
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

1988

Software Productivity Software Productivity

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Mills, Harlan D., "Software Productivity" (1988). The Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/11

This Book is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Other Titles Available
from Dorset House Publishing Co.

Becoming a Technical Leader: An Organic Problem-Solving Approach
by Gerald M. Weinberg

Data Structured Software Maintenance: The Warnier/Orr Approach
by David A. Higgins

Fundamental Concepts of Computer Science: Mathematical Founda
tions of Programming

by Leon S. Levy

General Principles of Systems Design
by Gerald M. Weinberg & Daniela Weinberg

Peopleware: Productive Projects and Teams
by Tom DeMarco & Timothy Lister

Practical Project Management: Restoring Quality to DP Projects and
Systems

by Meilir Page-Jones

Understanding the Professional Programmer
by Gerald M. Weinberg

Rethinking Systems Analysis & Design
by Gerald M. Weinberg

The Secrets of Consulting: A Guide to Giving & Getting Advice
Successfully

by Gerald M. Weinberg

Strategies for Real-Time System Specification
by Derek J. Hatley & Imtiaz A. Pirbhai

SOFTWARE
PRODUCTIVITY

SOFTWARE
PRODUCTIVITY

HARLAN D MILLS
FOREWORD BY

GERALD M. WEINBERG ----illl----
Dorset House Publishing

353 West 12th Street
New York, N.Y. 10014

Library of Congress Cataloging-in-Publication Data

Mills, Harlan D., 1919-
Software productivity I by Harlan D. Mills ; foreword by Gerald

M. Weinberg.
p. em.

Reprint. Originally published: Boston : Little, Brown, c 1983 .
Includes bibliographies and jndex.
ISBN 0-932633-10-2: $25 .00 (est .)
1. Electronic digital computers- Programming . I. Title .

QA76 .6.M523 1988
005--dc19 88-5099

CIP

Cover Design: Jeff Faville, Faville Graphics

Copyright © 1988 by Harlan D. Mills . Published by Dorset House
Publishing Co ., Inc., 353 West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Printed in the United States of America
Libra;y of Congress Caralog Nunzber 88-5099
ISBN: 0-932633-10-2

Dedication

This book is dedicated to Mr. John B. Jackson, who was President of
the Federal Systems Division (FSD) of IBM during the time in
which most of the articles in this book were written. Mr. Jackson
provided intellectual and executive leadership for introducing an
extensive Software Engineering Program into the Federal Systems
Division without it losing a stride as a going business in complex
systems development.

It has been my happy experience to report to a succession of legendary
IBM executives during the time in question, namely Messrs . Henry
J. White, Joseph M. Fox, James B. Bitonti, Albert E. Babbitt, all vice
presidents of FSD, and John B. Jackson and Vincent N. Cook,
pres idents of FSD. (Mr. Bitonti is now IBM Vice President
Manufacturing; Mr. Jackson is now IBM Vice President-Quality.)
Each has given me encouragement and freedom to look for better
ways of dealing with software problems, and each of these IBM
executives has made significant contributions to my own understand
ing of the problems of managing software development.

Foreword

In writing this foreword, I am performing an act of atonement. Years ago,
when I first started to hear of Harlan Mills and his ideas, I gave them short
shrift. Or, rather, I gave them no shrift at all. To shrive, the priest has
to hear the confession from the sinner, not simply hear gossip about the
sin. Until I met Harlan, I simply didn't bother to read any of his writings.
It was an act of pure prejudice, not against Iowa farm boys or baseball
fans, but against mathematicians. Or, really, against the writings of mathe
maticians.

My prejudice dates from my first geometry class, in high school.
Up until that time, I had been something of a whiz kid in math, a fact
which I never allowed to escape my schoolmates' attention. But geometry
absolutely baffled me. For three weeks I sat open-mouthed in class while
our teacher delineated proof after proof on the blackboard. How she
could reason in such a straightforward, logically consistent manner was
simply beyond my comprehension.

During the fourth week, as the theorems grew more complex, I
began to notice her stumbling. When she did, she referred to her notes.
Eventually, I caught her reasoning backwards, under her breath, from
theorem to axioms. Eureka! It was all a hoax! These proofs were not
methods of reasoning, but methods of confirming reasoning. They were
not methods of discovery, though they were presented as if one worked
from axiom through rules of inference to-oh, surprise!-a theorem.

I felt as if I had been duped, and that didn't fit well with my status
as the gang's whiz kid . I resolved never again to be taken in by mathe
maticians and their shabby tricks. This prejudice served me in good stead
through many years of college and graduate school mathematics. I never
confused the proof of a theorem with the method that might have been
used for discovering that theorem-a method which I knew would be
anything but clean and neat.

And so, when I heard that Harlan Mills was a mathematician by
origin, writing about software productivity, I scoffed. It was my loss, as I
discovered when I was finally shamed into reading some of his actual
work instead of some bastardized rehash . What I discovered was a thinker
with a remarkable gift for exposing the origin and development of his
ideas, and for taking the reader on the same intellectual voyage he himself
had taken.

Of course, if the ideas had not been absolutely first-rate, the voy
age would not have been worth the fare, regardless of Harlan's talents as

ix

X Foreword

a writer. But, as you well know, they were first-rate ideas-ideas that
have had a profound influence on software productivity all over the world.

During the past decade or so, we have had many lesser ideas in
fecting the body of software productivity. Many of these ideas have spread
because they are well packaged into "complete" systems of software
development. Harlan's ideas, however, have always had an air of fertile
incompleteness about them. To him, no problem ever seems closed, any
more than his mind is closed to extensions or even contradictions of his
ideas. We have all heard how software productivity is an immense prob
lem of our time. I suppose it is the immensity of the problem that makes
developers easy prey for these "complete systems of development." For
myself, I like the Mills approach better.

Instead of packaging some trivial idea that is supposed to solve
all problems in an unthinking way, attack the roots of the problem. Let
people see your thinking process and decide for themselves how to adapt
the ideas to their own environment. True, the Mills approach assumes
some intelligence and attention on the part of the reader, but I can't
believe that any improvement in software productivity is going to result
from mindless mouthing of slogans.

When Harlan spoke to me about collecting his previously unpub
lished or inaccessible papers, I jumped at the idea. In Software Produc
tivity, we have not merely the development of one significant idea, but
the development of a whole set of interrelated ideas. It is no more of a
"systems development package" than before-Heaven forbid. But to the
intelligent, attentive reader, it is much, much more than a package could
ever be. It is a chance to see into the mind of one of the profound thinkers
of our industry-or of any industry. By following this chronological de
velopment of ideas, the reader's problem-solving style will be subtly
changed. Mine was. I may not have learned much from those other mathe
maticians, but Harlan Mills has been my real teacher. You are lucky
that he can now be yours .

Gerald M. Weinberg

contents

Foreword by Gerald M. Weinberg ix

1. In Retrospect 1

2. Search for an Easier, Simpler Way (1968) 7

3. The Iterative IF as a Primitive Instruction (1967) 11

4. Programmer Productivity Through Individual
Responsibility (1968) 13

5. The Case Against GO TO Statements in PL/ 1 (1969) 27

6. A. The New York Times Thesaurus of Descriptors (1969) 31

B. A Structural Description of The New York Times
Thesaurus of Descriptors (1969) 44

7. Measurements of Program Complexity (1969) 57

8. Chief Programmer Teams: Techniques and Procedures (1970) 65

9. On the Statistical Validation of Computer Programs (1970) 71

10. OS/ 360 Programming (1970) 83

11. Top Down Programming in Large Systems (1970) 91

12. Programming Techniques: From Private Art to
Public Practice (1970) 103

13. Mathematical Foundations for Structured
Programming (1972) 115

14. Reading Programs as a Managerial Activity (1972) 179

15. How to Buy Quality Software (197 4) 185

xi

xii Contents

16. How to Write Correct Programs and Know It (1975) 193

17. The New Math of Computer Programming (1975) 215

18. Software Development (1976) 231

19. Software Engineering Education (1980) 251

20.· Software Productivity in the Enterprise (1981) 265

Index 271

SOFTWARE
PRODUCTIVITY

In Retrospect

ARTICLE

1

I joined IBM in 1964. It has been my good fortune to be in the Federal
Systems Division, which has been faced with challenging problems of
software development, over these years . These problems are as much
managerial as technical, and during this time the ideas and discipline of
software engineering have begun to emerge in visible form.

The notes and papers in this book represent a personal history of
earning and growth by one person, helped by many.

First, my associates in the Federal Systems Division have been
uilding complex real-time software systems under contract conditions.

There is a major difference between programming for yourself and pro
- amming for others. There is also a major difference between "in house"
software development and contract software development. The difference
- each case is the need for being specific. Others never know what you
idn' t do for yourself; but the whole world knows what you promised and
"dn't do for others. These associates have been kind enough to try out
any of my ideas and to provide a proving ground for the new discipline

of software engineering.
Second, the university has played a central role in creating new

-~'oundations in software methodology. During this time with IBM I have
also served, thanks to IBM, on the faculties of Johns Hopkins University
and the University of Maryland. The interactions with faculty and students
a those universities and with university people in computer science else-

here have been most beneficial, to say the least. The major advances
in the foundations of software methodology have come out of the uni
>ersity, not out of industry. Thanks to Edsger Dijkstra, Tony Hoare, David
Parnas, David Gries, Niklaus Wirth, and others, for work in structured

1

2 SOFTWARE PRODUCTIVITY

programming and program correctness, we now understand many deep
simplicities about ideas that were formerly shrouded in the mystery and
complexity of programming lore.

A Search for Productivity in Software

The underlying theme of this history has been a search for productivity
in software. My approach to software has been that of a study in manage
ment, dealing with a very difficult and creative process. The first step in
such an approach is to discover what is teachable, in order to be able to
manage it. If it cannot be taught, it cannot be managed as an organized,
coordinated activity. Since software deals with purely logical processes, it
seemed clear that mathematics was the right tool to apply to the prob
lem. In this search for teachability, it has been a pleasant surprise to find
that so much of software methodology could be formulated in classical
mathematics. My second surprise was to discover how closely and easily
productivity grows out of manageability. With intellectual control over
software development, the improvements in productivity are measured in
factors, not percentages.

In 1968, I wrote an article for an IBM internal news publication
(see Article 2). There was no structured programming then, but the article
shows that I was looking, even then, for software productivity through
mathematical development.

On first learning about structured programming from the NATO
paper of Edsger Dijkstra (see reference 4, p. 101), I stated to my asso
ciates in IBM that "left to programmers, laissez faire, we could expect a
productivity improvement of 50%, but if we managed it in we could ex
pect a factor of 3." It happened just about that way; we saw both levels
of improvement, resulting from different introductions of the idea in differ
ent parts of IBM. This differential in effect is typical in introducing new
technology into mind-intensive work such as programming, because pro
ductivity is a result of expectations as well as capabilities. If we expect
little, we get little, for many reasons. That is, managers who allow the in
troduction of new technology to see how it comes out invariably get less
out of it than managers who develop convictions that major improvements
are possible. In the latter case, managers become actively involved with
"making it happen," rather than simply passively "letting it happen."

My search for teachability and intellectual control has turned to
mathematics and other hard science areas because without such leverage,
one is reduced to being more clever than one's predecessors. While I

In Retrospect 3

might hold my own in being as clever as a randomly selected predecessor,
that is not good enough. One needs to better the best ideas of all pre
decessors, because those best ideas to date will already have been tried
and used.

But once this mathematical leverage is found, paradoxically, the
ideas must be translated back into the context of the subject for teaching.
I have found that this translation has its own pitfalls. The more natural
one makes the final idea, the more the danger of viewing and discussing
it on a common sense basis. A striking illustration of this pitfall recurred
in my discovery that the individual statements of a structured program
could be enumerated in a special way, so that no statement had to depend
for its correctness on statements yet to be enumerated. I discovered this
by thinking about computability theory and abou_t problems that could
be solved without ever solving sets of simultaneous equations (solving
imultaneous interface problems in program integration). I called the

translation into programming context "top down programming." It was the
result of specific mathematical rigor in application to programming. In
fact, it is valid only for digital computers, and not for analog computers.

Other Views and Interpretations

To my surprise, after my writing about it, there occurred many discussions
of "top down programming" in conferences and magazines, based entirely
on common sense arguments about the name, that ignored completely the
omputability theory I had in mind. For example, it was argued that "the
er is the top of the system," that "the job control interpreter is the top

of the system," and on and on. Since there was no mathematical rigor to
· hibit these discussions, some became quite vehement. Now the virtue
of the top down definition from the computability theory was that we

ad a built-in integration process, which was carried out during, rather
:han at the end of, the programming pro<;ess. These various common
ense definitions did not share this virtue, and people who used them did
ot get its benefits. But this did not stop the chorus of people who invented
eir own convenient meanings for the term rather than taking the trouble

o find out the idea behind it. As a result, an astonishing number of people
software still view top down programming as a "way of looking at

things," rather than as a rigorous mathematics idea applied to program
ming, and they get only superficial benefits from the idea.

Pursued with mathematical rigor, top down programming dictated
that the job control code had to be written first, rather than last as had

4 SOFTWARE PRODUCTIVITY

been universally done previously. It dictated that the code to open files
had to be written before the code to access these files. It meant that we
could reduce programming errors to a matter of human fallibility, while
the traditional bottom up integration contained not only human fallibility
but mathematical noncomputability to contend with. This is because de
bugging a system with interface errors requires solving simultaneous inter
face equations, for which no finite procedures exist and which can be
done only approximately and never completely reliably.

As a result of this mathematically discovered idea, people who
understood it for what it was, rather than inventing some common sense
meaning for it, indeed experienced a dramatic improvement in the integra
tion process . There was simply no integration crunch in the last phase of
software development. In fact, my principal criterion for judging whether
top down programming was actually used is just this absence of any diffi
culty at integration. The proof of the pudding is in the eating!

The chorus of contending interpretations of the term "top down
programming" was exceeded in diversity only by that for the term "chief
programmer team." The chief programmer team was conceived in the in
dustrial engineering sense as a work-structuring activity to divide up the
work rather than to divide up the product. Work structuring for a creative
process is a deep problem of the process, work psychology, industrial
method, and management principles. The chief programmer team had
many considerations and explicit checks and balances built into it. But
that did not stop many people from inventing their own ideas for the
term. In spite of my original criterion that a chief programmer be both
a good design level programmer and a good manager, particularly of sched
ule and budget, chief programmers of all categories from prima donnas
(whom we don't know what to do with) to clerical administrators (whom
we don't know what to do with) appeared in common sense rationaliza
tions, which conveniently ignored the central issues of creativity and intel
lectual control that drive the chief programmer team idea. Small wonder
that such chief programmer teams did not always work out well, and
some led to real disaster. It is the old problem of silk purses and sows'
ears.

Methodology and Management

My search for productivity in software has uncovered no magic, no pan
aceas. There are remarkable improvements in productivity possible over
today's accepted levels. But they require sound methodology and sound
management. Mastering the methodology requires an intellectual commit-

In Retrospect 5

-ent of several years. If it were easier, everybody would be doi.ng it already.
- e management is as necessary as the methodology, to focus potential
~ productivity into realized productivity, in ways we illustrate below.

The notes and papers in this book represent the original ideas for
y terms the industry has begun to use. I am happy that people are
g the terms . I will be even happier when they begin using the ideas.

search for an
asier, Simpler way

1968)

- ------ -

ARTICLE

2

A. major objective of the mathematics consultant in the Federal Systems
enter is to discover ways of increasing programmer productivity by find

. g new technical dimensions in computer programming. The origins of
- ese new technical dimensions must be logical and mathematical.

The idea of mathematics is to make life easier, to find simpler ways
" doi ng things. A mathematics theorem is elegant, not because it is com

~ ·cated or hard to understand, but because it says more with less wasted
tion. In this way, mathematics can be a source of great power in organ

- · g ideas and describing processes.
We need this kind of power in computer programming to handle

ore detail with less effort. However, it is easy to mix up the simplicity
-' at comes from a deep analysis with a simple-minded analysis, which leads

hopeless complexities. Finding the key simplicities in a data processing
roblem is a deep problem not often resolved by a simple-minded ap

::. ach . But these simplicities, found before the detailed programming
gins, spell the difference between a program completed quickly and

.:.eanly and one difficult to finish and even more difficult to debug.
Just getting a computer program written and running to solve a

ra processing problem is much like getting the ball in all 18 holes on a
= If course. That's a good start- but just barely a start on the problem.
~ golf, the next questions are easy to ask, such as "How many strokes did
· ake?" But in programming, things are much more difficult. The first thing

eprinted with permission from International Business Machines Corporation.

7

8 SOFTWARE PRODUCTIVITY

we don't know is "What is par? How big is the programming job?" We can
ask how long it took. And we can ask some more questions, such as:

1. Does the program run correctly; is there good evidence in the form
of program clarity and/or systematic testing to support this?

2. Does it run effectively in terms of time and resources; are there good
arguments to say the time and resource requirements are near op
timal?

3. Can the program take care of itself faced with incorrect data or
control information; can it identify and signal diagnostics or sugges
tions to operators or users?

4. Is the program documented well enough for others to understand
what it does; is it documentable at all in terms of structure and
modularity in the overall program?

5. Can the program be maintained; can it be updated through equipment
changes that may arise, through bugs found later, maintained through
longer periods of time when no one is devoting full time to it?

6. Can the program be modified, added on to, or incorporated into
programs of larger dimensions as new ideas in the subject matter
come to light; or is it destined to become a dead program which no
one understands or uses?

The foregoing questions reflect our ignorance more than our wis
dom. They inquire, piecemeal and haphazardly, about our intuitive hopes
and fears for the program, rather than about a systematic set of properties
which defines the value of the program.

Computer programming is less than a generation old, and has nooks
and crannies galore, compared with a subject like geometry. Yet it took
many generations of brilliant minds to evolve geometry into a well organ
ized subject-enough to be of value to a land surveyor, for example. Sci
entific discovery goes 'at a faster pace today, but we are still far from
bedrock in computer programming and far from a well organized set of
principles and techniques.

At the moment, it appears that this bedrock may eventually consist
of the unification of two quite distinct branches of information theory into
a single body.

There is a statistical theory of information, embodied in the work of
Claude Shannon and others, that provides quantitative measures of infor
mation in data transmission and storage processes. These measures can be
applied to computer programming in two ways rather directly. First the
information content of a programming language can be studied in much
the same way that natural languages are treated; second, the information
content of executing programs can be studied in ways similar to the way
stochastic control processes are regarded.

Search for an Easier, Simpler Way 9

There is also another older theory of information, more qualitative
in character, that deals with matters of syntax and semantics in messages
with rational meanings. This branch seeks to identify what is stable (se
mantics) in patterns of information, for analysis and exploitation. In cur
rent programming practices, these ideas are found in such diverse areas
as syntax-directed compilers and table-driven file processors.

It seems more and more evident that neither of these branches can
be a sufficient foundation for computer programming in itself. But their
union, with elaborations appropriate and peculiar to the subject of com
puter programming, gives promise of getting closer to fundamental ques
tions such as:

1. What is par?
2. Are there basic limitations in program efficiencies and capabilities

based on the logic of computer programming itself, regardless of the
ingenuity of programmers?

3. What is a complete set of questions to ask about a program to evalu
ate its worth?

It is typical in scientific development to find progress primarily
through finding the right questions to ask, and computer programming will
be no exception. We can expect these three questions to be modified and
sharpened in unexpected ways as the right ideas come to light.

The Iterative IF
as a
Primitive Instruction

(1967)

ARTICLE

3

We consider the problem of formulating high-level programming instruc
tions in primitive forms (recognizing that it is logically ill defined but
pragmatically of first importance). Our main observation is that we can
define a statement called Iterative IF (IIF) to serve as an easy building
block (with statement blocking and assignment statements) to both IF
THEN-ELSE and DO (FOR) compound statements. This, coupled with
the further observation that programming can be accomplished in a rea
sonable way with no statement labels (and no GO TO statements), leads
to a high-level programming language with only two instructions: assign
ment and Iterative IF.

The Iterative IF (IIF) statement is of the form

IIF E;

where E is a logical valued expression and means: if expression E is true,
execute the maximal syntactical block immediately following this state
ment, and then return to this IIF statement for reexecution. For example,
using Algol delimiters, the sequence

IIFX<lO;
BEGIN ... END;

11

12 SOFTWARE PRODUCTIVITY

would execute the BEGIN ... END block repeatedly as long as X < 10
(forever, if X < 10 to begin with and X is not altered in the block). In
order to get a DO looping capability, we add two assignment statements,

X= 1;
IIF X< 10;
BEGIN; X= X+ 1; ... END;

and we have the effect of DO X= 1 TO 10. In order to get an IF-THEN
capability we can do as follows:

B =true;
IFF Band X< 10;
BEGIN; B = false; ... , END;.

From there it is easy to get to IF-THEN-ELSE.

ARTICLE

4

Programmer Productivity
Through
Individual Responsibility

(1968)

Abstract

The following begins to articulate a working hypothesis for regarding
programming in IBM as an individual, rather than a team, activity.
It recognizes that software support systems, such as OS/ 360, now allow
one dedicated person to address major programming systems presently
assigned to teams of about 10 to 30 people.

The major question is not whether one-man projects can be
productive, but whether they can be managed and organized into the
IBM framework. There seems to be little doubt that they can and
they should be.

Introduction

It may become possible to attack the whole spectrum of computer pro
gramming problems of the Division and the Corporation by shifting from
a team approach to an individual approach in designing and producing
programming systems. In this approach, a single individual is solely re
sponsible, in total and in complete detail, for developing a major program
ming system.

