673 research outputs found

    Recent progress in exact geometric computation

    Get PDF
    AbstractComputational geometry has produced an impressive wealth of efficient algorithms. The robust implementation of these algorithms remains a major issue. Among the many proposed approaches for solving numerical non-robustness, Exact Geometric Computation (EGC) has emerged as one of the most successful. This survey describes recent progress in EGC research in three key areas: constructive zero bounds, approximate expression evaluation and numerical filters

    Robustness and Randomness

    Get PDF
    Robustness problems of computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discussed approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlog⁥n+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(log⁥log⁥n)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(log⁥log⁥n)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(log⁥n)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result

    Teaching Practicum

    Get PDF
    The purpose of the teaching practicum is to: serve as a historical document of student\u27s practicum; demonstrate the student\u27s understanding of how the actual courses they are involved in relate to and support the Curriculum Frameworks; demonstrate the student\u27s ability to develop classroom materials consistent with the Frameworks; provide the student the opportunity to assess his classes to determine the degree to which the Frameworks are being met; provide the student with opportunity to provide evidence of effective classroom management, promoting equity and meeting professional responsibilities; and require the student to reflect upon the connections between their experiences in the secondary education they are providing and the college education they are experiencing

    On approximate polynomial identity testing and real root finding

    Get PDF
    In this thesis we study the following three topics, which share a connection through the (arithmetic) circuit complexity of polynomials. 1. Rank of symbolic matrices. 2. Computation of real roots of real sparse polynomials. 3. Complexity of symmetric polynomials. We start with studying the commutative and non-commutative rank of symbolic matrices with linear forms as their entries. Here we show a deterministic polynomial time approximation scheme (PTAS) for computing the commutative rank. Prior to this work, deterministic polynomial time algorithms were known only for computing a 1/2-approximation of the commutative rank. We give two distinct proofs that our algorithm is a PTAS. We also give a min-max characterization of commutative and non-commutative ranks. Thereafter we direct our attention to computation of roots of uni-variate polynomial equations. It is known that solving a system of polynomial equations reduces to solving a uni-variate polynomial equation. We describe a polynomial time algorithm for (n,k,\tau)-nomials which computes approximations of all the real roots (even though it may also compute approximations of some complex roots). Moreover, we also show that the roots of integer trinomials are well-separated. Finally, we study the complexity of symmetric polynomials. It is known that symmetric Boolean functions are easy to compute. In contrast, we show that the assumption VP \neq VNP implies that there exist hard symmetric polynomials. To prove this result, we use an algebraic analogue of the classical Newton iteration.In dieser Dissertation untersuchen wir die folgenden drei Themen, welche durch die (arithmetische) SchaltkreiskomplexitĂ€t von Polynomen miteinander verbunden sind: 1. der Rang von symbolischen Matrizen, 2. die Berechnung von reellen Nullstellen von dĂŒnnbesetzten (“sparse”) Polynomen mit reellen Koeffizienten, 3. die KomplexitĂ€t von symmetrischen Polynomen. Wir untersuchen zunĂ€chst den kommutativen und nicht-kommutativen Rang von Matrizen, deren EintrĂ€ge aus Linearformen bestehen. Hier beweisen wir die Existenz eines deterministischem Polynomialzeit-Approximationsschemas (PTAS) fĂŒr die Berechnung des kommutative Ranges. Zuvor waren polynomielle Algorithmen nur fĂŒr die Berechnung einer 1/2-Approximation des kommutativen Ranges bekannt. Wir geben zwei unterschiedliche Beweise fĂŒr den Fakt, dass unser Algorithmus tatsĂ€chlich ein PTAS ist. ZusĂ€tzlich geben wir eine min-max Charakterisierung des kommutativen und nicht-kommutativen Ranges. Anschließend lenken wir unsere Aufmerksamkeit auf die Berechnung von Nullstellen von univariaten polynomiellen Gleichungen. Es ist bekannt, dass das Lösen eines polynomiellem Gleichungssystems auf das Lösen eines univariaten Polynoms zurĂŒckgefĂŒhrt werden kann. Wir geben einen Polynomialzeit-Algorithmus fĂŒr (n, k, \tau)-Nome, welcher AbschĂ€tzungen fĂŒr alle reellen Nullstellen berechnet (in manchen Fallen auch AbschĂ€tzungen von komplexen Nullstellen). ZusĂ€tzlich beweisen wir, dass Nullstellen von ganzzahligen Trinomen stets weit voneinander entfernt sind. Schließlich untersuchen wir die KomplexitĂ€t von symmetrischen Polynomen. Es ist bereits bekannt, dass sich symmetrische Boolesche Funktionen leicht berechnen lassen. Im Gegensatz dazu zeigen wir, dass die Annahme VP \neq VNP bedeutet, dass auch harte symmetrische Polynome existieren. Um dies zu beweisen benutzen wir ein algebraisches Analog zum klassischen Newton-Verfahren

