-j edges incident to a level-i component
C form a connected sublist. Then the node forC simply has
pointers to the head and tail of this sublist in the global list.
The most important effect of a single global list is that when
a node reorganizes its sublist, this immediately impacts all
other nodes whose sublists contain or are contained in the
modified sublist.

When a set D of d deletions arrives, we remove D from
the global incidence lists in O(d) time, and compute all the
del≤i counters in O(dh) time. All such counters can be
initialized to zero during preprocessing. We have now iden-
tified the nodes whose components lose any edges.

We are now going to implement the recovery on some
level i, assuming this has already been done for levels up
to i − 1. For each component C of (G \ D)|<i, and each
j ≥ i, we assume that we have correct heads and tails for
the list of level-j edges incident to C. We no longer care
about edges on level less than i, so we do not worry about
these incidence lists.

We now have all the information for the recovery algo-
rithm from Section 3.3. As in Theorem 3, we use union-
find to maintain the level i − 1 components making up an
explored component. When checking if the end-points of
an edge (u, v) are in the same explored component, we first
use the parent pointers of the hierarchy to find their com-
ponents on level i − 1 in O(h) time, and then we find the
explored component in α(d) time, spending O(h + α(d))
total time exploring an edge.

When an active component C is united with another
component D, we add their counters and concatenate their
lists of incident edges on levels j > i. That is, we make
these sublists adjacent in the appropriate larger list of level-
j edges. This takes constant time per level, so it does not
affect the O(h+ α(d)) time used to explore an edge.



When no active components remain, exploration is over,
and we want to collect all the passive components in a giant
component. As in Section 3.3, we let the giant component
take over the node of the original level-i component. This
means that no parent pointer needs to be updated for the
components on level i− 1 which are subsumed by the giant
component. For each isolated component, we create a new
hierarchy node with the same parent as the giant compo-
nent. Since we know the composition of each component,
we can add parent pointers from the appropriate level-(i−1)
components to the isolated components on level i. Finally,
we must obtain sublists of level-j edges adjacent to the gi-
ant component. This is done by “extracting” each level-j
sublist for an isolated component, and reinserting is imme-
diately after the sublist of the giant component.

3.6. Sketch of Further Refinements

Query time. We first improve the running time of find(u)
from O(h) to O(lg h). The idea is to binary search for the
smallest i, such that the level-i ancestor C of u’s leaf has
del≤i(C) > 0. Querying the level-i ancestor can be done
in constant time. Knowing the lowest level affected by a
delete is enough, because the update algorithm can go back
down in the subtree of the hierarchy that it explored, and
add a pointer to the final root of each node.

Recovery time. The update time can also be improved to
O(d lg2 n lg lg n), but details are more complicated. First,
we need to find the level-i component for an end-point of
an edge. Again, we binary search for the lowest explored
ancestor. To go from there, we maintain a global union-find
structure for all leaves of the explored subtree, which can
find the current level-i root for each leaf.

The real challenge is how to handle maintenance of
level-j sublists in o(h) time. First observe that we can af-
ford to pay for all level-j edges incident to a final active
component on level i. This can cover the cost of concatena-
tions of nonempty sublists. Empty sublists can be avoided
by storing a bitmap in every node marking such lists. Af-
ter reaching the final active step, we may do a last union
yielding a passive component. The O(h) time spent there
can be amortized over the deletion creating the initial ac-
tive component. Each deletion creates one active compo-
nent per level (regardless of Φ), so we obtain an additive
O(h2) = O(lg2 n) cost.

Linear space. A first problem is that the tree of the hierar-
chy itself may use hn nodes, since it has n leaves and height
h. Moreover, from each node, we maintain pointers to inci-
dence sublists on up to h different levels. The main idea is
to compress this information to linear, and then uncompress
it on the fly during recovery.

For the hierarchy, we compress paths of degree-1 nodes,
by only storing leaves and nodes whose original parents had
degree at least 2. This means that if a node is not stored
explicitly, it represents the same subgraph as its parent. The
compressed hierarchy has less than 2n nodes.

A similar approach is taken for the incidence lists. For
each node C and each level j, the information we wanted
to store was the heads and tails of the sublist in the global
level-j edge list, as well as the counter degj(C). We will
only store this information if the level-j incidence list is
non-empty and strictly smaller than that of the parent. Note
that if the original parent has a strictly larger incidence list,
then it must also have degree bigger than one and hence be
an explicit node. Finally, for each explicit node, we store a
bitmap occupying one word, which specifies on which lev-
els we have incident edges. If we have incident edges on
level j, but no explicit information, we inherit the list from
our nearest ancestor with this information.