13

14 SOFTWARE PRODUCTIVITY

Objectives that may be achievable in productivity, given as factors
of improvement over present levels using the team approach, are:

Scientific Systems
Command/Commercial Systems
Software Systems Programming

10- 50
5-20
2-10

These varying factors reflect the varying degrees to which higher-level
programming languages can assume detailed responsibilities in the pro
duction of programs in various areas.

The basis for such productivity is the introduction of a new IBMer,
an Individual Programmer, of highest professional qualifications, compara
ble in ability and training to professionals in such other fields as medicine,
law, and university teaching, performing as an individual on a career
level. New ingredients that may make this productivity possible are:

1. A new concept of "deep immersion" by an Individual Programmer
into a data processing problem over a period of several months.

2. A more precise distinction between systems analysis and program
ming, which permits the programming operation to be "clean and
quick."

3. The software tools of OS/360, PL/I, and so on, which can be used
by Individual Programmers to handle details in wholesale lots.

Historical Background

It is easy to see why the team approach to programming came about, out
of necessity, in the growth of the data processing industry. Large and
complex systems, such as SAGE, space tracking, and others, were tackled
with very primitive programming tools. As an aside, there is the story of
the fellow at the dude ranch who had never ridden a horse. "Fine," said
the foreman, "we've got a horse that's never been ridden, so you can
start out together!" So it was in data processing. With hardware of un
precedented capability, grown up practically overnight, the collection of
engineers and others who were the first programmers started out simul
taneously to learn how to build complex systems and to learn how to
build the tools with which to build the systems.

Thus programmers started out with tremendous amounts of detail
to handle and no theoretical basis with which to handle it. No wonder
there was an inherent "safety in numbers." But prophetically, in the ex
perience of many, this safety in numbers lay not in the combined efforts

Programmer Productivity Through Individual Responsibility 15

of many people, but in the fact that there was more chance, with many
people, of finding a few who would do the bulk of the job.

It is also easy to forget how young and immature computer science
is, particularly in programming theory, and how rapidly it is growing. For
example, the FORTRAN compiler appeared in 1957, culminating a few
earlier efforts in the direction of high-level programming languages. And
yet, the first syntax-directed compiler ideas did not appear until 1960, after
FORTRAN rather than before. Even now, it is clear that we are far from
bedrock ideas in programming languages and their translation. For example,
PL/1, by far the best we have as a general purpose implemented language,
is an ad hoc hodgepodge whose origins are exterior pragmatics rather than
any deep theoretical synthesis of user needs and computing realities. Matters
in data organization and structure are even farther behind programming
languages.

This does not mean there is not a lot being said and written about
programming theory. There is. But it is written in an amorphous environ
ment, in terms of various specifics, precisely because no basic structure
or literature in the subject has really emerged. As a result, there is much
haff surrounding most grains of wheat, and much reinventing of wheels,

and so on.
Because of this, it is difficult to keep up with the literature, which

· expanding rapidly and is not very well structured. It is easy to see how
computer science, such as it is, can "grow past" a manager in the industry,
or these very reasons. A bright programmer ten years ago, in the days of

assemblers and loaders, who became a manager shortly after, not only
has had to add new facts and techniques to stay current, as most disciplines
require, but has also had to add whole new categories of subject matter
to his or her thinking, for example, mathematical linguistics and library
management.

But the fact is that, as embryonic and as poorly structured as they
may be, there are new techniques in computer science now, not at all
visible at the beginning, which can allow people to handle detail in whole
sale lots. The chief and most obvious of these techniques are in the high
level programming languages, best embodied today in PL/ 1, and in the
operating systems facilities , such as in OS/ 360. But there are additional
new capabilities at a deeper theoretical level that are just beginning to
emerge, based on syntax processing and the decomposition of syntax and
semantics in data processing operations. The syntax-directed compiler
embodies the latter capability in the support of a high-level programming
language.

It is these theoretical capabilities, as they are used, that will permit
the Individual Programmer, as a professional, to carry out complete pro
gramming projects, which are now addressed by teams.

16 SOFTWARE PRODUCTIVITY

Empirical Evidence

The validity of the individual approach will finally depend simply on
whether it works. It does not take much looking around to find evidence
that it can work. Ordinarily, however, this evidence is examined with a
rather different hypothesis in mind.

The evidence is that on many occasions, highly motivated individ
uals, plus favorable circumstances in problem formulation, machine avail
ability, and so on, have turned in performances that were astonishing when
compared with what the industry has had to settle for as normal-up to
two orders of magnitude higher in productivity.

If the question is "Can we get the average programmer to do this?",
then these performances are somewhat irrelevent because, by definition,
average programmers are not highly motivated, nor do they have favorable
circumstances to work under. •

But that is the wrong question for our purposes. A skilled heart
surgeon is not an average person, nor is a life master in bridge. In their
own ways, they are dedicated people. And we know that people of talent
and vision are willing to dedicate themselves to ideas they believe in.

The reason the foregoing question comes up in an organizational
content is an assumption made ceteris parabis about the number of pro
grammers we need. It is tacitly assumed that we need more and more
programmers, and hence most of them will fall in the average category.
It is this assumption that is challenged here.

If the objectives in productivity are achievable through professional
development and personal dedication, as outlined in more detail below,
then the Division and the Corporation will require remarkably few com
puter programmers to accomplish the same level of effort as we do now.
Therefore these programmers will not be drawn from the pool of average
programmers at all, but from the top 10 or 20%.

So the burden of the evidence is that a few programmers, if capa
ble and motivated, can do the work of many. The important questions
are "Can IBM ask them to?" and "Can IBM depend on them to do it?"
These are addressed next.

The answer to both questions is "Yes, indeed!"

The Individual Programmer

We sketch out, briefly, a portrait of an Individual Programmer: his or
her mode of working, professional growth process, motivations, and rela
tions with the company. The person is fictional, practically out of neces-

Programmer Productivity Through Individual Responsibility 17

sity. People with the requisite capabilities and latent motivations exist in
the company, possibly as many as 100 or so . But the conditions for pur
suing the career outlined here are not present in the company. Many of
these people will be in senior technical staff positions, others in technical
managerial positions because they can now get more recognition there.

There is one thing to note at the start: the title "Individual Pro
grammer" is used to be descriptive. For job satisfaction, prestige, and so
forth , a better title might be selected, such as "System Architect," "Pro
gramming Architect," "System Definer," or something along those lines.
We want this title to describe an important position.

An Individual Programmer takes on a programming project that
we would currently assign to a team of up to 10- 30 people (or more or
less, depending on the circumstances). The point is that we assign to one
person a very large responsibility. (The person will grow into this, as we
develop below, through smaller assignments.) This Individual Programmer
will be solely responsible for the program or programming system required,
in overall conception and in complete detail. Help will be available in the
form of personal services such as secretarial, keypunching, and data col
lection, and of consulting services with experts in programming theory,
software services, and the subject matter of the programming problem.
But the Individual Programmer will not delegate any of the program de
sign or any of the detailed coding to anyone. Some of the consultants will
be other Individual Programmers "between jobs," as we discuss below.

The bases for assigning a large problem and expecting the pro
ductivity are:

1. Deeper theoretical capabilities for solving data processing prob
lems. The Individual Programmer will have subject matter knowledge,
and expert consulting help as a backup. With a thorough knowledge of
the software support and consulting in that area, the Individual Program
mer will work directly with the customer and will solve any disparity
between customer needs and data processing realities.

2. Better use of software support tools, in programming lan
guages and library maintenance and utilization. Knowing the full scope of
software support possible, the Individual Programmer will build from,
rather than reinvent, capabilities that may be needed and will adapt data
processing needs to existing capabilities through an overall view of the
programming operation.

3. Decreased intermediate specifications between the data pro
cessing problem and its solution in programming languages. The Individual
Programmer is a professional and works with the customer on a level of

18 SOFTWARE PRODUCTIVITY

respect and trust to solve the data processing problem without entangling
the customer in the details of the solution. This is not to imply any
mystery in the way the Individual Programmer works, but to recognize
that programming languages, more and more, are themselves the best
languages to use in writing specifications for a data processing system.

4. Decreased internal communication problems in producing pro
gramming systems. This is the most obvious advantage of an Individual
Programmer over a team of programmers, and an important one.

5. Intense motivation and dedication over the period of time re
quired to complete the project. The Individual Programmer, like any
other professional, is capable of a sustained level of motivation and dedi
cation in carrying out a project. This motivation arises from the oppor
tunity to create a programming system of value to customers and peers.

Systems Analysis and Programming

It is important, in understanding the responsibility of an Individual
Programmer, to make a careful distinction between systems analysis,
operations research, and other activities that may well precede the pro
gramming of a data processing system. We identify systems analysts from
programmers today in concept. But a programming project often has large
ingredients of systems analysis in it, and this fact confuses and confounds
managerial considerations in carrying out such projects.

The reason for making a careful distinction is this: In the pro
gramming operation, some major problems are communication and the
maintaining of detailed coherence throughout the system. The Individual
Programmer has a tremendous advantage over a team in this aspect, but
even so, time is still of the essence in bringing the project to a successful
conclusion. That is, the programming must be carried out in a time span
as short as possible, even though it may be several months, in order to
maintain this coherence as rigorously as possible. If, however, the systems
analysis is going on concurrently with the programming, the whole effort
gets diluted and extended in time to the detriment of the programming
itself.

As a result of these considerations, an important managerial dis- -
tinction in overall systems development is the identification of a boundary
between systems analysis and programming. The Individual Programmer
should come into the overall development at that point, so that the pro-

Programmer Productivity Through Individual Responsibility 19

gramming operation can be relatively clean and quick. Of course, the
same person may well function first as a systems analyst and then as a
programmer, but these separate roles should still be identified.

It is frequently-and, in fact, should usually be-the case that the
systems analysis effort takes more time than the programming effort. De
termining what the data processing system should do requires subject
matter creativity, whereas determining how the data processing system
should do this "what" involves creativity in programming itself. The In
dividual Programmer should know the subject matter in order to guar
antee the integrity and relevance of the data processing system in that
subject matter. But the Individual Programmer should engage in little
creative thinking about the subject matter itself while programming. Other
wise, the time advantage of a quick and clean programming effort will
be lost.

In summary, the systems analysis activity is essentially inductive
a gathering together of the data requirements, the techniques and algo
rithms for processing it, and the way the results should be interpreted.
It is an extroverted activity, involving drawing out of a customer problem
area a solution in terms of a general systems design, independent of
machine considerations in most cases. This solution is couched in English,
mathematics, and so on, for communication between people; and the rigor
called for is from the subject matter, not the details of the communication,
because people have very elaborate error-correcting and feedback capa
bilities in these processes. As a result, the systems analysis activity can be
carried out somewhat leisurely with problems "lying fallow" in people's
minds, unless customer time requirements dictate otherwise, without par
ticularly jeopardizing the activity itself.

However, the programming activity is more deductive in character,
beginning with the results of systems analysis as its "axioms" and deter
mining the most effective way for realizing these requirements in a data
processing system. It is an introverted activity, by and large, involving
handling the complete detail required in designing and implementing the
data processing system. This solution is in programming languages, and
the rigor called for is in reflecting the system requirements in these pro
gramming languages. But unlike systems analysis, time is indeed of the
essence in completing the programming operation, in order to maintain
rigor and coherence in the complete detail demanded by machines and
their programming languages.

We note that the description of systems analysis as extroverted
and programming as introverted refers to the work processes and not to
customer relationships. There are still many decisions to be made between
the customer and the Individual Programmer. To stay within reasonable
bounds, these decisions should primarily involve how the customer inter-

20 SOFTWARE PRODUCTIVITY

faces with the data processing system-control sequences, output formats,
etc.- rather than the algorithms and techniques of processing the data.
This is not to say that exceptions are not possible; the Individual Pro
grammer, as a person, will have the capability of addressing the system
he or she is programming on a much wider basis. Rather, these bounds
represent a voluntary discipline on all parties concerned, which can make
the whole process of system development more effective.

Will the Individual Programmer Be Responsive
to Customers?

One question that might arise is the responsiveness of an Individual Pro
grammer to customer needs. Will such a person program what he or she
"thinks best" for the customer, only later to have it turn out not to solve
the customer's data processing problem in the best way?

On a little reflection it seems that the answer is that this will be
far less of a problem for an Individual Programmer than for a team.
There are two main reasons for this: responsibility and capability.

First, the Individual Programmer is completely responsible for the
programming system, and knows it. If the system subsequently does not
satisfy the customer, it is a reflection on the Individual Programmer, who
knows that, too.

Second, the Individual Programmer is more capable of being re
sponsive to a customer than a team is. Frequently, because of communi
cations problems and compartmentalization, a team manager simply does
not know whether a new customer request can be accommodated. Even
if it can, the manager may hesitate, wanting to keep the team integration
problems under control. An Individual Programmer has no such inhibi
tions. An Individual Programmer is the complete master of the situation.

It should be characteristic of Individual Programmers to be ex-·
tremely responsive to customers-to interface at a professional level, which
includes finding out what is in customers' minds as well as what they say.
A frequent complaint in team programming is that "the customer doesn't
know what he wants," which is all too often an admission that the team
has not found out what the customer wants. Frequently, for example, cus
tomers cannot really be expected to know what they want until they have
seen some system output or tried to use system control procedures that
may be proposed. An Individual Programmer could be expected to show
lots of output to such customers, having the capability to modify a solu
tion according to the customer's problem.

Of course, this capability for "turning on a dime" in the develop-

Programmer Productivity Through Individual Responsibility 21

, ment of a system is not necessarily present in all people. P~ople who do
not have it should not be Individual Programmers, just as some people
should not be heart surgeons.

It is also worth noting that another reason that customers may
seem to keep "changing their minds" is that the program development
cycle takes so long that changes in personnel occur or new ideas arise in
the subject matter. This program development cycle should be shorter for
an Individual Programmer than a team.

Still another reason, of course, for team difficulties, is that differ
ent team members interpret what they hear differently when the customer
was saying the same thing all along.

Can Individual Programmers Be Motivated Highly Enough?

With just a moment's thought, this can be seen to be no problem when
there is any reasonable long-range layout of assignments. First, the Indi
vidual Programmer has the opportunity to be a very important person,
to make his or her life count. The primary motivation is in the work
itself. Anyone who is not intensely interested in the work, will not have
made it to this point anyway. The Individual Programmer should be paid
well-at the top of the scale for individual technical workers. At the mo
ment, comparing the cost with that of team programming, one might jus
tify rather astronomical salaries, but this is not a realistic approach. For
with recognition of the possibilities to be an Individual Programmer, con
ditions of the labor market will prevail-even as for heart surgeons. At
the present time, a range of $20,000 to $40,000 would seem reasonable
(young people working into this range, and senior people of merit leveling
off toward the top). Primarily, this is "sincerity" and "proud" money for
an Individual Programmer.

However, the most important aspect for an Individual Program
mer-motivation-can also be converted into a major asset for the com
pany: in assignments "between customer jobs."

An individual assignment for an Individual Programmer should
usually amount to three to nine months. A year may be a little long,
though not out of the question, and shorter assignments ought to be given
to more junior people coming up. These assignments will be intense and
demanding and should be interspersed with other assignments involving
less pressure.

One part-time assignment that should be nearly automatic is the
maintenance of the programming system just completed. This gives the
customer the best qualified person to handle that phase of the job. It also

22 SOFTWARE PRODUCTIVITY

gives the Individual Programmer feedback on the value of the work he
or she has just done. This ought to be especially valuable for younger
people, in their growth into larger and larger jobs.

But the main assignment "between jobs" ought to be in research
and tool building, for oneself and other Individual Programmers in future
jobs. There are two main reasons why this can be of particular value to
the company.

First, the Individual Programmers are the best programmers
around, and they are equipped to generate tools-which, after all, are
just other programming systems. We are remarkably fortunate in pro
gramming. Heart surgeons do not themselves use heart surgery to build
tools for further heart surgery, such as artificial valves and pumps. But
it is programmers who build programming tools by programming-such
as compilers, for example.

Second, the Individual Programmers will know better than anyone
else what tools are needed "in the field," for they have been there and
are going back. In this connection, Individual Programmers will go back
to the field for the same reason that people climb mountains-"because
it's there!" They will be glad for the rest and the time to reflect and
build theory and tools, but if they have the talent required, they will also
have the restlessness that will not let them vegetate.

Is Management Exposure Tolerable in One-Man ProJects?

This question, like the previous two, can be answered more easily than
might be apparent at first glance. A good case can be made for the idea
that management exposure can be made less in a one-man project than
in a team project. Superficially, it would seem that the danger of losing
someone in a team project would be less severe than of losing the person
in a one-man project. But a little thinking shows that this need not be
the case. There are two reasons.

First, the Individual Programmer is the antithesis of the "mad
scientist," who is producing a program that works, only no one else can
figure out how. Instead, Individual Programmers are engaged in program
ming problems of considerable substance; they must work systematically
and maintain well-documented trails for their own use in completing
their own projects. They will also be using major software tools in library '
management, in automatic documentation, in job control, and in high
level source programming languages. All these tools, used in common by
Individual Programmers in their projects, also impose, in return, consid-

Programmer Productivity Through Individual Responsibility 23

erable built-in discipline. Thus an Individual Programmer leaves a trail
of documentation in a form familiar to other Individual Programmers.

One of the services that should be supplied jointly to management
and to an Individual Programmer in a project is a Design Review Team
to which the Individual Programmer can explain the design and progress
fo r his or her own peace of mind about not overlooking things, for in
stance. This Team should have at least one other Individual Programmer
of equal capability who is between jobs and is designated as "backup"
for this job. If something happens to the first Individual Programmer, the
backup should be able to step in with a minimum of disruption.

Second, it turns out that the backup capability assumed in the
team approach is often illusory- for the same reasons as the communi
cations problems that arise in teams. When someone is lost in a compart
mentalized project, the effect is often harder to counteract than when
::oing into a project that exists as an organic whole, because decisions at
interface points have been based on breaking up the project more than
on any inherent properties of the problem.

Very Large Programming Projects

The majority of today's projects could be handled by a single person as
an Individual Programmer, but a few will require more than one, such

the Houston RTCC, OS/360, or a large command/control system. In
·s case, several Individual Programmers would jointly carry out the
oject, not as a team, but as a set of major subsystem developers that
erface in a predetermined way with one another. For example, in an

perating system an Individual Programmer may take on a language trans
or or a data management processor that operates as an ordinary appli

ca ions processor in the operating system.
In another place the idea of developing software support systems

-arough building on a Kernel System is discussed. This technique of evolv
g operating systems to satisfy individual installations is especially suited

the use of Individual Programmers.
Major applications systems in such areas as defense and space,

"thout exception, have subsystem structures that can be used to demar
e parts of a total system for assignment to Individual Programmers.
any such system there needs to be a chief Individual Programmer who

efines the system in its entirety and identifies the inputs and outputs
:equired from the subsystem, but he should behave in every way as an-

- er Individual Programmer and not as a team leader in the ordinary
sense.

24 SOFTWARE PRODUCTIVITY

A Community of Individual Programmers

The foregoing has sketched out characteristics of Individual Program
mers, and how such people might interact collectively as a Community
of Individual Programmers. In summary, such a Community might present
the following kind of picture.

Imagine a group of some 15-50 Individual Programmers as a
stable operation, addressed to some general area of data processing, such
as Command Systems, Space Computation, or Financial Operations. The
group may possibly be further divided into subcategories for management
purposes. At any point in time, about half of the Individual Program
mers will be in active jobs, each interfacing and building a programming
system for a customer. The other half will be involved with maintenance
of previous jobs, consulting in active jobs, serving as backups, researching
new ideas in programming theory, and carrying out tool building jobs.

There will also be an additional group of young candidates to be
Individual Programmers, acting very much like the regular Individual
Programmers, but working on job assignments of smaller scope and time
periods. They are growing into Individual Programmers this way, through
a process of internship.

It is an honor to be one of these candidates, just as it is an honor
to graduate from medical school. Candidates have at least a Master's
equivalent in a subject of interest to the Community. They also have a
Ph.D. equivalent by today's standards in computer science and already
know how to program and design programs. The candidacy is to find out
whether they can maintain their level of concentration over the length of
time needed to complete major programming projects.

There is also a larger Community of Individual Programmers at
the company level. The tool building going on in the various subject
communities is coordinated at this larger level, and the tools are dis
seminated. Among a group of dedicated professionals, secure in their
own opinion of themselves, there is not much room for a "not invented
here" attitude. They want all the tools they can lay their hands on and
should not be competing among themselves in that area.

The management of this Community of Individual Programmers
has some unexpected simplicities in it, compared with team operations.
In team operations there is always the problem of sorting out interrelated
individual performances. This is not much of a problem with an Individual
Programmer. You find out whether the customer likes the system-it is
one person's system and no one else's. There is also less of a problem in
promoting candidates. They are learning and working on customer sys
tems, too, all by themselves, but smaller systems.

Programmer Productivity Through Individual Responsibility 25

Can IBM Use Individual Programmers Effectively?

There seems to be little question that IBM can, indeed, ask for and count
on Individual Programmers at this time and build effective Communities
of Individual Programmers within the next three to five years . A more
careful estimate should be made, but it seems that on the basis of a con
stant level of work, a factor of at least two to five could be taken out
of the programmer categories in the company, with somewhat less reduc
tion in costs because of the higher level of personnel involved.

One question that arises is "What happens to all the program
mers we have?" The answer is easy. The good ones are converted into
Individual Programmers. The rest are absorbed into other operations of
the company, in its growth, where their programming experience will serve
them in good stead for other jobs.