    Alignment study of Kentucky\u27s mathematics placement examinations and entry level credit-bearing mathematics course examinations.

    Get PDF
    This research alignment study compares content assessed on course finals from Kentucky public universities in highest level remedial mathematics courses and content assessed on college placement examinations. These assessments are used to determine if a student is ready for credit-bearing courses at a university. The study addressed the following four research questions: (1) What mathematical prerequisite knowledge do state universities consider necessary to be college ready? Specifically 1a) What content domains do the state universities emphasize in their remediation courses?; 1b) Is there consistency across the state public universities with regard to the content domains?; and (2) How well do Kentucky\u27s mathematics placement assessments (ACT, COMPASS, and KYOTE) align in both content and cognitive demand with four-year universities’ Kentucky Mathematics College Readiness Expectations (KM-CRE)? The study was implemented in two phases. In Phase 1, course finals in the highest mathematics remediation class offered at five Kentucky universities were analyzed using Common Core State Standards (CCSS). Phase 2 of the study involved an alignment analysis between the universities’ identified KM-CRE and Kentucky\u27s approved college placement examinations: ACT, KYOTE, and COMPASS. The study is framed using Webb\u27s alignment modeling the areas of (1) categorical concurrence, (2) balance of representation, (3) range of knowledge, and (4) depth of knowledge. Findings suggested that consistency across universities in content emphasis exists. Examinations were heavily weighted in Algebra readiness Expressions and Equations, Functions, and Algebra). Findings in the alignment study suggested some content alignment existed but more alignment is needed through intentional assessment of college ready content. Additionally, all placement examinations revealed a strong cognitive complexity alignment to KM-CRE. Implications of this study suggest the redesign of the placement examinations to assess the content knowledge necessary for college success

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Homotopy algorithms for solving structured determinantal systems

    Get PDF
    Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in real algebraic geometry. The goal of this thesis is to provide efficient algorithms to solve such structured systems. In order to solve the first kind of systems, we design efficient algorithms by using the symbolic homotopy continuation techniques. While the homotopy methods, in both numeric and symbolic, are well-understood and widely used in polynomial system solving for square systems, the use of these methods to solve over-detemined systems is not so clear. Meanwhile, determinantal systems are over-determined with more equations than unknowns. We provide probabilistic homotopy algorithms which take advantage of the determinantal structure to compute isolated points in the zero-sets of determinantal systems. The runtimes of our algorithms are polynomial in the sum of the multiplicities of isolated points and the degree of the homotopy curve. We also give the bounds on the number of isolated points that we have to compute in three contexts: all entries of the input are in classical polynomial rings, all these polynomials are sparse, and they are weighted polynomials. In the second half of the thesis, we deal with the problem of finding critical points of a symmetric polynomial map on an invariant algebraic set. We exploit the invariance properties of the input to split the solution space according to the orbits of the symmetric group. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in the number of points that we have to compute. Our results are illustrated by applications in studying real algebraic sets defined by invariant polynomial systems by the means of the critical point method

    Software Productivity

    Get PDF
    • 

    corecore