Putting together all these refinements we will obtain:

Theorem 8 Let G be a graph on n vertices and Φ ≤
1/ lg n. Given a Φ-edge-expanding hierarchy for G, after
linear time preprocessing, we can recover from the deletion
of d edges in O(d lg n lg lg n/Φ) time and subsequently an-
swer find(·) queries in O(lg lgn) time.

An edge expander hierarchy with Φ = 1/(γ · 2 lg n)
can be constructed by a polynomial number of calls to a γ-
approximation algorithm for vertex-weighted sparsest cut.

Optimality of query time. Interestingly, we can argue a
tight lower bound on the query time, based on our optimal
lower bound for the predecessor problem [14]. Specifically,
[14] implies that for a set of N integers in the universe
{1, . . . , U}, with say Uε ≤ N ≤ U1−ε, a data structure
of size O(N polylgU) cannot answer predecessor queries
in less than Ω(lg lgU) time.

Our hard instance will be a perfect binary tree over U
leaves (thus, n,m = O(U)). GivenN numbers, letP be the
union of the paths from the root to each one of theN leaves.
We then perform d = O(N lgU) deletes to the tree, remov-
ing all edges outside but incident to P . If these deletes run
in O(dpolylg n) = O(N polylgU) time, they effectively
construct a data structure of O(N polylgU) space, because
they cannot write more memory cells. Thereafter, finding
the component of a leaf is equivalent to finding the lowest
ancestor in P . This is the longest prefix problem, which is
equivalent to predecessor search.

References

[1] S. Arora, S. Rao, and U. V. Vazirani. Expander flows, ge-
ometric embeddings and graph partitioning. In Proc. 36th
STOC, pages 222–231, 2004.



[2] R. Chowdhury and V. Ramachandran. Improved distance
oracles for avoiding link-failure. In Proc. 13th ISAAC, LNCS
2518, 2002.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, McGraw-Hill, 2nd
edition, 2001. ISBN 0-262-03293-7, 0-07-013151-1.

[4] C. Demetrescu and M. Thorup. Oracles for distances avoid-
ing a link-failure. In Proc. 13th SODA, pages 838–843,
2002.

[5] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig.
Sparsification — a technique for speeding up dynamic graph
algorithms. J. ACM, 44(5):669–696, 1997. See also
FOCS’92.

[6] G. N. Frederickson. Data structures for on-line updating of
minimum spanning trees, with applications. SIAM J. Com-
put., 14(4):781–798, 1985. See also STOC’83.

[7] H. Gabow and R. Tarjan. A linear-time algorithm for a spe-
cial case of disjoint set union. In Proc. 15th STOC, pages
246–251, 1983.

[8] M. R. Henzinger and V. King. Randomized dynamic graph
algorithms with polylogarithmic time per operation. J. ACM,
46(502–536), 1999. Announced at STOC’95.

[9] J. Hershberger and S. Suri. Vickrey prices and shortest
paths: What is an edge worth? In Proc. 42nd FOCS, pages
252–259, 2001. Erratum in FOCS’02.

[10] J. Holm, K. Lichtenberg, and M. Thorup. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity,
minimum spanning tree, 2-edge and biconnectivity. J. ACM,
48(4):723–760, 2001. Announced at STOC’98.

[11] V. King and G. Sagert. Fully dynamic algorithms for main-
taining the transitive closure. In Proc. 31st ACM Symp. on
Theory of Computing, pages 492–498, 1999.

[12] F. Leighton and S. Rao. Multicommodity max-flow min-
cut theorems and their use in designing approximation al-
gorithms. J. ACM, 46(6):787–832, 1999. Announced at
FOCS’88.

[13] M. Pǎtraşcu and E. Demaine. Logarithmic lower bounds
in the cell-probe model. SIAM J. Comput., 35(4):932–963,
2006. Announced at SODA’04 and STOC’04.

[14] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for pre-
decessor search. In Proc. 38th STOC, pages 232–240, 2006.

[15] L. Roditty and U. Zwick. Replacement paths and k simple
shortest paths in unweighted directed graphs. In Proc. 32nd
ICALP, volume 3580 of LNCS, pages 249–l260, 2005.

[16] D. Spielman and S.-H. Teng. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving lin-
ear systems. In Proc. 36th STOC, pages 81–90, 2004.

[17] R. E. Tarjan. Efficiency of a good but not linear set union
algorithms. J. ACM, 22:215–225, 1975.

[18] M. Thorup. Near-optimal fully-dynamic connectivity. In
Proc. 32nd ACM Symp. on Theory of Computing, 2000.

[19] M. Thorup. Worst-case update times for fully-dynamic all-
pairs shortest paths. In Proc. 37th STOC, pages 112–119,
2005.