Another question is "Can IBM expect Individual Programmers
to take on the assignments required?" We do not really know how diffi
cult programming is, because it is part of such a young industry. But it
is apparent that isolated people can take on the kind of assignments we
need; it has happened in programming,· already in at least tens of cases,
and possibly hundreds-for example, the ALGOL compiler that Edgar
Irons wrote by himself in one year and the one-man PL360 compiler at
Stanford. And in this connection the dedication required seems to be no
more than many IBMers are already putting out in engineering, man
ufacturing, marketing, and management (including the management of
programming).

The case
Against GO TO
statements in PL/1

(1969)

ARTICLE

5

It is not possible to program in a sensible way without GO TO's in FOR
TRAN or COBOL. But it is possible in ALGOL or PL/I. The difference
is in alternative ways available for controlling branching. This note is to
point out that the new language technology in programming has moved
out from under the GO TO and makes it of dubious value for use at all
in PL/I. It also points. out a new possibility in PL/1: that programmers
can and should read programs written by others, not in traumatic emer
gencies, but as a matter of normal procedure in the programming process.

In the early days of programming, when programs were written
directly in machine code or, at most, in Assembly language, the branch
statement was a very simple machine step to execute and found its way
into early programming languages through the GO TO statement, which
translated very readily . into the branch statements. While programming
languages have increased in complexity and power, the GO TO statement
has remained conceptually the same in the minds of programmers. How
ever, these programming languages now provide for blocking and nesting
of program statements and for the delayed dynamic binding of variables .
These capabilities have introduced serious side effects for the GO TO
statement in compilers.

A modern language, such as PL/I or ALGOL, has a block struc
ture, for example, BEGIN ... END, DO ... END, to permit the grouping of

27

28 SOFTWARE PRODUCTIVITY

statements into compound statements in the language, and it permits new
ways of control logic that can eliminate GO TO statements entirely. At
first glance this may seem surprising or may seem trivial by way of dupli
cating sections of code throughout a program. But this is not the case.
PL/I programs can be written with a very minimum of code duplication,
excessive CALLS, and awkwardness by using IF-THEN-ELSE, simple
and iterative DO, and ON statements in place of GO TO's. In particular,
the DO-WHILE loop, where the WHILE condition is a truth value turned
off within the loop at the proper time, is a convenient way of handling
typical control logic otherwise calling for GO TO's. For example, a program
that reads data, does a computation, prints results, then reads data, and
so on, while data remains to be read in, can be organized as a single
DO-WHILE group, preceded by an ON ENDFILE statement to turn the
WHILE condition to false.

Similarly, IF-THEN-ELSE, where the THEN and ELSE clauses
may be DO groups or BEGIN blocks, can be used in various combina
tions to eliminate GO TO's. The IF conditions for branching must fre
quently be altered, but usually reorganizing such branching conditions
adds to program clarity and control simplicity in itself. ON statements with
BEGIN blocks can be used to handle interrupt conditions conveniently.

The foregoing findings are empirical. It might not be obvious, even
if formal theorems were available, that GO TO's could be eliminated
in everyday PL/I programming without its being excessively awkward or
redundant. But some experience and trying soon uncover the fact that it
is quite easy to do; in fact, the most difficult thing is to simply decide to
do it in the first place.

There are, however, much deeper reasons than programming style
or taste for doing without GO TO's in programming in a modern Ian- ·
guage. No statement in programming so neatly scrambles syntax and se
mantics as one such as "GO TO LL"; it is easy to identify its syntactic
type as a GO TO statement, but the "LL" is a value that permits the
control logic of the statement to lead anywhere. Five reasons why GO TO's
are not good practice in PL/I are explained.

1. The Readability of Programs. Programs that are written with
out GO TO's can be read by others from top to bottom without requiring
any mental gymnastics or short-term memory feats on the part of the
readers. The only way for control to move out of the direct line of code
is through the IF-THEN-ELSE, DO, CALL, or ON statements, each of
which is easily understood and visualized in reading code. In addition to
writing without GO TO's, when BEGIN, DO groups, IF-THEN-ELSE
state-ments, and such are indented in a uniform way and every BEGIN
or DO has its own explicit END statement, then it becomes particularly

The Case Against GO TO Statements in PL/1 29

easy to see the flow of control just from the typographical form of the
program itself.

2. The Complexities of Compiling. In a compiler that deals only
with static code and no dynamic block structure or binding of variables,
the GO TO is exceptionally easy to implement. However, in PL/I, the
GO TO is one of the most difficult statements to implement in the lan
guage. When the GO TO is given, there must be a search for the label
in the block containing the GO TO. If the label is found, this is the sim
plest case, and the branch can be made directly. However, if the label is
not found, then it must be searched for in the next outer block, if any,
that includes the current block. This means undoing the variable binding
and other dynamic conditions associated with the inner block in advance
of transferring to a label outside it. If the label is not found in that block,
the search must be continued to further outer blocks, if any, until either
successful or not. If it is not successful, then one typically must get back
into the inner block in order to produce appropriate diagnostics or other
action, as called for. The complexity of handling the GO TO statement
is in sharp contrast to that required for DO groups or IF-THEN-ELSE
statements, which involve no dynamic blocks or binding of variables in
themselves.

3. The Simplicities of Documentation. A future use of program
syntax of potential major benefit is in the automatic organization of
documentation files and the generation of appropriate questions about
program structure and content to the originating programmers. The ab
sence of GO TO's makes the control semantics of the program transparent
to the syntax, so that the structure of documentation files and the interro
gation of programmers about their programs become correspondingly
simpler.

4. The Optimization of GO TO-Free Code. The optimization of
machine code from compilers always begins with the determination of
basic blocks, that is, blocks of straightline code in the program to be ex
ecuted, and the directed control graph that connects these basic blocks.
The directed control graph can be arbitrarily complex and can itself tax
any optimization analysis. In contrast, a PL/I program with no GO TO
statements has the property that its basic blocks are now transparent to
the syntax, for the basic blocks are typographical segments of code, de
limited by IF, BEGIN, DO, and ON statements. For example, when ex
ecution reaches an IF statement, it is known at that point that the execu
tion will go to either the THEN unit or the ELSE unit and nowhere else.
Thus, for example, a register-loading strategy should load either the reg
isters of the THEN unit or the ELSE unit, but never some of each.

30 SOFTWARE PRODUCTIVITY

5. The Loading and Execution of GO TO-Free Code. When the
basic blocks and other executable program segments are transparent to
the syntax, then it becomes possible for the loading and execution control
programs to allocate core and bring in code on the basis of syntactic
structure. For example, core can be allocated to DO groups, BEGIN
blocks, and so on, rather than simply to a given number of bytes of
machine code.

In the same way that GO TO's can be eliminated, one can also
eliminate RETURN statements with control always going through the
final END statement of a procedure in PL/I. In procedures that have no
parameters and declare no variables (for example, one that is included
in another procedure) it is possible to replace the PROCEDURE state
ment by a DO statement and to include the resulting DO statement in-line
(replace the CALL of the procedure by the macro process or %IN
CLUDE statement) with the same computational effect. As a result, one
has a way of maintaining a "design system" highly modularized with
various capabilities for maintenance and debugging, and then of convert
ing this automatically into a monolithic, but faster running "production
system."

The foregoing is a realistic possibility because of the way program
ming modularity usually comes about. It is frequent in programming that
procedures fall into one of two distinct classes. The first class is one in
which a common action is performed many times in the course of a pro
gram, for example, a SINE routine, and the objective is to provide the
code only once. It is natural in this class to pass parameters explicitly
and to make the subroutine completely independent of any other data in
the calling program. A second class arises from the desire of a program
mer to achieve general modularity in a system and to identify certain
system activities for his or her own convenience as separate procedures.
But it is typical that the communication between such procedures and the
calling program is broader, not necessarily through parameters, but more
likely through external data or included data. It is also usual that such
a procedure is not called so many times, but quite often only once, or at
most twice. It is this second category that lends itself to the foregoing
treatment and permits the elimination of prologue/epilogue processing
through in-line DO statements.

ARTICLE

6

The New York Times
Thesaurus of Descriptors

(1969)

Abstract

The documents making up this article consist of: first, the Foreword
and Introduction to The New York Times Thesaurus of Descriptors,
republished here with the kind permission of The New York Times
Company; and second, a working document called "A Structural De
scription of The New York Times Thesaurus of Descriptors." The
second document was written over the four-day period from July 22
to July 25, 1969, and is based on the first document. It is a sample of
an applications programmer at work, trying to reduce a complex ap
plications problem to simple terms by methods of computer science.
In this case The New York Times Thesaurus of Descriptors is described
by a formal grammar (a running tutorial for understanding the gram
mar is given as well). Then the grammar is used in a critical way for
defining the interface between program designer, system manager, and
system user for file maintenance and on-line retrieval operations. The
working document illustrates an attempt at communication between a
program designer and an intelligent client. In this case it is remarkable
that the BNF (Backus Naur Form of describing formal grammars)
for the New York Times Thesaurus is so clean (cleaner than most
programming languages) , which goes to show that intelligence and taste
are the best tools possible, whether the designers of the language know
formal methods or not.

31

PART A
The New York Times Thesaurus of Descriptors

Foreword

The project to devise a thesaurus as an aid in processing and searching
information from newspaper files was undertaken as part of an effort by
The New York Times to coordinate all its information facilities. It grew
out of preparations for the application of computer technology to the
production of The New York Times Index. The vocabulary and structure
of the Thesaurus are therefore based largely on those of the Index, but
include many additional terms from the subject card file of The Times
clipping "morgue" and from the vertical file catalogue of The Times
Editorial Reference Library.

The following works were consulted in designing the format of the
Thesaurus: The ASTIA Thesaurus of Descriptors, 2nd edition, December,
1962; the Department of Defense Manual for Building a Technical The
saurus, Project LEX, Office of Naval Research, April, 1966; and the En
gineers Joint Council's Guide for Source Indexing and Abstracting of the
Engineering Literature, February, 1967. The Subject Headings Used in the
Dictionary Catalog of the Library of Congress, 7th edition, 1966, was con
sulted in solving certain problems of terminology.

The work is a cooperative effort of the staff of The New York
Times Index under the general direction of Dr. John Rothman, editor.
The huge task of compiling and annotating the entries was handled by ·
the following staff members :

Robert A. Barzilay, coordinator
Marvin M. Aledort
William F . Marshall
Robert S. Olsen
Daniel Pinzow
Susan L. Pinzow
George D. Trent

The job of final editing was shared by Dr. Rothman and Thomas R. Roy
ston, assistant editor.

Computer programming and operations were done by Central
Media Bureau, Inc., of New York.

© 1969 by The New York Times Company. Reprinted by permission.

32

The New York Times Thesaurus of Descriptors 33

About The Second Edition

Within a few months after publication of the Thesaurus, enough
corrections and additions had accumulated to make it advisable to publish
a complete revision rather than the individual pages with changes originally
planned.

In all, almost a thousand changes were made by the time this
Second Edition was ready for its final computer run. Many of them were
based on suggestipns received from Thesaurus users.

The physical format has also been improved. This edition is printed
on heavier paper, which will turn more easily and be more resistant to
tearing. In addition, continuation headings have been added where required.

The active interest of Thesaurus users has helped make this new
edition a more useful reference tool. Your comments will always be wel
come and sincerely appreciated.

Introduction

The word "thesaurus" derives from a Greek word meaning "trea
sure." As applied to the conventional dictionary of synonyms and anto
nyms, such as Roget's, it is most apt; such a thesaurus is indeed a treasure,
displaying the riches, the fullness and diversity of the language.

The kind of thesaurus that has evolved in the last decade or two
in the field of information processing and retrieval is not a treasure so
much as the key to one. The riches lie in a file of information-a collec
tion of books or pamphlets or reports or photographs or newspapers
and the thesaurus is a means for their exploitation. A thesaurus of this
kind is a device for ordering and controlling the file, so that new items may
be added consistently to related items, and so that all relevant items are
made readily and quickly accessible.

The New York Times Thesaurus of Descriptors is a structured
vocabulary of terms designed to guide information specialists in process
ing and organizing materials from newspapers and other works dealing
with current events and public affairs, and to guide users in searching col
lections of such materials. Because it covers the same vast variety of subject
matter as the daily press, it will prove a valuable tool, we trust, not only
for newspaper libraries but also for general reference libraries, for edu
cational institutions, for government agencies, for business and financial
organizations-in short, for any organization that collects, stores and uses
information on the events of today and yesterday.

34 SOFTWARE PRODUCTIVITY

The Thesaurus consists of terms (descriptors), in a single alpha
betical sequence, which denote the diverse subjects that may be found in
the collection. For each descriptor, some or all of the following data are
given, in the order indicated:

1. Qualifying Terms
2. Scope Notes
3. "See" or "See also" References (listed alphabetically)
4. "Refer from" References (listed alphabetically)
5. Subheadings (listed alphabetically).

These are designed to define descriptors and to correlate them with one
another.

A model page appears on page 35. The remainder of the introduc
tion explains the various features of the Thesaurus in detail and discusses
the major principles of organizing such a file of information. It also in
cludes some general guidelines for certain types of material (for example,
foreign names and corporation names) that are not covered item by item
in the Thesaurus itself. A brief index to the contents of the introduction
follows :

1. Descriptors

Descriptors are primarily subject headings. Deographic names, personal
names, names of companies, institutions and organizations, and other
proper names are included only when they require the use of qualifying
terms, scope notes, a regular pattern of cross references, or a regular
pattern of subdivisions.

The Thesaurus does not include a descriptor for each individual
member of a family. There would be little purpose in listing every item
of furniture, every kind of weapon, or every kind of animal, vegetable or
mineral. Descriptors are given for typical items and for those requiring
any special or unusual handling; and these will serve, it is hoped, as models
for any similar items that are not listed.

Synonyms. Preferences between synonymous or nearly synonymous terms
are indicated by ''see" references (AVIATION. See Aeronautics) .

Non-Standard Terms and Recent Coinages. Descriptors include terms
current in the news (such as BLACK Power or BRAIN Drain) even though
they are not found in standard library catalogues or dictionaries. Descrip
tors do not include brand names or trademarks, technical terms not nor-

The New York Times Thesaurus of Descriptors 35

MODEL PAGE

See South Arabia, Fede ration of

Re fe r fro m Children :md Youth (BTl

See also

Mass Communil.:a tions (for

indusion) (BT)

Pre mium s, Co upons and Tr~ding

Sta mps (NT)

Publio.: Relat io ns and Publh:ity (RT)

Trademarks and Trade N<~mcs (RT)
..:omp:.my names
·subj e~.:ts advertised

Refer from

Marketing and Men:handising (BT)
Publ k Relat io ns :tnd Publicity (RT)

Publ k ation s (BT)

Retail Stores <Jnd Trade (BT)

Subheadings

fo reign cou nt ries

Unit ed States

Awards
Direct Mail

Refer from

Di rect Mail Advertising
Mail Order Companies (BT)
Mailing Lists (BT)

Postal Service (BT)

Magazine

Refer from

Magazines (BT)

Misleading and De..:ep tive
Adve rtisin g

Newspa per

Re fe r from

News and Newspapers (BT)

(BT) - Broader Term
ll il' rar.:hicsl Notat ion~ · 1NTl Narrower Tnm

Outd oo r

Re fer from

tRTl Related Term

Bi llboa rd s CNT)

Out door Adveni sing

Road s (for bill hu ards 1 (BT)

Television ;~ nd Radio

Refer fro m

Television and Radio (BT)

AM ERIC A (Cont inem)

AM ERI C A (J esuit Publi t<~tio n)

AM ERIK A (Soviet Publit <.~tion)

BIRTH Control and Planned Paren thood

Note: Mat erial he re de<.~ls largely with

med kal, legal , moral and social

aspe!.: ts as they \:uncern individual

[<l mily

See al so

Abortion (NT)

Population ;~ nd Vit al St atist ics

(for lin k b et wee n bi rt h

co nt ro\ and population

explosion (BT)

gcogr<lphic headings (spec ific)

(for link between bi rth

co nt rol and populat ion

explosio n) (NT)

Refer from

Births (BT)

Children and Youth (BT)

Contraception

Families and Family Li fe (BT)

Pare nt hood, Plan ned

Planned Parenthood

Po~u l ation and Vital Sta tistks (BT)

Pregnan cy, Ohslet rics and Mat ernal

Welfare (RT)

Re production (Bio logical) (RT)

BLAC K Muslims

Re fer from Muslim Sec ts (RT)

"BLACK" Powe r

See Negroes (BT)

mally used in newspaper articles, slang words, and terms used exclusively
in professional jargon. When colloquialisms, slogans or unusual coinages
are used as descriptors, they usually appear in quotation marks. Archaic
or obsolete terms are included when this is considered helpful.

Abbreviations and Acronyms. Abbreviations and acronyms are used as
descriptors, usually with "see" references to the name spelled out (NATO.

36 SOFTWARE PRODUCTIVITY

See North Atlantic Treaty Organization). The practice may be reversed
when the abbreviation is much better known and more widely used than
the term it represents (DICHLORo-Diphenyl-Trichloroethane. See DDT).
No attempt has been made to compile an exhaustive list of abbreviations
and acronyms.

Alphabetization. To give a complete description of the alphabetization
scheme followed in the Thesaurus would go far beyond the scope of this
introduction; but the following are the major rules applied in alphabetizing
entries here, and recommended: word-by-word order rather than letter
by-letter (AIR Pollution before AIRLINES); abbreviations filed as words
(NATO between NATIONAL and NATURE); inverted headings filed before un
inverted headings (NEW York, State University of, before NEW York Air
ways); homographs filed in the order of person, place, thing (BROOKLYN,
William; BROOKLYN, NY; BROOKLYN Bridge) or in the alphabetical order
of qualifying terms (MERCURY · (Metal); MERCURY (Planet)); numbers
filed as though spelled out (20th Century as TWENTIETH Century), except
where the numerical order is clearly preferable (HENRY vn before HENRY
VIII); and compound terms filed as though two words (REAL-Time before
REALISM), except when the first component is a prefix (TRANS World after
TRANSIT) or a term of clirection (SOUTH-West) after SOUTHERN) .

Specificity. In general, files of information must be so organized as to
bring together all items relevant to a given inquiry and yet permit prompt
access to any single, specific item. In this Thesaurus, the choice of descrip
tors and their degree of specificity reflect the vocabulary and scope of current
journalistic writing and seek to anticipate the needs of users who consult
files of newspapers, magazines, pamphlets, reports and the like for in
formation. When the amount of material on a subject is large (for example,
AERONAUTICS), separate descriptors for specific aspects are advisable (AIR
LINES, AIRPLANES, AIRPORTS, etc.). When the amount of material is rela
tively small and should not be scattered, or when its separate aspects are not
readily segregated, the use of a more comprehensive descriptor is advised.
(For example, the descriptor PLAsTics is used for all kinds of plastic ma
terials, since these are rarely differentiated in newspaper stories; obviously,
such a comprehensive descriptor would be inadequate for the literature of
organic chemistry.)

Generics. Because the subject fields in current events tend to overlap
widely and terms are often vague and imprecise in meaning, a hierarchical
or classed arrangement of descriptors was impossible to achieve. Where
feasible, hierarchical relationships between descriptors are indicated by

The New York Times Thesaurus of Descriptors 37

means of "broader term" (BT) and "narrower term" (NT) notations in
cross references.

Geographic vs. Subject Terms. The problem of whether to organize a
file by subject or by place is one of the most difficult confronting a librar
ian (HOUSING-New York City or NEW York City-Housing?). Except
in mechanized coordinate files, the effort and expense required for com
plete duplication are prohibitive, and a choice between the two approaches
must be made. Our preference for the subject approach is reflected in the
Thesaurus. It is based on the fact that most news developments have re
gional rather than uniquely local significance. Much of the political and
economic news deals with broad geographical areas; cities throughout the
world have similar traffic, air pollution, water supply and slum housing
problems; and so forth. Hence, geographic terms are used mostly for gen
eral descriptions and for general material on the economics, politics, de
fenses, population, history and customs of an area; in short, for material
too broad to fit under subject descriptors. Organizational material on
specific government agencies (formation, budget, personnel) is covered un
der geographic terms ; their activities are covered under appropriate sub
jects. Names of government agencies (except for international and Amer
ican interstate agencies) are not given as descriptors. An attempt has been
made to provide a list of United States (Federal) agencies (as subheadings
under UNITED States), but because their names change frequently and the
status of some is now in doubt, the list may not be complete and is subject
to frequent revision.

Word Order in Multiple-Word Descriptors. For most subject descriptors
consisting of more than one word, the natural word order is preferred
and given here (AIR Pollution; not POLLUTION, Air). For personal names,
the last name is always given first (JOHNSON, Lyndon Baines) . For foreign
personal names, determination of the correct "last name" is often trouble
some; see the next section for some general rules . Geographic names
usually invert from and are alphabetized under the proper-name element
(PHILIPPINES, Republic of the; not REPUBLIC of the Phillipines). Com
pany names should be in natural word order (NATIONAL Broadcasting
Company; not BROADCASTING Company, National) except when inversion
from a proper-name element is clearly preferable (MACY, R. H., & Co.;
not R. H. Macy & Co.) (for dubious cases, the stock market tables often
provide a useful guide) . Names of schools, universities and museums
should generally be in natural word order (MASSACHUSETTS Institute of
Technology) , but there are some obvious exceptions (CHICAGO, University
of; not UNIVERSITY of Chicago). Names of business, trade, civic and pro
fessional associations, labor unions, foundations and certain other organ-

38 SOFTWARE PRODUCTIVITY

izations should invert from an appropriate subject term or personal name
(KANSAS City, Chamber of Commerce of; ADVERTISING Agencies, American
Association of; CIVIL Liberties Union, American; LONGSHOREMEN's Asso
ciation, International; SLOAN, Alfred P., Foundation). It is often helpful
to use inversions of word order to bring together, in the same alphabetical
location, all organizations concerned with the same subject that use the
descriptor for this subject as part of their names (for example, all organ
izations whose names contain the word EDUCATION). When the inversion
is not obvious, or when there is a choice between two or more possible
inversions, alternatives should be covered by "see" references to the pre
ferred version (BROADCASTERS, National Association of Educational. See
Educational Broadcasters, National Association of). Some "see" references
of this type are included in the Thesaurus, especially under common words
such as American, General, or International.

Foreign Names. Foreign names present problems both in determining
the proper word order and in determining proper spelling for translitera
tions . Authoritative reference works such as Who's Who should be con
sulted, but even these are not always in agreement, and, of course, they
cover only a limited number of names. Helpful advice can be obtained
from information officers of foreign consulates, trade missions and dele
gations to the United Nations and other international organizations. The
following rules are offered as a general guide, but they are not exhaustive,
and there are many exceptions.

a. British names including two "last" names (Anthony Wedgwood
Benn) usually invert from the second of these (BENN, Anthony Wedg
wood).

b. Spanish names including two "last" names (Eduardo Frei Montalva) ·
usually invert from the first of these (FREI Montalva, Eduardo).

c. European and Latin-American names containing a partitive (de, di,
van, von) usually invert from the name following the partitive (GAULLE,

Charles de ; HASSEL, Kai-Uwe von) .
d. Names containing a definite article usually invert from the article if

they are French, Italian, Spanish or Portuguese (LA Guardia, Ernesto de)
and from the name following the article if they are German or Dutch
(HEIDE, Gottfried von der).

e. Arabic names containing a partitive (al, el, ben, ibn) usually invert
from the name following the partitive (ATTASSI, Fadhil al; BELLA, Ahmed
ben).

f. Chinese, Indochinese and Korean names invert from the last element
if they have been Westernized (PARK, Chung He), but run uninverted if
not (MAO Tse-tung; NGUYEN Cao Ky). (If such names become popularly
known in an incorrect form, such as "Premier Ky" instead of "Premier

The New York Times Thesaurus of Descriptors 39

Nguyen Cao Ky," appropriate "see" references should be run from the
incorrect form to the correct form.)

g. When foreign names may be transliterated in several different ways,
the preferred transliteration should be determined, if possible, and "see"
references to it should be run from alternate transliterations. Among the
more common instances are the following: In Arabic names, use ai instead
of ei (FAISAL, not FEISAL) and use kh instead of q as the first letter
(KHALIDI, not QALIDI). In Russian names, use of ch instead of tch or tsch
(CHERNISHEV, not TCHERNISHEV or TSCHERNISHEV) and use V instead of
ff as the last letter (suvoRov, not suvoROFF). In Greek names, use kin
stead of C or ch as the initial letter (KARAMANLIS, not CARAMANLIS; KRY
SOSTOMOS, not CHRYSOSTOMos). However, names for which the alternate
transliteration is well established (TCHAIKOVSKY, PROKOFIEFF, CONSTAN
TINE) should be retained thus.

Corporation Divisions and Subsidiaries. The question of whether to es
tablish separate descriptors for corporate divisions and subsidiaries, or to
carry material about them under the name of the parent company, poses
another major problem. In general, separate descriptors should be estab
lished for subsidiaries that issue their own stock, have well-known names
distinct from those of the parent company, or have otherwise a separate
identity (CHEVROLET Division of General Motors Corp.; IBM World Trade
Corp.), and then the parent company should be linked to the subsidiary
by a "see also" reference. When the subsidiaries do not have a clearly dis
tinct identity, it is advisable to carry material about them under the name
of the parent company, especially when the material does not consistently
identify them by name. For example, it is virtually impossible to use sepa
rate descriptors for the overseas operating units of the major international
oil companies. These are referred to sometimes by their own names (ESSO
Libya Ltd.) and sometimes merely as units of the parent company (Stan
dard Oil of New Jersey's Libyan affiliate), and there may be no way of
determining whether the same unit or two different units are involved. Even
when the distinction can be made, it may be better to keep material about
the company together under one name than to scatter it among several
names, some of which may be quite unfamiliar to the users.

Religious Denominations. When the amount of material is relatively
small, material on branches, regional bodies and other agencies of a de
nomination is carried under the collective name of the denomination, and
not under separate descriptors. (For example: Greek Orthodox Church
under ORTHODOX Churches; Southern Baptist Convention under BAPTIST
Churches.) Individual congregations and parishes, if not intersectarian,
should also be included under the name of the denomination, rather than

40 SOFTWARE PRODUCTIVITY

given separate descriptors; but the names of well-known churches (such as
St. Patrick's Cathedral in New York) should be covered by "see" refer
ences to the name of the denomination.

2. Qualifying Terms

Qualifying terms are parenthetical expressions given after certain descrip
tors to distinguish between homographs. For example:

MERCURY (Metal)
MERCURY (Planet)

Qualifying terms may also be used to resolve other contextual ambiguities
in some descriptors. For example:

FIFTH Amendment (U.S. Constitution)

3. Scope Notes

Scope notes are notes appearing after certain descriptors to define or
describe the range of subject matter encompassed by the descriptor. For
example:

DRUG Addiction, Abuse and Traffic.
Note: Material here includes narcotics, stimulants, hallucinatory drugs and
others deemed socially undesirable.

Scope notes may be used at subheadings for the same purpose, and
may also be used to describe the system of subdividing material under
certain descriptors.

4. Cross References

Cross references serve as substitutes for multiple entries and as guides
between descriptors encompassing related material. They are also used at
subheadings as required.

Contrary to usual library practice, cross references have not
usually been established between related descriptors that are immediately
adjacent in the alphabet. (For example, there is no cross reference from
ARMORED Vehicles to ARMORED Car Services.) It was felt that the connec-

The New York Times Thesaurus of Descriptors 41

tion between such adjacent descriptors is self-evident and that cross refer
ences there would be superfluous.

See References. "See" references guide from descriptors not used for "en
tries" in the system to equivalent descriptors used in preference. They are
used mainly between synonyms (AVIATION. See Aeronautics), and when
material denoted by one descriptor is subsumed under another (ORCHES

TRAS. See Music).

See Also References. "See also" references guide from descriptors used
for certain "entries" in the system to other descriptors where related ma
terial is entered. They may lead from more general, broader terms to more
specific, narrower terms (REAL Estate. See also Housing), or vice versa
(THEATER. See also Amusements). They may also lead from one descrip
tor to another on the same hierarchical level which may cover tangential
topics or different aspects of the same topic (ROADS. See also Traffic).

Refer from References. "Refer from" references are the inverse of "see"
and "see also" references. They show all the descriptors linked by "see"
and "see also" references to the descriptor consulted (AERONAUTICS. Refer
from Aviation) .

Qualified Cross References. Numerous "see," "see also" and "refer from"
references are followed by parenthetical expressions defining the particular
aspect of a topic covered by the cross reference, as in DOGS. See also Blind
ness and the Blind (for seeing-eye dogs).

Hierarchical Notations. Many cross references are annotated to show
hierarchical relationships, as follows: (NT) when the reference leads from
a broader term to a narrower term (REAL Estate. See also Housing); (BT)
when the reference leads from a narrower term to a broader term (THEA

TER. See also Amusements); and (RT) when the reference leads from
one term to another on the same hierarchical level for related material
(ROADS. See also Traffic). The use of these notations could not be sus
tained throughout the Thesaurus, however, because the subject fields
covered in newspapers and other current-events publications tend to
overlap widely and the vocabulary is extremely varied, complex and often
imprecise; and hierarchical relationships could therefore not always be
determined. (For example, CRIME and Criminals. See also Courts-which
of these is the narrower descriptor, and which the broader?) In many cases,
the question of hierarchy was moot, and the choice was finally governed
by the descriptor from which the cross reference runs. (For example:
HOUSING. See also Zoning is annotated (NT), even though zoning encom-

42 SOFTWARE PRODUCTIVITY

passes all kinds of land uses, because the cross reference is intended to
cover a specific aspect of housing, namely, residential zoning.) Also, no
attempt has been made to include cross references from all specific de
scriptors in a given subject field to the broad descriptor denoting the field
as a whole. (For example, no broader-term cross references have been
made from the many specific agricultural products, such as GRAIN, to the
descriptor AGRICULTURE and Agricultural Products.)

5. Subheadings

The Thesaurus lists suggested subheadings for descriptors encompassing
a large amount of material. Where a category of subheadings consists of
names of individual components (for example, names of countries, of
states, or of motion pictures), only the category is given, not an inclusive
list of all components.

With few exceptions, subheadings are limited to two hierarchical
levels (main subheadings and sub-subheadings). Further subdivision is
usually not advisable; it makes the beading structure too complex and too
difficult to search. When the need for further subdivision arises, it is usu
ally an indication that the main heading (descriptor) is too broad, and
that, instead of subdividing it further, narrower descriptors should be
established.

Most descriptors lend themselves to both geographic and subject
subdivisions. However, it is usually not advisable to mix geographic and
subject subheadings at the same level (if under EDUCATION, for example,
both Elementary and California are used as subheadings at the same level,
which one would be used for material on elementary schools in Califor
nia?). The nature of the material and the interests of the users should
determine whether subdivisions should be geographical or by subject.

Subheadings may appear with qualifying terms, scope notes and
cross references, just like descriptors.

6. Orientation and Format

Since the Thesaurus is based on the vocabulary used in processing infor
mation from The New York Times, it necessarily reflects the fact that
The Times is published in New York. Thus, the descriptors NEW York
City and NEW York State have subheadings not given for other cities and
states, and New York City and New York State are used as subheadings
under many descriptors that have no other city and state names as sub
headings. Similarly, descriptors for local institutions (such as coLUMBIA

The New York Times Thesaurus of Descriptors 43

University or NEW York Times) are shown with a detailed structure not
given for similar institutions elsewhere. However, the structure outlined
under NEW York City, NEW York State and some local institutions may
be easily applied to other cities and states and their institutions in process
ing local newspapers and other collections there.

In this context, it should be pointed out also that the detailed
structure shown under PRESIDENTIAL Election of 1968 applies to the elec
tion in any current Presidential election year. Similarly, the structure
shown under JOHNSON, Lyndon Baines, applies to any President and may
be applied, with any necessary modifications, to governors, mayors, heads
of foreign governments and other prominent figures.

Generally, the Thesaurus is intended, as its subtitle states, as a
guide in processing and searching materials rather than as a body of firm
and strict rules. Deviations from the guidelines set forth here should be
made as the nature of the materials processed and the interests of their
users require. In processing newspapers and other current events materials
for information retrieval, flexibility is mandatory, and therefore frequent
changes in the Thesaurus are envisaged. These changes may be initiated
by us, or they may be made by individual users to cope with their specific
problems and meet their specific needs.

It is for these reasons that the Thesaurus has been issued in loose
leaf form. Even-numbered pages have been left blank to enable users to
write their own notes at will opposite the appropriate Thesaurus material.
Changes initiated by us will be on individual pages to be substituted or
inserted. The looseleaf format permits users to insert separate sheets
with their own material as desired.

PARTS
A structural Description of

The New York Times Thesaurus of Descriptors

An important objective of the New York Times is contained on page 13
of the Introduction to The New York Times Thesaurus of Descriptors.

Generally, the Thesaurus is intended, as its subtitle states, as a guide
in processing and searching materials rather than as a body of firm
and strict rules. Deviations from the guidelines set forth here should
be made as the nature of the materials processed and the interests of
their users require. In processing newspapers and other current events
materials for information retrieval, flexibility is mandatory, and there
fore frequent changes in the Thesaurus are envisaged. These changes
may be initiated by us, or they may be made by individual users to
cope with their specific problems and meet their specific needs.

In order to provide the kind of flexibility desired in on-line files,
it is important that the computer programs not be based on a set of
implicit or hidden assumption about how the Thesaurus is handled at
the present time. For this reason a structural description of the Thesaurus
is developed here to promote future flexibility and growth through a com
monly understood interface between the designers of the Thesaurus and
the programmers.

The final definition for a thesaurus, when pursued through all the
intermediate definitions below, reduces to a (gigantic) natural language
sequence, accessible and alphabetized on the basis of certain subsequences
-Descriptors, See also References, and so on. It is just that.

How this large character string is to be formatted and stored in a
computing system (with auxiliary directories, pointers, counts, separator
characters, and so on) is a matter of programming strategy and tactics.
It is an important matter, but designers of the Thesaurus need not get
tangled up with it. Rather, they need only be concerned with the Thesaurus
in its external form, as a structured natural language sequence that can
be queried on and added to or deleted from, with certain automatic cross
referencing facilities carried out thereby.

Thus the important question for the designer is "Is this the struc
ture I want for the Thesaurus?" in contrast to questions of content, criteria
for placing content, and such. The objective of the following description
is to permit the designer to examine that question with confidence and
precision. The tools may seem a little formal and formidable at first glance.

44

13
rs.

The New York Times Thesaurus of Descriptors 45

But it is believed that concern will disappear with a little familiarity. The
purpose is not to obscure, but to make analyses more precise and com
prehensive- so that the designer can see the Thesaurus structure per se.

In this connection, the description developed below is somewhat
more general than the present Thesaurus structure. It frequently happens
that the simplification and unification desirable for automatic processing
come only with a certain degree of generalization. And it frequently hap
pens that more flexibility, rather than less, accompanies such generaliza
tion. Not all the flexibility inherent in the proposed file structure is used
in present Thesaurus activities, and it is never expected that all of it will
be used. But it is there to use and, more importantly, known to be there.

The Structural Description

The structural description for the Thesaurus will be given through a series
of syntactic definitions (or "syntactic equations"), each of which expands
a Thesaurus term (a generic form for a part of the Thesaurus) that is
being defined into one or more patterns using simpler and more basic
parts . Any term so defined is ultimately expanded thereby into natural
language text, which is the unspecified primitive for the Thesaurus. As
noted, the description concerns itself only with the structure of the The
saurus and not with its contents.

The syntactic terms, or entities, used in the description are given
in Table 6-1, first as natural language terms and then in a briefer sym
bolic form that will be used for convenience later. Notice that the The
saurus terms are in three categories. First, there is a primitive term from

bich the Thesaurus is ultimately constructed, which is simply natural
language text. All subsequent terms are eventually decomposable into this
natural language text; this is the responsibility of the designers of the
Thesaurus. Second, there is a set of terms used by The New York Times
that are intended to be used in the structural description exactly as the
Times personnel mean them. Finally, there is a set of additional terms
(that will be defined by syntactic equations), which serve as intermediate
yntactic entities between some of the lower- and higher-level terms used

by The New York Times. These intermediate entities are, in fact, known
in various forms to Times personnel as well; the reason for treating them
more rigorously is to improve on the precision possible over natural
language descriptions.

The syntactic equations of the descriptions are given (and num
bered) in Table 6-2, and a brief word of explanation is in order so that
the equations in Table 6-2 can be understood. Each equation consists of

46 SOFTWARE PRODUCTIVITY

TABLE 6-1. Thesaurus Terms

Primitive Term
Natural Language Text

New York Times Terms
Descriptor
Qualifying Term
Scope Note
Hierarchical Notation
See Reference
See also Reference
Refer from Reference
Subheading
New York Times Thesaurus of Descriptors

Additional Terms (defined by equations in Table 6-2.)
Text List
Qualifying Terms List
Term Extension
Term Extension List
Term Structure
Term Structure List

Syntactic Entity

<TEXT>

<TERM>
<QT>
<SN>
<HN>
<SR>
<SAR>
<RFR>
<SUBH>
<THESAURUS>

<TL>
<QTL>
<TE>
<TEL>
<TS>
<TSL>

a "left-hand side" and a "right-hand side." The left-hand side consists of
the syntactic entity being defined by that equation. The right-hand side
is its definition.

There are two major ways in which a definition is made in Table
6-2. The first way is through an informal definition, given in natural lan
guage between asterisks. This kind of definition may be used when no
ambiguities or misunderstandings are likely. In any case, at least one term
(a primitive term such as the first one in Table 6-2) must be defined in
some informal way, or else the whole system of definitions will be circular.
The second method of definition is by syntactic formula, which expresses
one or more possible patterns of terms, using some notation, which we
describe next.

Note that each syntactic entity in Table 6-1 begins and ends with
an angle bracket (<, >), which seems to enclose a meaningful acronym
or word. In fact, the whole string, including the angle brackets, is to be
regarded as a single symbol, and the internal sequence of characters is of
mnemonic significance only. In addition to the angle brackets (which are ·
used to construct multiple-character symbols thereby), we also use as
metasymbols equals (=), comma (,), square brackets ([,]) , and braces

The New York Times Thesaurus of Descriptors 47

TABLE 6-2. Thesaurus Equations

I <TEXT>= *Natural Language Text*
2 <TERM> = <TEXT>
3 <QT> = (<TEXT>)
4 <SN> =Note: <TEXT>
5 <HN> = { (BT), (NT), (RT)}
6 <SR> = See [<TEL>] [<TL>]
7 <SAR> = See also [<TEL>] [<TL>]
8 <RFR> = Refer from <TEL>
9 <SUBH> = Subheadings [<TSL>] [<TL>]

10 <THESAURUS>= <TSL>
II <TL> = *Alphabetized list of <TEXT> items*
I2 <QTL> =*List of <QT> items*
13 <TE> =<TERM> [<QTL>] [<SN>] [<HN>]
I4 <TEL>= *Alphabetized list of <TE> items*
I 5 <TS> = <TE> [{ <SR>, <SAR>}] [<RFR>] [<SUBH>]
I 6 <TSL> = *Alphabetized list of <TS> items*

({, }) . The equals has already been informally explained above, in the
definition of syntactic equation. The comma is used merely to separate
items in a list. The square brackets are used to enclose an item; they
mean that the appearance of that item is optional, that is, it may or may
not appear in the pattern given by the formula. The braces are used to
enclose a list and mean that precisely one item of the list must be used
in the pattern. Natural language text appearing by itself, that is, not
within angle brackets or asterisks, stands for itself. For reasons that are
apparent with a little reflection, such occurrences of natural language are
called syntactic constants. (The expression "See also" is a frequently re
curring syntactic constant in the Thesaurus, for example.) The formula
of a right-hand side of a syntactic equation can thus vary, by the use of
brackets and braces, over several forms; the meaning of the syntactic
equation is that the syntactic entity on the left-hand side is defined as any
and all forms on the right-hand side that are possible.

To illustrate these ideas, note that Equation 4 of Table 6-2 states
that <SN> (i.e., Scope Note) consists of the five characters, Note:, fol
lowed by the syntactic entity, <TEXT>, which by Equation 1 is simply
natural language text. That is, Equation 4 sets up the syntactic constant
Note:" as the opening five characters of a Scope Note, followed by the

syntactic variable <TEXT>, which stands for any text (sense or non
sense) desired. The first four syntactic equations can be translated back
into the descriptions in the reference very readily. Note that <QT>
(Qualifying Term) is placed between parentheses in Equation 3. Equation

48 SOFTWARE PRODUCTIVITY

5 illustrates the use of braces. The entity <HN> (Hierarchical Notation)
is one of the three strings of four characters "(BT)," "(NT)," or "(RT)."
Just to check understanding, note that an equivalent form of Equation 5 is

< HN > = ({BT, NT, RT})
or even

< HN > = ({B,N,R}T).

Table 6-2 is a reference table rather than an exposition table. Its
virtues are its conciseness and precision in defining the Thesaurus struc
ture. But the equations leading up to Equation 10, for <THESAURUS>,
take a little more examination and explanation, which we go into next.
The motivation for so doing is that, once understood, Table 6-2 is a com
plete and authoritative map of the structure of the Thesaurus.

More on Table 6-2

The idea leading up through the higher-level entities in Table 6-2, to
<THESAURUS>, can be illustrated by examining several instances of a
<SAR>-a "See also Reference." We note that a <SAR> consists of
the phrase "See also," followed by one or more References to Descriptors.
However, along with the Descriptors may or may not come a list of
<QT> (Qualifying Term) items, a <SN> (Scope Note), and a <HN>
(Hierarchical Notation). We build up these possibilities in Equation 13
(using Equation 12 first to define a list of <QT> items, in contrast to
a single <QT>). Now with each single Reference defined by Equation 13
as <TE> we use Equation 14 to define an alphabetized list of such Ref
erences, naming it <TEL>. Also, since some References may be to non
descriptors ("See also foreign countries"), we also build an alphabetized
list of such References, naming it <TL> . Now, finally, we can form
<SAR> in Equation 7, as the syntactic constant "See also" followed
(optionally) by a list of Descriptor References and/or a list of nonde
scriptor references.

We used the expansion (or synthesis) of Equation 7 to illustrate
a similar process for Equations 6 and 8. Equation 9, defining Subhead
ings, is a little more complex and uses what is known as a "syntactic
recursion" in its definition. First, we define the structure possible under
a "main heading" of the Thesaurus as <TS> (Term Structure) in Equa
tion 15. It is a <TE>, already defined, followed (all optionally) by either
or neither of <SR> or -<SAR>, by <RFR>, and by <SUBH>. Next

The New York Times Thesaurus of Descriptors 49

we note that a Subheading can be defined in this way itself if we realize
two crucial points:

1. The options available include all possibilities in Subheadings, and
then some- we can choose to ignore the additional possibilities if
we please.

2. The relation of being a subheading (to a heading) can be relative
rather than absolute, so that, for example, a <SUBH> under a
<SUBH> (that is, in its syntactic expansion) is an (absolute)
subsubheading.

Thus the right-hand side of Equation 9, which defines <SUBH>,
when expanded through Equations 16 and 15, in turn, includes an item
< SUBH>, which is the entity being defined. This is thereby called a
recursive definition.

In more abstract topics there are inherent theoretical difficulties
with recursive definitions, but there are no practical ones here. What
Equations 9, 15, and 16 say, together, is that any number of "subhead
nestings" are possible in the structural description-and this is an instance
of the generality of this description. In practice, the user will create only
a given number of such nestings . The lowest Subheading in the nesting
will have the term <SUBH> missing on the right-hand side of Equation
15 (the whole term [<SUBH>] is optional). Thus the full expansion of
Equation 9 (or Equation 15) in a realized file will always terminate.

It may now be somewhat of a surprise at first glance, but in de
fining a <TSL> in Equation 16, originally conceived to be the list of
Term Structures that may be contained in a Subheading, we have indeed
defined the Thesaurus, and Equation 10 merely records this fact. The
number of characters and entries may be of a completely different order
of magnitude in a typical Term Structure (the appendage to a Descriptor)
and the entire Thesaurus, but the structure is identical, and that is all we
are defining at this point.

Conversational Access

Access to the Thesaurus in printed form is by page turning and by eye,
sing the alphabetized structure inherent in its definition. The human

· and and eye represent a potent search mechanism as long as the material
· not voluminous and nothing further is to be done with the results.

In on-line conversational access, however, we must be more ex
licit and precise in calling for sections of the Thesaurus, at most a few

50 SOFTWARE PRODUCTIVITY

lines at a time, by explicit commands rather than implicit page turning
and scanning. Therefore we outline here a specific system for conversa
tional access.

The basic format of the conversational access is "Request and
Display." The user will make a request for some section of the Thesaurus,
and the system will display the results of that request. The results will be
the section requested or else an error message, either dealing with the
format of the request itself or stating that the section requested could not
be located. The basic entry point into the Thesaurus is through Descrip
tors, possibly further specified by Qualifying Terms and possibly at Sub
heading levels in the Thesaurus. If the Descriptor is not a preferred term,
its request will bt;ng an automatic display of a See Reference list. If a
Descriptor has been located that is a preferred term, it will bring a dis
play containing Qualifying Terms, a Scope Note, and a Hierarchical No
tation to the extent that these items are present. We call this a "base
Descriptor." Now, given such a Descriptor, the user may request access
to any of three lists possibly associated with it: the See also References,
the Refer from References, and the Subheadings. Having requested one
of these three lists, the user may then request References or Subheadings
simply by asking for the "Next" item on the list or by asking for the
Descriptor itself. The display response to the "Next" request is the next
Reference or Subheading, if available. A Reference may be either a defi
nite Descriptor or an indefinite reference to a generic category of Descrip
tors. If no more items remain on the list (the user presumably having
scanned some previously), the message "End of List" is displayed. Atten
tion can be changed from one of the three lists to any of the others by a
simple request instead of "Next" or by a Descriptor request.

The user who wants to follow out a Referenced or Subheading
Descriptor (for example, to examine its "See also References") can make
a "Transfer" request, which replaces the original base Descriptor by its
Referenced or Subheading Descriptor, and access continues from the latter
as indicated previously. After one or more requests for such a "Transfer,"
a "Return" request can be made, which replaces the current base Descrip
tor by the Descriptor which produced it by "Transfer." Thus after a series
of "Transfer" requests, an equal number of "Return" requests will pro
ceed (in reverse order) through the same set of Descriptors, back to the
original one.

The foregoing Requests and Displays are summarized (and num
bered) in syntax form in Table 6-3. An examination of the table will
show how each of the commands leads to a specific display. The displays
shown with the request refer to new information. Ordinarily, it would be
expected that certain information would be carried over (such as the
Descriptor currently being used as a base, which reference list is under

-~----------------------------

The New York Times Thesaurus of Descriptors 51

TABLE 6-3.

Request

1. Entry <TERM> [<QTL>]
2. See also
3. Refer from
4. Subheading

Next
6. Transfer

Return

Conversational Access

Display

{ <TE>, <SR>, no Entry}
{See also, no See also, no Entry}
{Refer from, no Refer from, no Entry}
{Subheading, no Subheading, no Entry}
{ <TE>, <TEXT>, end of list}
{ <TE>, no Reference/Subheading}
{ <TE>, original Entry}

examination, and so on), as long as the condition held during the con
·ersation.

Note that the only syntactic variable which can be used in a re
quest is a <TERM> (a Descriptor), followed optionally by a <QTL>
Qualifying Term List). The syntactic variables displayed are limited to

< TE> (Term Extension), <SR> (See References), and <TEXT> (for
=>en eric references); but, of course, just these displays permit the user to
· crowse through any part and detail of the Thesaurus desired. The remain
- g requests and displays are syntactic constants. In practrce, this small
ocabulary of request items, all but one of which are constants, represents

.:. simple, readily understood means for accessing any information desired
· the Thesaurus.

esaurus Creation and Maintenance

·."e define Thesaurus creation and maintenance in terms of the syntactic
_ tities of Table 6-1 above the level of the primitive Natural Language
- ext. That is, we consider only the addition and deletion of entire The-
- urus items and not portions of text. The addition and deletion of char-
_;:: ers in text making up a file item is considered text editing rather than
~ esaurus maintenance in this context. It is recognized that text editing
_: a desirable future facility in the overall process of Thesaurus mainte-

ce, and the present emphasis reflects merely a time phasing of ultimate
-:erests.

The process of Thesaurus creation is simply the construction of
_ < TSL> that is to be defined as the Thesaurus. (The problem of how
_ h a Thesaurus is to be physically loaded into storage, with directories,
...=d so on, is a programming question not dealt with here.) For example,
-r,e New York Times Thesaurus ojDescriptors, by definition and barring

52 SOFTWARE PRODUCTIVITY

typographical or logical deviations from its designers' intentions, is a
<TSL>.

The process of Thesaurus maintenance is likewise very simple in
syntactic terms. A Thesaurus addition or deletion can be defined by giving
a location and a syntactic entity that is to be added or deleted. The loca
tion can be given in the Conversational Access requests, namely,

Entry <TERM> [<QTL>]
See also
Refer from
Subheading
Transfer

to prescribe the destination of the syntactic entity to be added or the
entity to be deleted. In the case of unique items, such as a Scope Note
or a Hierarchical Notation, addition is taken to mean replacement if such
an item is already present. In case of listed items, such as See or See also
References, or Subheadings, addition is done automatically in alphabetized
form . In the case of deletion, deleting a Descriptor automatically deletes
all file items accessed by that Descriptor as well.

Illustrations

We use the model page (page 35 of The New York Times Thesaurus -of
Descriptors) to illustrate the foregoing ideas concretely, including the
structural description, conversational access, and Thesaurus creation and
maintenance.

First, regard the contents of the model page as a miniature The
saurus. It has the structure of the entire New York Times Thesaurus of
Descriptors, only with far less text. It is, in fact, a <TSL> (Term Struc
ture List) of exactly 10 alphabetized <TS> (Term Structure) items,
which begin with Descriptors:

ADEN Protectorate
ADOPTIONS
ADVERTISING
AMERICA
AMERIKA
BIRTH Control and Planned Parenthood

The New York Times Thesaurus of Descriptors 53

BLACK Muslims
"BLACK Power"
BLACKLISTING

(Note that Equations 10 and 16 of Table 6-2 express this structural fact.)
Next, any one of these <TS> consists of a <TE> (Term Exten

sion) followed optionally by References and Subheadings (Equation 15).
Some <TS> have no References or Subheadings at all, and some <TE>
consist only of a <TERM> item (a Descriptor), but these are admissible
possibilities in the equations. Nevertheless, in order to keep matters straight
we recognize each syntactic entity represented in the miniature (or full)
Thesaurus, even though one section of natural language text may stand
fo r several entities at once. For example, the first <TS>,

ADEN Protectorate
See South Arabia, Federation of

epresents the diagrammed entities in Figure 6-1. Similarly, the seventh
< TS> has the structure in Figure 6-2.

ADEN Protectorate
L_<TERM>_j
L_ <TE>___j

See South Arabia, Federation of
L--- <TERM> ______j

L---- < TE > ----'
'----<TEL> __ _,

'------< SR > -----'
'------------< TS > -----------'

BLACK Muslims
L<TERM>_j
L_<TE>__l

FIGURE 6-1

Refer from Muslim Sects (BT)
L< TERM >l..< HN > 1

L<TE>----'
L <TEL > ------'

L----< RFR > -----'
'------------ < TS > ---------------'

FIGURE 6-2

In fact, the model page (by design) exhibits nearly every The
: urus structural possibility; it can be instructive to locate the syntactic

uation defil}ipg _any given str!Jctural relationship on the model page.

54 SOFTWARE PRODUCTIVITY

TABLE 6-4. A Sample Conversation

Request
Display

Entry ADEN Protectorate
ADEN Protectorate

See South Arabia, Federation of
Entry ADEN

No Entry
Entry BLACK Muslims

BLACK Muslims
See also

No See also
Refer from

Refer from
Next

Muslim Sects (BT)
Next

End of List
Subheadings

No Subheadings
Entry ADVERTISING

ADVERTISING
Transfer

No Reference/Subheading
Subheadings

Subheadings
Next

Mass Communications (for inclusion) (BT)
Transfer

Mass Communications (for inclusion) (BT)
Refer from

Refer from
Next

ADVERTISING
Transfer

ADVERTISING
Return

Mass Communications (for inclusion) (BT)
Return

ADVERTISING
Return

Original Term
Subheadings

Subheadings
Next

foreign countries
Transfer

No Reference/Subheading
Next

United States
etc.

The New York Times Thesaurus of Descriptors 55

Now consider the miniature Thesaurus given by the model page
to be "on-line" for conversational access. Although the eye can take in
the entire page, imagine that it cannot and that only one item is avail
able for inspection at a time. We will invoke the "Request and Display"
mode of conversational access to browse, in illustration, through this min
iature Thesaurus. We show a conversation in Table 6-4.

In the conversation the actual language itself is terse and skeletal
-because we are interested only in structural aspects of the Thesaurus
and in how Request and Display operations can permit a user to browse
and examine the Thesaurus item by item. In practice, the Display side
would be more abundant, maintaining "backtrack status" information,
and so on, as display space permits.

Thesaurus creation is illustrated by the model page itself: natural
language text with structural characteristics satisfying the equations of
Table 6-2. For Thesaurus maintenance we consider an addition and a
deletion (noting that a modification can be considered a deletion followed
by an addition). Suppose we wish to add Television (NT) to the Refer
from References of ADVERTISING. We form the Locator

Entry ADVERTISING, Refer from

and the item

<TE> = <TERM> <HN> = Television (NT)

or addition. Then Television (NT) would be automatically added (in al
phabetized order) to the Refer from References of ADVERTISING.
Similarly, to delete the Hierarchical Notation (BT) in the "BLACK
Power" See Reference, we locate by

Entry "BLACK Power"

and delete item

<HN> = (BT)

therein.

Measurements of
Program complexity

(1969)

rntroduction

ARTICLE
7

It is increasingly clear in large-scale programming systems that we face
problems of almost pure complexity. Five hundred years ago we did not
know that air had weight, but we know it now. Some years from now
we will learn that complexity has a cost, even though we do not know
how to measure that complexity at the present time.

Because of our ignorance, managing a large-scale programming
project is a perilous activity. Our technical tools for managing are inade
quate. It is difficult to measure performance in programming. It is difficult
to diagnose trouble in time to prevent it. It is difficult to evaluate the
status ~f intermediate work such as undebugged programs or design
specifications and their potential value to the completed project.

Thus we come to understand that "complexity will exact its price,"
whether we like it or not. Managing a large programming project involves
learning to pay the price of complexity in such a way that we control
the destiny of that project development. That price will involve costs in
core and storage facilities, costs in running time, and costs in man-hours.
It is only too easy in the heat of small programming battles to forget that
the price must be paid-to whip up a "small bowl of spaghetti" to get
faster throughput, or to save core, or to put off documentation until
later in order to get something running.

The best assurance for learning to pay the price of complexity

57

58 SOFTWARE PRODUCTIVITY

in the right way is to learn how to identify and measure it. The following
ideas represent an approach to one aspect of measuring the complexity
of programmers' work. The emphasis is on automatic procedures, which
can be formulated for widespread common experience in the management
of programming projects, rather than on heuristic procedures.

Programming Measurements

One of the most difficult areas in programming from the beginning has
been that of programming measurements. We all appreciate the value of
providing quantitative measurements in programming, but what to quan
tify is still very much a question.

The number of instructions is one typical indicator of program
ming effort. But in some problems the objective is to produce as few
instructions as possible (for example, in an operating system scheduler),
so that the value of the job is inversely proportional to the number of
instructions rather than proportional. to it. In general, under assumptions
of things being equal, such as programmer capability, program complex
ity, and machine availability, the number of instructions may not be a
bad estimate of program size. However, this typically makes assumptions
about the very things we set out to measure.

Viewed at a somewhat deeper level, the place to begin the measure
ment is the total task being accomplished for a user. This total task will
have some size and complexity, which we are hard put to measure at the
moment. In addition, there will be some mix of hardware and software
capability addressed to the task. For example, the same task will be easier
to program in a big, fast computer than in a small, slow one, where both
space and time must be optimized; so even though the task is the same
to the user, the software/hardware mix may be different.

There are ideas in the mathematical theory of information that
may help in quantifying programming measurements. In information theory
the concept of information content for a message is quantified, and this
concept can be taken over intact from English, say, to a programming
language.

Another measure of information content can be deduced from
the execution sequences that programs generate. In this case, a program
with a great deal of branching will produce execution sequences having
higher information content than a program with little branching. This
second measure of information content gives a quantitative value for the
complexity of operations a program generates in the computer.

Measurements of Program Complexity 59

Program Content

We will use the phrase "program content" as shorthand for the informa
tion content of a program, regarded as an expression in a programming
language. Actually, there are several alternative ways we might measure
and interpret such program content, and empirical research is clearly in
order. Several specific alternatives are given next.

Character-Based Program Content

Perhaps the simplest approach is to regard a source program as a string
of characters just as they appear on a keypunch. One would probably
want to squash out extra blanks in such programs, but otherwise treat it
as a straight character string. There are two ways in which program con
tent could be determined. First, one can regard the universe of character
strings that are generated by programmers in a given source language,
such as PL/I or Assembly. In this case, one could accumulate statistics
over a wide variety of existing source programs that were deemed to be
representative in some sense and, from this, compute such quantities as
information content per character. Another method is to regard each new
source program as a universe in itself and build statistics from that single
source program, which then can be used to compute information content
per character. Intermediate methods would be to regard classes of scien
tific programming, system programming, information storage retrieval
programming, and so on.

Symbol-Based Program Content

Another level of sophistication would be to identify certain basic symbols
in source programs such as identifiers, reserved or key words, and special
characters, as characters in a new alphabet and, again, to compute infor
mation content per character in this newly derived alphabet. All the possi
bilities in character content remain in choices of the universe. In addition,
the treatment of identifiers and reserved or key words also admits alter
natives. At one level, all identifiers may be treated as a single generic
character, or they may be treated as individual and distinct characters,
symbol by symbol. Intermediate levels would treat classes of identifiers
as generic characters, such as data identifiers, entry identifiers, and file
identifiers.

60 SOFTWARE PRODUCTIVITY

Syntactic-Based Program Content

Both the preceding cases are, in fact, special cases of a selection of syn
tactic elements in a programming language. In the description of a lan
guage, one usually begins with characters such as those from the keypunch,
builds these into identifiers, reserved words, and so on, and then these
further into expressions, conditions, statements, and the like, on to DO
groups, procedures, and finally, programs. In the foregoing cases, we have
partitioned the physical character string into a new string of syntactic ele
ments at one level or another. However, the program itself has a hier
archical structure, as implied by the linear structure, such as identifiers
contained in statements, statements in DO groups, and DO groups in
procedures, and one can conceive of computing the information content
required to define the hierarchical structure that a program realizes. There
is such a wide set of alternatives here that further selection will be desir
able, depending in large part on the source language itself and its properties.

Things We Might Learn

Our main target in considering theoretic measures of the information in
programs is to identify intrinsic difficulties and measures of performance
in programming. These measures will be imperfect, at best, but they could
well provide a good deal of insight and calibration that we do not have
now, from simple instruction or statement counts.

The different kinds of. program content described above may have
different advantages, depending on what we are looking for. For example,
an apparent disadvantage of the character-based program content is that
it may depend upon the length of names used by programmers, that is,
two programs that are identical, except that short names in one are sub
stituted for long names in the other, may turn up with different program
contents. It is not really known that this will happen with a sizable differ
ence, and, in fact, the definition of information content will implicitly take
advantage of long names reappearing to lower the information content
per character. Nevertheless, it probably will result in more information
content for the total source program. However, this may not necessarily
be a fault, for example, in measuring how difficult such a program might
be to code or keypunch, where some of the work involved is related to
the sheer number of characters. It may also be worth giving a programmer
credit for doing more work by using longer names because this helps in
the readability of the program and, in fact, may represent more work on
the part of the programmer in remembering longer names correctly. So

Measurements of Program Complexity 61

even such a choice of character- versus symbol-based program content
turns out not to be quite so simple without further investigation and
consideration.

Any use of such measurements will have to be calibrated against
some kind of experience built up in an experimental or development
period, in which programs with certain already identified characteristics
have been analyzed and the program contents correlated with these char
acteristics. A possible use is to discover the extent to which the full
facilities of a programming language are being utilized in a program
ming system. Again, it is a guess at the moment that programming from
a small subset of a language will result in lower program content per
character or symbol than otherwise. For example, fewer reserved or key
words that identify various types of statements may appear and lower the
program content in that way. Whether this actually occurs or not should
be a matter of empirical investigation.

Looking farther ahead, we can see that the program content may
give new indications of how difficult a program may be to debug or how
difficult to document or understand by someone else. It is clear that both
debugging and documentation are complex subjects and will not be re
solved in any definitive way simply by program content; but it does seem
possible that program content may reduce, by a worthwhile amount, the
residual of uncertainty that needs to be understood by other means.

Execution Content

We will use the phrase "execution content" as shorthand for the infor
mation content of an execution sequence generated by a program. Again,
there are many alternative ways to measure and interpret this execution
content, and, even more than before, empirical research is in order.

Whereas program content can be applied at any point in the life
of a program (as intermediate work not yet debugged or program frag
ments, for example), execution content can only be determined with a
program that has been completed and debugged to the point of executing.

Again, empirical evidence is in order, but it seems that program
content and execution content can be quite independent of one another.
This may not be true, but if there are relations that develop, knowing
that would be valuable in itself.

As in the case of program content, the range of alternatives
actually stems from a complete description of the program execution in
question. This complete description is typically representable in terms of
a sequential state process, where the program takes some machine-hy-

62 SOFTWARE PRODUCTIVITY

pathetical or real- from state to state in the presence of input data. These
states are the alphabet on which information can be computed. In pro
gramming languages where individual statements are identified, one of
the simplest possibilities is to regard the statements as characters in an
alphabet and the execution sequence as the actual statements in the order
they are executed. The sequences so generated will typically be much
longer than we are used to looking at in an information theoretic context
and, indeed, in the case of program content. But the logical basis for com
puting information content is the same.

Another approach may consider syntactic elements at a higher
level than statements, such as procedures, groups, and so on, or simply
branch points in the source program.

At more detailed levels, execution content might well involve
machine operations, in contrast to source language operations, when, for
example, branches would be incurred in subroutines and macros called
by the compiler, which is hidden to the programmer. These kinds of
investigations would not be aimed so much at programmer measurement
as programmer education, and at the effect of source language programs
in the machine environment.

What to Do Next

The next thing to do is to develop empirical evidence of how information
content depends on actual programs. The main effort required is to gen
erate a small set of analysis programs, which will themselves analyze
other programs for either program content or execution content auto
matically. There are plenty of programs around to analyze, and particular
programs can be identified to calibrate the general findings on other
programs.

There are three kinds of subprograms required in the analysis of
program content or execution content: source program analyzers, execu
tion trace analyzers, and information statistics analyzers.

The source program analyzers should take in PL/ 1, Assembly,
Fortran, or other source programs, and according to various alternatives
desired, output-derived character strings for further analysis.

The execution trace analyzers could probably operate on the basis
of preprocessing source programs and inserting interrupts or calls at the
beginning of each statement, block, or whatever is to be traced, at which
time the objects being traced can be identified and put into an output
stream. The result should be a string of standard characters, just as from
the program analyzers, although possibly these strings may be very much

Measurements of Program Complexity 63

larger and consist of alphabets with many more characters than one would
typically find in the program content case.

The information statistics analyzers should take as input a string
of characters in standard form, and as output various information theo
retic quantities such as information content per character or information
content for the string. It should be emphasized that these information
statistics can be generated as formal quantities regardless of the statistical
assumptions behind the input character string. In particular, there are
certain differences between a natural language, such as English, and for
mal languages such as are used in source programs. One difference is the
span of correlation in formal languages, compared with natural languages;
for example, a legal PL/I program which contains a DO statement is
certain to contain an END statement sometime later, possibly very much
later. These kinds of necessary correlations, independent of separations,
are not characteristic of natural languages. What their effect is on the
computation of information statistics remains to be studied. Among other
things, these differences require a slightly different interpretation of what
the statistical basis is. It is not usual in a natural language to compute the
information content of a message on the basis of the statistics of that
message alone. This is, in part, because we are asking different questions
in analyzing natural languages, such as how difficult is it to transmit a
random English message over a telegraph circuit, for example. However,
in the present case we are looking for distinctions among messages them
selves that may appear because of subtle patterns, which information sta
tistics may reveal for us. In this case it may be very sensible to consider
the information content of a message or program on the basis of the
statistics it generates. In the more classical context we might be asking a
question such as "If this message were statistically representative of the
language in which it is stated, then what is its information content?"

Chief Programmer Teams:

ARTICLE
8

Techniques and Procedures

(1970)

An Opportunity

There is an opportunity to improve both the manageability and the pro
ductivity of programming to a substantial degree. This opportunity lies
in moving programming practices from private art toward public science
and in organizing these programming practices into job structures that
reflect appropriate skills and responsibilities 'in a team effort.

A Chief Programmer Team

A Chief Programmer Team is a response to this opportunity. A Chief
Programmer Team is a small but highly structured group that is headed
by a programmer who assumes responsibility in complete detail for the
development of a programming project. The primary idea in a Chief
Programmer Team is to go from an unstructured "soccer team" approach
in programming to a structured "surgical team" approach. The Chief
Programmer Team is made up of members having very specific skills
and roles to play. A typical team nucleus consists of a Chief Programmer,
a Backup Programmer, and a Programming Librarian. The Programming
Librarian is a secretary or other clerical specialist with additional training
in dealing with programming materials. In addition to the nucleus, more
programmers, analysts, technical writers, technicians, or other specialists
may be incorporated as well.

65

66 SOFTWARE PRODUCTIVITY

The Chief Programmer Team permits the application of new man
agement standards and new technical standards to programming projects.
The management standards derive from the specialization of skills and
duties of personnel who are trained independently for various roles in
programming systems development. The technical standards are made pos
sible by utilizing higher-level technical skills for the actual programming
process, technical skills that are freed up through work structuring and
delegation in the Chief Programmer Team.

A Programming Production Library

A Programming Production Library (PPL) serves as a focal point and
a critical ingredient in the Chief Programmer Team. The PPL records a
developing programming project in continuous, visible form. The team
members' interface between programming and clerical activities is through
this visible project. The Programming Librarian is responsible for main
taining the PPL. The Chief Programmer is responsible for its contents.
This structure of responsibility permits a new level of management stan
dardization in project record keeping. The PPL is an "assembly line"
concept, in which people work on a common, visible product, rather than
carrying pieces of work back to their "benches."

The PPL also represents a major programmer tool for produc
tivity, through isolating and delegating clerical activities out of program
ming. As such, it permits a programmer to exercise a wider span of
detailed control over the programming. This in turn permits fewer pro
grammers to do the same job, which in turn reduces communication re- ·
quirements, and the time gained thereby enables a still wider span of
detailed control in the programming. With advanced programming tech
niques and technical standards, discussed further below, this span of
detailed control can be expanded by an order of magnitude beyond to
day's practice; the PPL plays a crucial role in this potential expansion.

Technical Standards in Programming

New technical standards play a key role in Chief Programmer Team
operations. Recent theoretical developments provide a foundation for
greater discipline than before, which insures more uniform and repeatable
program development processes. A Chief Programmer is a highly disci
plined programmer-the complete opposite of the "mad scientist" pro-

Chief Programmer Teams: Techniques and Procedures 67

ducing a creature no one else understands. The PPL imposes an additional
discipline on the whole Chief Programmer Team.

It requires good programmers to work within these new technical
standards, just as it takes a good engineer to design a complex device
using only a few standardized units. In programming these days there is
often a confusion between creativity and variability-they are not the
same. A high act of creativity in programming is to find deep simplicities
in a complex process and to write programs that are easily read and
understood by others. This is a major test of a good programmer.

The Chief Programmer

The reintroduction of senior people into the detailed programming pro
cess also recognizes a new set of circumstances in programming systems
such as OS/360, which was not nearly so critical in previous operating
systems. It is that the job control language, data management and utility
facilities, and high-level source languages are so rich and complex that
there is both an opportunity and a need for using senior personnel at the
detailed coding level.

The need is to make the best possible use of a very extensive and
complicated set of facilities. OS/360 is neither easy to understand nor
easy to invoke. Its functions are impressive, but they are called into play
by language forms that require a good deal of study, experience, and sus
tained mental effort to utilize effectively.

The opportunity is for a good deal of work reduction and simpli
fication for the rest of the system, in both original programming and
later maintenance. For example, the intelligent use of a high-level data
management capability may eliminate the need to develop a private file
processing system. Finding such an intelligent use is not an easy task but
can bring both substantial reductions in the code required and easier
maintenance of the system.

The Backup Programmer

The concentration of responsibility in a Chief Programmer Team may
seem to create undue managerial exposure on projects. However, there
are procedures that can reduce this exposure, not only to an acceptable
level, but to a level considerably below those we have now in the "soccer
team" approach.

68 SOFTWARE PRODUCTIVITY

One reduction comes from the use of a Backup Programmer, a
peer of the Chief Programmer in matters of system design, so that a
second person is totally familiar with the developing project and its ra
tionale. Another major function of the Backup Programmer can be to
provide independent test conditions for the system.

In addition, the Backup Programmer can serve as a research assis
tant for the Chief Programmer in questions of programming strategy and
tactics. It has already been noted that the use of OS/360 is formidable.
but its imaginative and intelligent use can mean very large differences
in the amount and kind of detailed code that may be needed. In this
way a Backup Programmer can provide a Chief Programmer with more
freedom to concentrate on the central problems of the system unde;
development, using results of peripheral investigations that have bee
assigned to the Backup Programmer.

The Programming Librarian

The job of a Programming Librarian is standard across every Chief Pro
grammer Team and is independent of the subject matter of the project.
It is to maintain the records of a project under development, in both an
internal, machine-readable form and an external, human-readable form.

The external records of a Chief Programmer Team project are
maintained in a set of filed listings, which define the current status and
previous history of the project. The current status is maintained in loose
leaf notebooks, each headed by a directory and followed by an alpha
betized list of member modules. When members and directories are up
dated and replaced in the status notebooks, the replaced copies are archived
in chronological journals. All results of debugging runs are also main
tained in journals.

Programmers build and alter the project status by writing programs
or data on coding sheets or by marking up status members in the PPL.
It is the responsibility of the Librarian to introduce this data into the
project records. This responsibility is carried out through a set of inter
locking office procedures and machine procedures. Part of the office pro
cedures deal with data entry into the PPL. The remainder deal with the
filing of output from the machine procedures; it is this filing process that
maintains the visible project.

Programmers also call on the Librarian for all assembling, com
piling, linkage editing, and debugging runs required in the project. The
results of these runs are filed automatically by the Librarian as part of
the visible project.

--~·---------·· .. -- -----

Chief Programmer Teams: Techniques and Procedures 69

The Team Idea

Note that we support a Chief Programmer not simply with tools, but
with a team of specialists, each having special tools. The Backup Pro
grammer supports the Chief Programmer at the technical design and
programming strategy level. The Programming Librarian supports the
Chief Programmer at the clerical and data handling level. Other pro
grammers and analysts play roles precisely defined by the Chief Program
mers to meet project requirements, designing and coding modules that are
originally specified and finally accepted by the Chief Programmer in the
system.

A surgeon and a nurse communicate at a terse "sponge and scal
pel" level, with little room for misunderstanding and little time wasted.
The doctor never says, "Ms. Jones, I am carrying out a cardiovascular
operation, etc., and have used this scalpel which may now have some
germs on it, etc., so would you please sterilize it, etc., and return it to
the rack, etc." Rather, the sponge and scalpel interactions are independent
of the type of surgery, and the nurse's role can be prestructured and
taught in nursing school, not in the operating room.

The relation of Programmer and Librarian can be made precise
and efficient by similar developments and standards. Simply marking up
a correction or addition in a listing of the PPL by a Programmer leads
to an automatic response by the Librarian to incorporate the new infor
mation in the PPL.

The visibility of the PPL and the automatic clerical operations
that maintain it permit the programmers to concentrate on programming
matters and to communicate more precisely and effectively thereby through
the PPL.

The work simplification that is possible through using facilities
such as OS/360 effectively in a Chief Programmer Team seems to be
considerable. It permits detailed technical control of a programming pro
ject by a Chief Programmer who has been provided with sufficient re-
ources in other team members to cope with the complexities of OS/360,

system functional requirements, and the clerical problems of creating and
maintaining systems definitions.

The Chief Programmer as a Professional

The Chief Programmer Team approach through job assignment and work
delegation frees up a Chief Programmer to be a professional in every
sense. The first obligation of a professional is to serve the client's needs

70 SOFTWARE PRODUCTIVITY

and to serve them well. This obligation to a client involves financial as
well as technical considerations . In programming, it involves making the
"right plans" to carry out a project for a client's approval, and to then
make the "plans right" in carrying the project out, within a time and
dollar budget.

The Chief Programmer is a programmer with high technical com
petence, not only in details and technique, but also in broad systems
analysis and design. The Chief Programmer's tools are programming
languages and systems, and he or she must know them in breadth and
depth . It is also essential to know the clients' needs and to effectively
solve any disparity between those needs and the programming tools
available.

In particular, note the Chief Programmer Team relationships,
which are prestructured, allowing the Chief Programmer and other team
members to look outward to client needs and technical possibilities, rather
than inward. This freedom to concentrate on a client's requirements, with
facilities for production automatically defined, is a major objective in
defining a Chief Programmer Team.

ARTICLE

on the statistical
Validation of
computer Programs

(1970)

Abstract

9

Techniques of statistical inference are introduced into the question of
program correctness by the intentional, but randomized, introduction of
programming errors into a program before a testing process on it. The
introduction of such errors permits a confidence computation through
an Assert, Insert, Test (AIT) process.

Key Words and Phrases

testing
correctness of programs
statistical validation of programs

The Correctness of Programs

program reliability
systems assurance

The correctness of computer programs is of increasing concern and im
portance. Correctness is usually treated as a logical problem, as outlined
by Floyd [4], Naur [7], Dijkstra [1], and others. Thus far, correctness
proofs have been carried through only for relatively small programs. One
of the largest examples is due to London [6]. However, King [5] has
mechanized a correctness process, based on a general theorem prover,

71

72 SOFTWARE PRODUCTIVITY

using the ideas of Floyd. Even so, correctness ideas have been used in
formally to guide major programming efforts in design and coding, as
reported by Dijkstra [2] in the T.H.E. System. The author also attests to
a considerable influence on programming practices, due to correctness
ideas.

However, questions of correctness and reliability of large program
ming systems still are crucial as practical matters, whether or not current
correctness techniques can address them. Large systems are being tested,
and errors found in checked out systems, every day. Thus far, the errors
found are treated as unique events and are not much used to shed light
on what other errors may remain. It is a cliche in large systems program
ming that no large system can be free of errors . That may or may not
be so in the future, but even now it is not a very useful cliche.

Statistical Inference About Correctness

We introduce techniques of statistical inference about the correctness of
computer programs and maximum likelihood estimates of the number of
unfound errors at any stage in a testing process . The statistical concepts
are carried out here, in part, to motivate a corresponding development
that is required in programming concepts.

Given a large computer program to validate, its correctness is a
matter of fact and not a matter of probability. But we can convert this
question of fact into a question of statistical inference, or estimation,
through the intentional, but randomized, introduction of programming _
errors into a program. These errors then calibrate a testing process and
permit statistical inference about the effectiveness of the testing process
itself.

The statistical ideal is to introduce errors into a computer pro
gram that have the same chance of being found as the errors already
there, if any such exist. This is a nontriviar program-theoretic problem.
The errors present in a program at any point in time depend on the
history of fault-finding activities that have been applied to it up until
then . For example, if a program has been compiled successfully, then
certain errors of syntax will not be present, or else the compiler would
have located them. We assume here that this problem of introducing
errors is resolved, in order to motivate work to develop reasonable solu-_
tions to it. Because once that problem is solved, then the statistical rea
soning that follows is relatively straightforward but quite powerful in
comparison with present information we have about the validation of com
puter programs.

On the Statistical Validation of Computer Programs 73

In fact, the question of the number of programming errors in a
program needs to be formulated carefully because there are many ways to
fix a program that has errors in it-including writing a whole new pro
gram that in no way resembles the original program. Informally, we think
of correcting an error in terms of changing or adding a statement (for
example, an elementary unit of execution or declaration in a program).
The correction may require adding a compound statement as well. This
in turn suggests the idea of introducing errors by a random process whose
basic actions are to change or delete statements. It is not difficult to de
vise automatic (random) processes for various programming languages
to introduce errors but maintain correct syntax, for recompilation and
testing. Presumably, these error frequencies can be set to reflect actual
experience of programming errors found in a given language at a given
stage of testing. These ideas are preliminary, and, as noted, the statistical
concepts are intended to motivate a deeper investigation into these pro
gram-theoretic problems.

A Statistical Model of Computer Program Errors

In order to separate programming theory and statistical theory we define
an abstract model of the process we have in mind. Our model contains a
"system," sets of "indigenous errors" and "calibration errors," and a "test
ing process." The testing process may be executions of the system or some
partial correctness proof process.

We begin with a system containing an unknown number of in
digenous errors, which are the object of investigation. We are permitted
to insert into the system a number of calibration errors and then to per
form the testing process to find errors--calibration or indigenous. At any
point in the testing process we assume that there is an equal chance for
the recovery of any of the errors, indigenous or calibration, that yet re
main in the system. During the testing process a certain number of in
digenous errors may be found. We use these circumstances to make
statistical assertions about what indigenous errors may yet remain in the
system.

Feller [3], on page 43, analyzes a similar situation in terms of esti
mating the number of fish in a lake. The process described there is catch
ing fish, marking them, and making a new catch of fish to determine how
many of those caught were marked. He shows there that the hypergeo
metric distribution describes the probabilities of the various possibilities.
In our application, of course, "lake" is synonymous with "system," "un
marked fish" is synonymous with "indigenous errors," "marked fish" with
'calibration errors," and "catching fish" with "testing process."

74 SOFTWARE PRODUCTIVITY

A Maximum Likelihood Estimator for Indigenous Errors

At any point in the testing process, assume the following parameters.

y = calibration errors inserted initially.

u = indigenous errors found to date.

v = calibration errors found to date.

Feller also shows that the maximum likelihood estimator for the original
number of indigenous errors-say, x-is the integer part of the expression
yujv. Needless to say, this maximum likelihood estimator will itself be
subject to statistical error, but it gives an objective indication of errors re
maining in a program as a testing process proceeds.

An Assert, Insert, and Test Process.for Statistical Inference

We formulate a sample Assert, Insert, and Test (AIT) process which con
sists of the following actions.

1. It is asserted that a given system has no more than a selected number
of indigenous errors, say, k ~ 0.

2. A selected positive number of calibration errors are inserted into the
system, say, j > 0.

3. The system is tested until the j calibrated errors have been found ,
and the number of indigenous errors found during that process is
recorded as well, say, i. Note that under our hypothesis, i is a random
variable.

4. A confidence, C, is computed as

{

0

C= j

j + k + 1

if i > k

if i ~ k.

The rationale for C is given as follows. If i > k, it is obvious that the
assertion is false, and the confidence in it is zero. If i ~ k, the assertion
may or may not be true. For each possible hypothesis for which the asser
tion is false , we compute the probability in such an AIT process that i >
k, that is, that we would correctly reject the assertion. With a hypothesis

On the Statistical Validation of Computer Programs 75

of h indigenous errors the probability of finding i of them before the jth
calibration error is found is (cf. Feller)

(1)
.. (~)C~1)(1)

p(h,z,J) = (h + j) h - i + 1
i + j - 1

h ~ i, i ~ 0, j > 0

that is, we find any i indigenous errors and any j - 1 calibration errors, in
any order, and then find the remaining calibration error among the
h - i + 1 errors remaining.

The probability that we correctly reject a false assertion is given by

h

(2) c(h, j, k) = ~ p(h, i, j) h > k, j > 0, k ;::: 0.
i = k+l

Now, for the assertion to be false, h must be an integer greater than k;
we consider all possibilities and the minimum value possible, namely,

(3) C(j, k) = minh>k, c(h, j, k) j > 0, k;::: 0.

It can be proved, then, that the value of C is (see the Appendix below)

(4) C(j, k) = c(k+ l,j,k) = j+i+
1

j > 0, k;::: 0,

as used above.
It is easy to see how to generalize this simple AIT process. The

test could be concluded when a certain function of the indigenous errors
were found, rather than all of them, with new confidence levels thereby.
More complex stopping rules for the test could be used, based on both
calibrated and indigenous errors found, for example.

The AIT Process: Interpretation and Examples

The AIT process produces a confidence statement about a programming
and testing process, not about a specific system under test. This is a fun
damental distinction often misunderstood in statistical inference. As already
noted, the number of indigenous errors in the system is a fixed number
no less fixed because of our ignorance about it. Our confidence is in the

76 SOFTWARE PRODUCTIVITY

TABLE 9-1. Confidence in the Correctness of a System
(Assuming No Indigenous Errors Found in Testing)

Calibration Errors
Confidence

1
.50

4
.80

9
.90

19
.95

99
.99

AIT process as it is applied over and over to many such systems; we will
correctly reject a false assertion a certain fraction of the time. C is a con
servative value for this fraction .

A special case of interest in AIT is that in which k = 0-the asser
tion is that the system is correct (no errors). Then C simplifies to j I (j + 1).
Thus various levels of confidence in the correctness of a system can be
obtained by inserting various numbers of calibration errors and finding
only those errors in the testing process . Some samples are given in Table
9-1.

Table 9-2 give a few values of C for small values of the param
eters of Assertion, k, and Insertion, j. It is easy to see a general property
of the table of confidence values: the larger the asserted bound, or the
smaller the number of inserted errors, the easier it is to pass the test, but
the less confidence the AIT process then produces. This property indicates
a general pragmatic strategy for AIT, which balances an estimate of the
state of a system with an objective in establishing a level of confidence.
If the objective in confidence is unrealistically high, AIT will usually pro
vide no confidence at all, and a new AIT will be required to establish any
confidence. If the assertion is unrealistically loose (in high numbers of
errors), the confidence is thereby degraded. (It is important to ·realize that
asserting five errors and finding none gives a much lower confidence than
asserting no errors and finding none-when five errors are asserted, find
ing none and finding five are equivalent to that assertion).

TABLE 9-2. Confidence (When Indigenous Errors Found
Do Not Exceed Asserted Error Bound)

Asserted
Inserted Calibration Errors

Bound 1 2 3 4 5 6

0 .50 .67 .75 .80 .83 .86
1 .33 .50 .60 .67 .71 .75
2 .25 .40 .50 .57 .62 .67
3 .20 .33 .29 .50 .56 .60
4 .17 .29 .38 .46 .50 .54
5 .14 .25 .33 .40 .45 .50

On the Statistical Validation of Computer Programs 77

The AIT Chart

During the testing process the errors will be found chronologically, and as
soon as one calibration error has been found, a maximum likelihood esti
mator is available for the number of indigenous errors. This estimate will
fluctuate in a somewhat predictable way, usually going up with every in
digenous error found and down with every calibrated error found. A chart
of such estimates can provide a visual status report of the testing process
as it progresses through time-say, over several weeks. For example, sup
pose an AIT with parameters

k=6

j = 9

produces a test with errors found in the following sequence, I = indigenous,
C = calibrated error;

CCICIICCCICCIC

The maximum likelihood estimators at each stage of the testing are as
shown in Table 9-3.

TABLE 9-3.

Error Type [yu!y]

1 c 0
2 c 0
3 I 4
4 c 3
5 I 6
6 I 9
7 c 6
8 c 5
9 c 4

10 I 6
11 c 5
12 c 4
13 I 5
14 c 5

This information can be summarized on a single chart for management
purposes. At the beginning of the test the chart has the form in Figure
9-1.

78 SOFTWARE PRODUCTIVITY

(k = 6)

Error

Error
(type)

9

8

7

6

5

4

3

2

9

8

7

i
Test Confidence = --- = .56

j + k + 1

I
I
I
I
I
I
I

---------------------------- ~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(j + k = 15)

FIGURE 9-1. AIT Chart at Test Inception

Test Confidence = .56
X I

for indigenous errors :
I
I 1\ maximum likelihood estimator :

6 1--------- ~ -- -'-- - x- -------- +

x~x G-5

4

3

2

x 0~®.~
o I

o.J
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CCI C I ICC CICCI C

FIGURE 9-2. AIT Chart at Test Conclusion

On the Statistical Validation of Computer Programs 79

The test confidence is computed from j, k: namely, jj(j + k + 1) = 9/16
= .56; the barrier on the right is j + k, since if more than j + k errors are
found, there are more than k indigenous errors and the AIT fails; the
horizontal line is a target to stay below, and certainly to end up below
for a successful test.

Using the foregoing assumption about errors found, we show the
completed test in Figure 9-2.

At any point in the test, the chart up to that time is known, and
a cumulative picture of the test progress is available. This test succeeded
(the maximum likelihood curve ended up inside the barriers), although
it "looked bad" at error 6.

Acknowledgment

Appreciation is due to M. M. Kessler for discussions and the reference to
Feller's treatment of the combinatorial aspects of the problem.

References

1. Dijkstra, E. W. "A Constructive Approach to the Problem of Pro
gram Correctness." BIT8 (1968): 174-186.

2. Dijkstra, E. W. "The Structure of the 'T.H.E.' Multiprogramming
System." Comm. ACM 11 (1968): 341-346.

3. Feller, W. An Introduction to Probability Theory and its Applica
tions. 2nd ed. New York: John Wiley, 1957.

4. Floyd, R. W. "Assigning Meanings to Programs." In Proceedings of
the Symposium in Applied Mathematics, vol. 19, edited by J. T.
Schwartz, pp. 19-32. Providence, R. I.: American Mathematical
Society, 1967.

5. King, J. C. "A Program Verifier." Ph.D. thesis, Carnegie-Mellon Uni
versity, Pittsburgh, 1969.

6. London, R. L. "Certification of Algorithm 245 Treesort 3: Proof
of Algorithms-A · New Kind of Certification." Comm. ACM 13
(1970): 371-373.

7. Naur, P. "Proof of Algorithms by General Snapshots." BIT 6
(1966): 310-316.

Appendix

Returning to (2), we will show that c(h, j, k) is monotonically nondecreas
ing for h > k, j > f!, k 2 ~- Then c(h, j, k) must achieve a minimum over
h at the value h = k + 1, as is asserted in (4). In order to show the mono
tonic property of c(h, j, k) we prove that

(5)

11c(h,j,k) = (h ~ j) (1-c(h - 1,j,k)) h > k, j > 0, k 2 0,

where we have defined

11 c(h, j, k) = c(h, j, k)- c(h - 1, j, k).

Since c(h - 1, j, k), for h > k, j > 0, k 2 0, is a probability, the right-hand
side of (5) is nonnegative; 11c(h, j, k) in (5) is therefore nonnegative; and
c(h, j, k) is thereby nondecreasing as required.

In order to prove (5) we first simplify the expression for p(h, i, j)
in (1) to find

(6)
j(i + j - 1) (i+j - 2) ... (i+ 1)

p(h, i, j) = (h + j)(h + j- 1)(h + j- 2) ..• (h + 1)

Then we calculate

11c(h, j, k) = c(h, j, k)- c(h - 1, j, k)

.,. h - 1

(7) == L p(h, i, n - L p(h - 1, i, ;>
i=k+1 i = k + 1

h - 1

== p(h, h, n + L (p(h, i, ;> - p(h- 1, i, n >.
i=k+ 1

Now we note that the first term on the right-hand side, using (6), becomes

(8) p(h,h,j) = j(h + j-1) (h + j - 2) ... (h + 1)
(h - . . ·- . --

j
== h + (

80

On the Statistical Validation of Computer Programs 81

Next we note that each term of the summation of the right-hand side can
be reorganized, using (6), as

, , " j(i+j-1) (i+j-2) ooo(i+l) (h)
p(h,l,J) -p(h- 1,l,J) = (h+j) (h+j-1) (h+j-2) .•. (h+ 1) h

(9)

Then, summing, we find

h-1

j(i+j-1) (i+j-2)···(i+l)

(h+j-1) (h+j-2) (h+j-3)···(h)

= (h: j - 1) p(h- 1, i, j)
= (h~j) p(h-1,i,j).

:L p(h, i, n - p(h- 1,
h-1 (.)

i, n = :L 1 - h ~ . p(h- 1, i, n
i=k+1 J i=k+l

(10) (h~j) c(h-1,j, k).

Finally, recombining the two terms of (7), we get

llc(h, j, k) = (h ~ J (1 - c(h- 1, j, k)),

as asserted in (5) .

OS/360 Programming

(1970)

Introduction

ARTICLE

10

Effective OS/360 programming requires a comprehensive understanding
of OS/360 concepts and facilities. The collective programming facilities
of OS/360 can be regarded as a multilanguage processor; and, in particular
in OS/360 programming, the objective should be to:

1. program as br as is reasonable in JCL (Job Control Language);
then, as a next resort,

2. program as far as is reasonable in LEL (Linkage Editing Language);
then, as a last resort,

3. program in one or more of Assembly, PL/1, BSL, Fortran, Cobol,
and so on.

In this strategy we seek to solve problems of program design and
coding at the highest possible level in the language hierarchy, in such a
way as to solve those problems with as little code as possible written for
that purpose. For example, it is preferable to solve a problem in data
management in JCL with data description (DD) cards and utilities, rather
than writing programs in PL/1 or Cobol to accomplish the same ends.

The facilities of OS/360 are complex, arbitrary, and hard to use.
In the past, senior-level programmers have, for good reason, been reluctant
to be involved directly with all the details and seeming accidentals of JCL,
particularly the data descriptions required therein. As a result, such senior
personnel have frequently solved programming problems from an IBSYS
(the IBM 7094 operating system) viewpoint, and so on, at blackboards

83

84 SOFTWARE PRODUCTIVITY

and on memos (for example, a checkpoint, restart problem), and then
send more junior personnel off to implement these functional solutions in
the programming languages at hand, such as PL/I or Assembly. This mode
of operation often reinvents facilities that are already present in OS/360.
The reinvented code has to be maintained, documented, and otherwise
integrated into the overall system with a general overhead and expendi
ture befitting its size. In fact, however, if the senior-level personnel are
aware of the facilities of OS/360, particularly of JCL (for example, in
handling a checkpoint, restart problem), what was a blackboard and memo
solution leading to considerable programming effort by junior personnel
may very well become a few-line JCL addition to the system, in which the
senior personnel have total and direct control over what is taking place
and the benefit of all future OS/360 improvements and maintenance.

OS/360 as a Natural System

OS/360, as a multilanguage processor, seems better regarded as a "natural
system" than a rational one at this point in time. To be sure, in its planning
stages there was a definite sense of rationality in it. But by this time it
has grown into a rather homely collection of facilities that are called in
oftentimes mysterious formats. Nevertheless, for all its homeliness, OS/360
is far and away the most powerful programming environment yet pro
vided to progra.mmers for production programming. As a result, if we
regard OS/360 as a natural system, like a cow, we are in a much healthier
mental condition than if we try to regard it as a rational system. In the
latter case, most senior-level programmers simply get mad and do not get
much accomplished. We simply use a cow, not questioning whether it
should have four legs or six legs, whether its body temperature should be
93 or 99 degrees, and so on, and there is a great deal of benefit to be
gained thereby. That is our attitude here toward OS/360.

Describing OS/360 as the natural system it really amounts to is
no easy task. The manuals provide many insights, generalizations, and
observations about OS/360, but they represent just that-not really com
plete information. The only really authoritative information about OS/360
is the code itself, and the main purpose of documentation is to make that
kind of examination unnecessary. Nevertheless, there are places, when one
is looking to get the most possible out of this or that feature, that you .
cannot trust the manuals, you cannot trust the PLMs, you need to go to the
code itself. That will not happen often, but it will happen.

We can do better and better at describing OS/360 just as we do
in describing cows in descriptive zoology. We attempt such a description,

OS/360 Programming 85

particularly with respect to JCL and LEL, in order to put those languages
on a better footing for senior personnel to use directly in the definition
and control of programming systems development. This involves, first
of all, treating both the JCL and LEL as bona fide programming languages.
It is pretty clear that JCL is a programming language. It embodies ideas
of conditional execution, symbolic parameters, algorithm passing, and so
on, that are hallmarks of programming languages. LEL is harder to see as
a language. Linkage editing is a generalization of assembling, in which
the "instructions" are load modules and object modules, rather than hand
coded instructions of a line or so. It is a simple fact that linkage editing,
except for the size of these "instructions," has exactly the same function
as the assembler, requires symbol tables, requires a second pass to resolve
references, and so on. Thus we regard LEL as a real language.

Compared with simpler operating systems, it seems that the role
of OS/360 utilities is more often overlooked or reinvented, partly because
these utilities, as conceived in OS/360, are more complex and less directly
usable than in previous systems and partly because of the complexities of
JCL itself. For example, it is relatively difficult to do a simple utility oper
ation, such as list a deck of cards, in OS/360, but with little more diffi
culty one can do some very substantial data handling jobs, such as un
loading a partitioned data set from disk onto a tape.

JCL as a Programming Language

JCL occupies a particular place in OS/360. It is the system programming
language usually referred to as the control language, which is interpreted
automatically by OS/360. Every other language in OS/360 has a specific
language processor, which treats programs as data and converts them into
new data that is eventually treated as programs by references in JCL. But
a PL/I program, for example, has no more connection with OS/360 than
a file to be sorted or any other input to a processing program.

The historical development of job control languages began with
the idea of a "few control cards" to permit better utilization of hardware.
In the beginning these control cards did very simple things and represented
a very simple interpretation of commands. But in OS/360 these control
cards invoke extensive data management task control and other activities,
and the language for invoking these more sophisticated activities has
grown up somewhat haphazardly. Even though JCL has grown up without
the benefit of a central motivating design concept, it is still a programming
language and permits the development of a programming style for better
understanding and maintenance of JCL programs. In particular, JCL ad-

86 SOFTWARE PRODUCTIVITY

mits a syntax that is reasonably straightforward if one suppresses default
possibilities that have been historically used in JCL for the convenience
of individual programmers. For example, JCL statements consist of an
operator and a series of optional operands. These operands can be lumped
together on a single card, so that a line of JCL looks much like gibberish,
or the operands can be separated, line by line, and exhibit more structure
and simplicity to the reader.

The syntax of JCL, which itself has grown up quite haphazardly,
provides for a bewildering variety of forms- for example, missing param
eters, multiple commas, and so on, but this variety can be reduced to
a considerable extent without reducing the function by taking certain
forms as preferred and displaying them in the syntax in a full and always
appearing fashion. In illustration, the disposition parameter, DISP, can be
set simply to NEW to indicate that a data set is to be created in a partic
ular job step. However, if a disposition at the end of the job step is re
quired, the parameters must be set equal to (NEW, OLD), that is, not
only does one require a second suboperand, OLD, but also enclosing
parentheses and a separating comma. If, in addition, one wishes to handle
an ABEND disposition for that data set in the job step, one needs to
define a third suboperand, for example, (NEW, KEEP, PASS). Because
of default conditions, one may also encounter an operand such as (NEW, ,
PASS), etc. A way to simplify all these considerations is simply to define
the disposition operands to always contain three suboperands--one for
entry, one for exit, and one for abnormal exit-always enclosed by paren
theses and separated by commas. Then the syntax becomes easier to de
scribe; and, in fact, if these operands are always written out, there is no
danger of programmer mistakes or misunderstandings due to hidden de
faults . Such a syntax is given in Table 10-1.

TABLE 10-1 JCL Syntax

<JCL procedure> :: = [<procedure statement> 1
<procedure body>

<procedure statement> :: = I I [<name> 1 PROC <c>
[I I <name> = <parameter> < , >

1
<procedure body> :: = <procedure step>

[<procedure step>
1

<procedure step> : := <execute statement>
[<data statement>

]
<execute statement> :: = I I [<name> 1 EXEC <c>

I I PGM = <program> < , >

05/360 Programming 87

TABLE 10-1 JCL Syntax (Continued)

[I I COND = (<bypass conditions>) < , > 1
[I I PARM = (<parameter>) <, >1
[I I RD = (< restart>) < , > 1
[I I REGION = (<integer> K,

<integer> K) < , > 1
[II ROLL = (<yesno>, <yesno>) <, >1
[I I TIME = (<integer>, <integer>) < , > 1
[I I ACCT = (<parameter>) 1

<data statement> : := <file statement>
[<concatenated data>

1
<file statement> :: = I I <name> DD <c>

<data set>
<data set> :: = I I <data identity> <, >

[I I LABEL = (<label data>) < , > 1
[I I DCB = (<attribute data>) < , > 1
[I I <status data>< , >1
[I I UCS = (<character set>) < , > 1
[I I UNIT = (< unit data>) < , > 1
[I I VOLUME = (<volume data>) < , > 1
[I I <space allocation> < , > 1
[I I <channel usage> 1

< program>:: = [*. <name> .1 <name>
< bypass conditions> : := <first condition> [, <condition> · · · 1
< first condition> : : = EVEN I ONLY I <condition>
< condition> :: = <integer>, <comparison>, <name>
< comparison> : := GT I GE I EQ I NE I LEI LT
< restart> :: = R I NC I NR I RNC
<yesno> : : = YES I NO
< data identity> : : = DUMMY\ DSNAME=<data name> I <deferred name>
< data name> : : = [<data prefix> 1 <name> [(<argument>) 1
< data prefix> :: = && I *. <name>
< argument> : : = <name> I <integer> I INDEX I PRIME I OVFLOW
< deferred name> : := DDNAME = <name>
< label data> :: = [<integer> 1 [, [<label type>]] [, [P ASSWORD11

[, <inout> 1 [, <expret> 1
< label type> :: = SL I SUL I NSL I NL I BLP
< inout> : : = IN I OUT
< expret> : : = EXPDT = <integer> I RETPD = <integer>
< attribute data> : : = <attributes> I <attribute reference> [, <attributes> 1
< attributes> :: = <<see Attribute Table>>
< attribute reference> : := [*.<name> . 1 <name>
< status data> : := DISP = <disposition> I SYSOUT = <routing>
< disposition> :: = <entry status> , <exit status> , <a bend status>
< entry status> :: = NEW I OLD I MOD I SHR

88 SOFTWARE PRODUCTIVITY

TABLE 10-1 JCL Syntax (Continued)

<exit status> ::=DELETE I KEEP I PASS I CATLG I UNCATLG
<abend status> :: = DELETE I KEEP I CATLG I UNCATLG
<character set> : : = <char code> [, [FOLD] [, VERIFY]]
<char code> : := AN I HN I PCAN I PCHN I PN I QNC I QN I RN I

SWITNIXNIYN
<unit data> :: = <group> [,<multiunit> [,DEFER]]
<group> :: = <three byte address> I <unit number> I

<<unit group name>>
<three byte address> : : = <byte> <byte> <byte>
<unit number> : : = <integer> [- <digit>]
<multiunit> :: = P I <integer>
<volume data> :: = [PRIVATE], [RETAINj, <integer>, <integer>,

<seref>
<seref> : := SER = (<integer>,···) I REF=[*. [<name>.]] <name>
<space allocation> :: = SPACE = (<space data>) I SPLIT = <split data> I

SUBALLOC = (<suballoc data>)
<space data>:: = <space layout>, [RLSE] [<contiguity>], [ROUND]
<space layout> : : = <space units>, (<integer> [, <integer> [, <integer>]])
<space units> : := TRK I CYL I <integer>
<split data> :: = <integer> I % I (<integer>), CYL, (<integer>

[, <integer>]) I (%, <integer>), (<integer>
[, <integer>])

<suballoc data> : := <space layout>, [<name>.] <name>
<channel usage> : := SEP (<name>,···) I AFF = <name>
<name> :: = <letter> [<alphameric> · · ·]
<parameter> :: = <<character string>>
<c> :: = <<non blank in column 72> >
<.> : := <<comma, except omitted in last line of actual code for this entity>>

JCL Programming

Beyond the vocabulary of JCL and its functions we seek to develop a
rationality and style for programs written in it. We do this by organizing
each type of statement into an ordered sequence of parameter choices.
This ordered sequence gives a programmer a checklist to ensure that all
critical parameters are included in a statement.

In typical format we set out parameters, one per line, for easier
inspection and interpretation. Catalogued procedures contain essentially
EXEC and DD statements, and for each of those JCL statements we de
fine the following sequence of parameter choices.

EXEC Parameters

1. Identity of Program
PGM

2. Conditions for Execution
COND

3. Parameters of Execution
PARM

4. Restart Conditions
RD

5. Time Constraints
TIME

6. Region Allocations
REGION

7. Roll-out Conditions
ROLL

8. Accounting Requirements
ACCT

DD Parameters

1. Identity of Data Set
DUMMY /DSNAME/DDNAME

Data Set Attributes
OCB

Disposition of the Data Set
DISP

Special Print Characters
ucs

Unit Information
UNIT

Volume Information
VOLUME

Label Requirements
LABEL

Space Requirements
SPACE I SPLIT I SUBALLOC

Channel Utilization
SEP I AFF

OS/360 Programming 89

ARTICLE

11

Top Down Programming
in Large Systems

(1970)

Abstract

Structured programming can be used to develop a large system in an
evolving tree structure of nested program modules, with no control
branching between modules except for module calls defined in the tree
structure. By limiting the size and complexity of modules, unit debug
ging can be done by systematic reading, and the modules can be ex
ecuted directly in the evolving system in a top down testing process.

Introduction

Large systems programming today is dominated by the integration and
debugging problem because it is commonly assumed that logic errors are
inevitable in programming systems (in contrast to syntax errors, which
are detected by translators) . There is no doubt that programmers are
fallible and always will be. But it now appears possible to organize and
discipline the program design and coding process in order to (1) prevent
most logic errors in the first place and (2) detect those errors remaining
more surely and easily than before.

We will use the term "structured programming" to denote a com
plex of ideas of organization and discipline in the programming process.

© 1971. Reprinted, with permission, from Debugging Techniques in Large Systems,
R. Rustin (Editor) , Prentice-Hall, 1971, pp. 41- 55.

91

92 SOFTWARE PRODUCTIVITY

There are two major principles involved. First, beginning with a functiona l
specification, we will show that it is possible to generate a sequence of
intermediate systems of code and functional subspecifications so that at
every step, each system can be verified to be correct, that is, logically
equivalent to its predecessor system. The initial system is the functional
specification for the program, each intermediate system includes the code
of its predecessor, and the final system is the code of the program. The
transitivity of these step-by-step equivalences then insures the correctness
of the final code with respect to the initial functional specifications. The
code of the program is generated from the "top down" in this sequence
of intermediate systems. Second, it can also be shown that the control
logic of each successive system of code and functional subspecifications
can be completely organized in terms of a few basic control structures,
each with a single entry and a single exit. Three basic control structures
sufficient for control logic are (1) simple sequencing, (2) IF-THEN-ELSE,
and (3) DO-WHILE structures, already known in several languages, fo r
example, PL/I [9]. For efficiency, a CASE structure may also be desir
able, for example, as defined in PL360 [15].

The iterated expansions of functional specifications and of inter
mediate functional subspecifications into code and possibly into more de
tailed functional subspecifications reflect a rigorous step-by-step process
of program design. Each functional subspecification defined in an inter
mediate system represents only a mapping of initial data into final data
for some segment of coding yet to be specified. The expansion process
describes the means selected for this mapping, using possibly more detailed
mappings to be similarly described later.

In traditional terms this programming design process is carried
out top down on paper, using flowcharts or any other conceptual objects
available to describe the design structure selected for each portion of the
system. Once the design is completed, the resulting modules defined are
coded, unit tested, integrated into subsystems, then into a system, and
finally debugged as a system, in a bottom up coding and testing process.

In the structured programming process this design structure is
carried out directly in code, which can be at least syntax checked, and
possibly executed, with program stubs standing in for functional subspeci
fications. Instead of paper flowcharts, the structured design is defined in
IF-THEN-ELSE and DO-WHILE code, which connect newly defined
subspecifications. In fact, program stubs can be used to simulate the esti
mated core and throughput requirements of the code yet to be developed
for given functional subspecifications, during executions of intermediate
systems.

The functional expansion process can be carried out literally in
a page of code at a time, in which new functional subspecifications are

Top Down Programming in large Systems 93

denoted by names of dummy members of a programming library, which
will eventually hold the code for the next level of expansion. Such a page,
called a segment, is itself identified by a name and corresponding func
tional subspecification at the next higher level segment in the program
ming system. The segments of a program form a tree structure.

A functional subspecification, as a mapping from initial data to
final data, has no implicit control logic, and this is reflected in its cor
responding segment. A segment has only one entry, at the top; and one
exit, at the bottom. If other segments are named within it, such segments
are in turn entered at the top and exited out the bottom, back into the
naming segment. As such, a named segment behaves precisely as a simple
data transformation statement (possibly quite complex, according to its
functional subspecification), without any possible side effects in program
control.

The problem of proving the correctness of any expansion of a
functional subspecification is thereby reduced to proving the correctness
of a program of at most one page, in which there possibly exist various
named subspecifications. The verification of the given segment requires a
proof that the segment subspecification is met by the code and named
subspecifications. These named subspecifications will be subsequently veri
fied, possibly in terms of even more detailed subspecifications, until seg
ments with nothing but code are reached and verified.

The foregoing process provides a rigorous format for an activity
that all programmers do, more or less, and good programmers do well, in
designing programs. But it further converts the design into code directly
and provides a vehicle for maintaining the integrity of the developing
system step by step. The coding is produced "top down," rather than
'bottom up" as called for by traditional standards. Integrating and con

trol code is produced before functional code, and no unit checking of
modules occurs.

Some Background

E. W. Dijkstra has provided several illuminating arguments for the ideas
of structured programming [2, 3, 4] and has exhibited a substantial ap
plication of it in the development of the T.H.E. system [5]. The critical
theorem that the control logic of any program can be represented in the
three basic control structures of simple sequencing, IF-THEN-ELSE, and
DO-WHILE structures is due to C. Bohm and G. Jacopini [1] . The result
of Bohm and J acopini permits a new level of discipline in the program
ming process, which, as Dijkstra [4] also points out, can help reduce to

94 SOFTWARE PRODUCTIVITY

practical terms the problem of proving program correctness in today's
real programming systems.

There are several important developments in proving program cor
rectness in the recent literature, which at the very least indicate procedures
that programmers can foliow in documenting and giving heuristic argu
mentation for the correctness of the programs they develop. Building on
ideas of Floyd [6] and Naur [14], London and associates have produced
formal proofs of substantial programs, themselves written for other pur
poses without proof methods in mind [8, 12]; King [11] and, more re
cently, Good [7] have elaborated on these ideas with automatic and semi
automatic procedures for proof.

In fact, the correctness problem integrates the specification and
documentation questions into programming in a natural, inevitable, and
precise way. The documentation of a program should provide evidence
that the program meets its functional specifications. One cannot prove a
program to be correct without a definition of what it is supposed to do
its functional specification. And sufficient evidence that a program meets
its functional specification can serve as its docu_mentation.

It may appear at the outset that proving a system to be correct
(that is, not to depart from its original functional specifications), step
by step in implementation, would be agonizingly slow and totally imprac
tical. In fact, such an impression is no doubt behind the usual approach
of coding "bottom up" from paper designs. However, when the integra
tion and debugging activities are taken into account as well, then the
step-by-step construction and verification process may turn out not to be
so slow after all.

Our point of view is also very close to concepts of "functional
programming," under the interpretation that functional specifications are
indeed mathematical functions without side effects in control and that
connectives IF-THEN-ELSE, DO-WHILE, and so on are convenient
forms for defining composite functions in terms of other functions .

The Idea of Structured Programs

We are interested in writing programs that are highly readable, whose
major structural characteristics are given in hierarchical form and are
tied in closely to functional specifications and documentation. In fact,
we are interested in writing programs that can be read sequentially in
small segments, each under a page in length, such that each segment can

Top Down Programming in Large Systems 95

be literally read from top to bottom with complete assurance that all
control paths are visible in the segment under consideration.

There are two main requirements through which we can achieve
this goal. The first requirement is GO TO-free code, that is, the formu
lation of programs in terms of a few standard and basic control structures,
such as IF-THEN-ELSE statements, DO loops, CASE statements, and
DECISION tables, with no arbitrary jumps between these standard struc
tures. A critical characteristic of each such control structure is that it
contains exactly one entry and one exit. The second requirement is library
and macro substitution facilities, so that the segments themselves can
be stored under symbolic names in a library, and the programming lan
guage permits the substitution of any given segment at any point in the
program by a macrolike call.

PL/I in OS/360 [10] has both the control logic structures and
the library and macro facilities necessary. Assembly language in OS/360
has the library and macro facilities available, and a few standard macros
can furnish the control logic structures required.

Bohm and Jacopini [1] give a theoretical basis for programming
without arbitrary jumps (that is, without GO TO or RETURN state
ments), using only a set of standard programming figures such as those
mentioned above. We take such a possibility for granted and note that
any program, whether it be one page or a hundred pages, can be written
using only IF-THEN-ELSE and DO-WHILE statements for control logic.

The control logic of a program in a free form language such as
PL/I can be displayed typographically, by line formation and indentation
conventions. A "syntax-directed program listing" (a formal description
for such a set of conventions) is given by Mills [13]. Conventions often
are used to indent the body of a DO-END block, such as

DO I= J TO K;
statement 1
statement 2

statement n
END;

and clauses of IF-THEN-ELSE statements such as

IF X> 1 THEN
statement 1

ELSE
statement 2

96 SOFTWARE PRODUCTIVITY

In the latter case, if the statements are themselves DO-END blocks, the
DO, END are indented one level and the statements inside them are
indented further, such as

IF X> 1 THEN
DO;

END;
ELSE

DO;

END;

statement 1
statement 2

statement k

statement k + 1

statement n

In general, DO-END and IF-THEN-ELSE can be nested in each other
indefinitely in this way.

Segment-Structured Programs

Since it may not be obvious at the outset how a structured program can
be developed, we begin with a more conventional approach. Suppose any
large program has been written in PL/I-say, several thousand lines of
code- by any means of design and coding available. The theorem of
Bohm and Jacopini [1] is proved constructively, so that it is possible,
mechanically, to transform the program we have in mind into a GO TO
free program. Ordinarily, using programming insight, this can be done
with little loss of efficiency. Now we are in a position to imagine a hun
dred-page PL/1 program already written in GO TO- free code. Although
it is highly structured, such a program is still not very readable. The ex
tent of a major DO loop may be 50 or 60 pages, or an IF-THEN-ELSE
statement take up ten or 15 pages. There is simply more than the eye can
comfortably take in or the mind retain for the purpose of programming.

However, with our imaginary program in this structured form we
can begin a process that we can repeat over and over until we get the
whole program defined. This process is to formulate a one-page skeleton
program that represents that hundred-page program. We do this by select
ing some of the most important lines of code in the original program and

Top Down Programming in Large Systems 97

then filling in what lies between those lines by names. Each new name
will refer to a new segment to be stored in a library and called by a
macro facility. In this way we produce a program segment with some
thing under 50 lines, so that it will fit on one page. This program segment
will be a mixture of control statements and macro calls, with possibly a
few initializing, file, or assignment statements as well.

The programmer must use a sense of proportion and importance
in identifying what is the forest and what are the trees out of this hundred
page program. It corresponds to writing the "high-level flowchart" for the
whole program, except that a completely rigorous program segment is
written here. A key aspect of any segment referred to by name is that
its control should enter at the top and exit at the bottom, and have no
other means of entry or exit from other parts of the program. Thus when
reading a segment name, at any point, the reader can be assured that
control will pass through that segment and not otherwise affect the control
logic on the page being read.

In order to satisfy the segment entry I exit requirement we need
only to be sure to include all matching control logic statements on a page.
For example, the END to any DO and the ELSE to any IF-THEN should
be put in the same segment.

For the sake of illustration this first segment may consist of some
20 control logic statements, such as DO-WHILEs, IF-THEN-ELSEs, per
haps another ten key initializing statements, and some ten macro calls.
These ten macro calls may involve something like ten pages of program
ming each, although there may be considerable variety among their sizes.

Now we can repeat this process for each of these ten segments.
Again we want to pick out some 40 to 50 control statements, segment
names, and so on, that best describe the overall character of that program
segment, and to relegate further details to the next level of segments.
We continue to repeat the process until we have accounted for all the code
in the original program. Our end result is a program, of any original size
whatsoever, that has been organized into a set of named member seg
ments, each of which can be read from top to bottom without any side
effects in control logic, other than what is on that particular page. A
programmer can access any level of information about the program, from
highly summarized data at the upper-level segments to complete details
in the lower levels.

In our illustration this hundred-page program may expand into
some 150 separate segments because (1) the segment names take up a
certain amount of space and (2) the segments, if kept to a one-page max
imum, may average only some two-thirds full on each page. Each page
should represent some natural unit of the program, and it may be natural
to fill up only half a page in some instances.

98 SOFTWARE PRODUCTIVITY

Creating Structured Programs

In the preceding section we assumed that a large-size program somehow
existed, already written with structured control logic, and discussed how
we could conceptually reorganize the program into a set of more readable
segments. In this section we observe how we can create such structured
programs a segment at a time in a natural way. It is evident that program
segments as we have defined them are natural units of documentation and
specification, and we will describe a process that develops code, subspeci
fications, and documentation concurrently. First we note that a functional
specification corresponds to the mathematical idea of a function. It is a
mapping of inputs into outputs, without regard to how that mapping may
be accomplished. Each segment defined in the preceding development rep
resents a transformation of data, namely, a mapping of certain initial
values into final values. In fact, intermediate values may be created in
data as well. Corresponding to this mapping of initial into final data is a
subspecification that ordinarily will be deduced directly from the specifi
cation for the naming segment. It represents part of the work to be done
in the segment. The entire page of code and new segment names must
produce precisely the mapping required by the functional specification of
that naming segment.

When all segments named have been assigned functional specifi
cations, then the logical action of that naming segment can be deduced
from the code and those named specifications. Methods of proving the
correctness of programs can be applied to this single page. The specifi
cations may be too complex to carry out a completely rigorous proof of
correctness, but at the very least there is on one page a logical descrip
tion of a function that can be heuristically compared with the functional
specification for that segment. The argumentation that the function does
indeed duplicate the functional specification for that segment is the docu
mentation for that segment.

Our main point is to observe that the process of coding can take
place in practically the same order as the process of extracting code from
our imaginary large program in the previous section. That is, armed with
a program design, one can write the first segment, which serves as a skele
ton for the whole program, using segment names where appropriate to
refer to code that will be written later. In fact, by simply taking the pre
caution of inserting dummy members into a library with those segment
names, one can compile or assemble, and even possibly execute, this
skeleton program while the remaining coding is continued. Very often,
it makes sense to put a temporary write statement, "got to here OK," as
a single executable statement in such a dummy member. More elaborately,

Top Down Programming in Large Systems 99

a dummy member can be used to allocate core and to simulate processing
time required during executions of the intermediate system containing it.

Now the segments at the next level can be written in the same
way, referring as appropriate to segments to be written later (also setting
up dummy segments as they are named in the library). As each dummy
segment becomes filled in with its code in the library, the recompilation
of the segment that includes it will automatically produce updated, ex
panded versions of the developing program. Problems of syntax and con
trol logic will usually be isolated within the new segments so that de
bugging and checkout go correspondingly well with such problems so
isolated.

It is clear that the programmer's creativity and-sense of proportion
can play a large part in the efficiency of this programming process. The
code that goes into earlier sections should be dictated, to some extent,
not only by general matters of importance, but also by the question of
getting executable segments reasonably early in the coding process. For
example, if the control logic of a skeleton module depends on certain
control variables, their declarations and manipulations may need to be
created at fairly high levels in the hierarchy. In this way the control logic
of the skeleton can be executed and debugged, even in the still skeleton
program.

Note that several programmers may be engaged in the foregoing
activity concurrently. Once the initial skeleton program is written, each
programmer could take on a separate segment and work independently
within the structure of an overall program design. The hierarchical struc
ture of the programs contribute to a clean interface between programmers.
At any point in the programming, the segments already in existence give
a precise and concise framework for fitting in the rest of the work to
be done.

Function Description and Expansion

We have noted above that the structured programming process represents
a step-by-step expansion of a mathematical function into simpler mathe
matical functions, using such control structures as IF-THEN-ELSE and
DO-WHILE. Ordinarily, we think of this expansion in terms of a page
of code at a time. However, we can break that expansion down to much
more elementary steps, namely, into a single control structure at a time.
In this case we ask the question "What elementary program statement
can be used to expand the function?" The expansion chosen will imply

100 SOFTWARE PRODUCTIVITY

one or more subsequent functional specifications, which arise out of the
original specification. Each of these new functional specifications can be
treated exactly as the original functional specification, and the same
questions can be posed about them.

As a result, the top down programming process is an expansion
of functional specifications to simpler and simpler functions until, finally,
statements of the programming language itself are reached. Part of such
a process is shown below, expanding the functional specification "Add
member to library." Such a functional specification will require more
description, but the breakout into subfunctions by means of programming
statements can be accomplished as indicated here.

In the example the single letters identifying function names will
be multiple-character library names, and the small quoted phrases may
be very substantial descriptions of logical conditions or processes.

Specification (Level 0):

f = "Add member to library"

f expands to: g THEN h

Subspecifications (Level 1) :

g = "Update library index"

h = "Add member text to library text"

g expands to: IF p THEN i ELSE j

Subspecifications (Level 2) :

p = "Member name is in index"

i = "Update text pointer"

j = "Add name and text pointer to index"

Restatement of two levels of expansion:

f = IF "Member name is in index" THEN
"Update text pointer" ELSE
"Add name and text pointer to index"
"Add member text to library text"

Top Down Programming in Large Systems 1 01

References

1. Bohm, Corrado, and Jacopini, Giuseppe. "Flow Diagrams, Turing
Machines and Languages with Only Two Formation Rules." Comm.
ACM 9 (1966): 366-371.

2. Dijkstra, E. W. "A Constructive Approach to the Problem of Pro
gram Correctness." BIT 8, No. 3 (1968): 174-186.

3. Dijkstra, E. W. Notes on Structured Programming, Technische Hoge
school Eindhoven, 1969.

4. Dijkstra, E. W. "Structured Programming." In Software Engineering
Techniques," edited by J. N. Burton, and B. Randell, pp. 88-93.
NATO Science Committee, 1969.

5. Dijkstra, E. W. "The Structure of the "T.H.E." Multiprogramming
System." Comm. ACM 11 (1968): 341-346.

6. Floyd, R. W. "Assigning Meanings to Programs." In Proceedings
of the Symposium in Applied Mathematics, Vol. 19, edited by J. T.
Schwartz, pp. 19-32. Providence, R. I: American Mathematical
Society, 1967.

7. Good, D. I. "Toward a Man-Machine System for Proving Program
Correctness." Ph.D. thesis, University of Wisconsin, 1970.

8. Good, D. I., and London, R. L. "Computer Interval Arithmetic:
Definition and Proof of Correct Implementation." J. A CM 17, No.
4 (1970): 603-612.

9. IBM System/360 Operating System: PL/I(F) Language Reference
Manual, Form C28-8201. IBM Corporation .

10. IBM System/ 360 Operating System: Concepts and Facilities, Form
GC28-6535. IBM Corporation.

11. King, J. C. "A Program Verifier." Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, 1969.

12. London, R. L. "Certification of Algorithm 245 Treesort 3: Proof
of Algorithms-A New Kind of Certification." Comm. ACM 13
(1970): 371-373.

13. Mills, H. D. "Syntax-Directed Documentation for PL360." Comm.
ACM 13 (1970): 216-222.

14. Naur, P. "Proof of Algorithms by General Snapshots." BIT 6
(1966): 310-316.

15. Wirth, N. "PL360, a Programming Language for the 360 Com
puters." J. ACM 15 (1968): 37-74.

Programming Techniques:
From Private Art
to Public Practice

(1970)

A Science of Programming

ARTICLE

12

The computer has introduced a need for highly complex, precisely for
mulated systems on a scale never before attempted. Systems may be large
and highly complex, but if human beings or even analog components are
intrinsic in them, then various error tolerances are possible, which such
components can adjust and compensate for. But a digital system, hard
ware and software, not only makes the idea of perfect precision possible
-it requires perfect precision for satisfactory operation. This complete
intolerance to the slightest error gives programming a new character,
unknown previously, in its requirements for precision on a large scale.

The combination of this new requirement for precision and the
commercial demand for computer programming on a broad scale has
created many false values and distorted relationships in the past decade.
They arise from intense pressure to achieve complex and precise results
in a practical way without adequate theoretical foundations. As a result,
a great deal of programming today uses people and machines highly in
efficiently, as the only means presently known to accomplish a practical end.

It is one thing to understand the mechanisms of a computer such
as OS/360 and to write down a set of detailed operations that will pro
duce a payroll, for example. It is another thing to produce a payroll

103

104 SOFTWARE PRODUCTIVITY

programming system that has intrinsic technical value in its own right
technical value that permits others to understand it readily or to add onto
it, or permits it to use hardware efficiently.

In the first case, one has merely the problem of writing down all
the conditions and cases that might occur and dealing with them indi
vidually with the computer instruction repertoire. In the second case, one
has a problem in general systems design and implementation. This prob
lem is poorly defined, and high professional creativity and skill are re
quired to handle it effectively.

There have been, from the beginning of programming activities ,
certain general principles from general systems theory that good program
mers have identified and practiced in one way or another. These include
developing systems designs from a gross level to more and more detail
until the detail of a computer is reached, dividing a system into modules
in such a way that minimal interaction takes place through module inter
faces, creating standard subroutine libraries, and using programming lan
guages for the coding process.

These general principles will eventually find themselves codified
and integrated into a general science of programming. It is premature to
say that there is a science of programming at the present time, but it is
becoming possible to move programming from being a private art (al
though supported by various principles in ad hoc ways) toward being a
public science (in which work processes are repeatable and understand
able by people other than the original programmers). A Chief Program
mer approach will lead in this area by reintroducing high-level technical
capabilities into programming, which will permit the propagation of prin
ciples and their use in practical affairs, with resultant feedback into the
emerging science of programming.

Two Key Technical Principles

Programming in a Chief Programmer Team is based primarily on a re
newal and a reapplication of classical ideas in system development such
as system modularity and clean interface construction. However, there
are also two key principles, relatively new in their application to pro
gramming, that play a major role in the definition of Chief Programmer
Team techniques. .

The first key technical principle is that the control logic of any
programming system can be designed and coded in a highly structured
way. In fact, arbitrarily large and complex programming systems can be

Programming Techniques From Private Art to Public Practice 105

represented by iterating and nesting a small number of basic and standard
control logic structures .

This principle has an analog in hardware design, where it is
known that arbitrary logic circuits can be formed out of elementary AND,
OR, and NOT gates. This is a standard in engineering so widespread
that it is almost forgotten as such. But it is based on a theorem in Boolean
algebra that arbitrarily complex logic functions can be expressed in terms
of AND, OR, and NOT operations. As such, it represents a standard
based on a solid theoretical foundation that does not require ad hoc
management support, case by case, in actual practice. Rather, it is the
burden of a professional engineer to design logic circuits out of these
basic components. Otherwise, considerable doubt exists about this person's
competence as an engineer.

One practical application of this principle is writing PL/1 pro
grams without explicit GO TO statements in them. Instead, the branching
control logic can be effected entirely in terms of DO loops and IF-THEN
ELSE and ON conditions. The resulting code is read strictly from top to
bottom, typographically, and is much more easily understood thereby. It
takes more skill and analysis to wri~e such code, but the debugging and
maintenance are greatly simplified. Even more important, such structured
programming can increase a single programmer's span of detailed control
by a large amount.

The second key technical principle is that programs can be coded
in a sequence that requires no simultaneous interface hypotheses. That is,
programs can be coded in such a way that every interface is defined
initially in the coding process itself and referred to thereafter in its coded
form.

This principle has an analog in the theory of computable functions.
The key point in characterizing a computable function is that its valuation
can be accomplished in a sequence of elementary computations, none of
which involves solving a simultaneous system of equations. Any program
that is to be executed in a computer can be coded in an execution se
quence, and the very fact that the computer evaluates only computable
functions means that no interfaces can be defined hypothetically and
simultaneously in computation.

In practical application this principle leads to "top down" pro
gramming where code is generated in an execution sequence, for example,
job control code first, then linkage editor code, then source code . The
opposite (and typical implementation procedure) is "bottom up" pro
gramming, where source modules are written and unit tested to begin
with and later integrated into subsystems and, finally, systems. This inte
gration process in fact tests the proposed solutions of simultaneous inter
face problems generated by lower-level programming; and the problems

106 SOFTWARE PRODUCTIVITY

of system integration and debugging arise from the imperfections of these
proposed solutions. Top down programming circumvents the integration
problem by the coding sequence itself.

Standards, Creativity, and Variability

Many reactions to standards in programming show a basic confusion
between creativity and variability. Programming these days is a highly
variable activity. Two programmers may solve the same problem with
very different programs; that is, the results are highly variable. Two
engineers asked to design a "half adder" with economical use of gates
will be much less variable in their solutions but, in fact, no less creative
than two programmers in a typical programming project. Carried to an
extreme, two mathematicians asked to solve a differential equation may
use different methods of thinking about problems but will come up with
identical solutions and still be extremely creative in the process.

The present programming process is mostly writing down all the
things that have to be done in a giv.en situation. There are many different
sequences that can accomplish the same thing in most situations, and this
is reflected in extreme variability. A major problem in programming at
the present time is simply not to forget anything- that is, to handle all
possible cases and to invent any intermediate data needed to accomplish
the final results. Thus as long as programming is primarily the job of
writing everything down in some order, it is in fact highly variable. But
that in itself is not creative.

It is possible to be creative in programming, and that deals with
far more ill-defined questions, such as minimizing the amount of inter
mediate data required, or the amount of program storage, or the amount
of execution time, and so on. Finding the deep simplicities in a compli
cated collection of things to be done is the creativity in programming.
However, it is not standards that inhibit such creativity in the program
ming process; it is simply the lack of creativity in the programmers
themselves.

Controlling Complexity through Technical Standards

A major purpose in creating new technical standards in programming
is to control complexity. Complexity in programming seems sometimes
to be a "free commodity." It does not show up in core or throughput

Programming Techniques From Private Art to Public Practice 1 07

time, and it always seems to be something that can be dealt with in
definitely at the local level.

In this connection it is an illuminating digression to recall that
500 years ago, no one knew that air had weight. Just imagine, for example,
the frustrations of a water pump manufacturer, building pumps to draw
water out of wells. By tightening up seals, one can raise water higher and
higher- five feet, ten feet, then 15 feet, and so on, until one gets to 34
feet.. As soon as it is known that air has weight and it is, in fact, the
weight of a column of 34 feet of water, then the frustration clears up
right away. Knowing the weight of air allows a better pump design, for
example, in multiple-stage pumps, if water has to be raised more than
34 feet.

We have a similar situation in programming today. Complexity
has a "weight" of some kind, but we do not know what it is. We know
more and more from practical experience that complexity will exact its
price in a qualitative way, but we cannot yet measure that complexity in
operational terms that, for example, would cause us to reject a program
module because it had "too many units of complexity in it." (These
units of measure will, in all probability, be in "bits of information." But
just how to effect the measurements still requires development and re
finement.)

Nevertheless, we have qualitative notions of complexity, and stan
dards can be used to control complexity in a qualitative way, whether we
can measure it effectively yet or not. One kind of standard we can use to
control complexity is structural, as in the first principle noted above.
Then we can require that programs be written in certain structural forms
rather than be simply arbitrary complex control graphs generated at a
programmer's fancy. The technical basis for the standard is to show that
arbitrarily complex flowcharts can be reformulated in equivalent terms as
highly structured flowcharts that satisfy certain standards. This is like
theorems in Boolean algebra that state a priori that half adders can be
written in terms of AND, OR, and NOT gates.

We define, through standards, work processes that are more re
peatable. People may think differently about the same problem but, just
like the mathematicians above, may come up with the same differential
equation. When the problems and standards are stated sufficiently well,
people will come up with the same answers. In programming at the mo
ment, we define neither the problems nor the tools with sufficient stan
dards, but as we improve our standards, the work processes in program
ming will become more and more repeatable in terms of final results.

108 SOFTWARE PRODUCTIVITY

Structured Programming

There are new results in graph theory that show that the control logic of
any programming system can be designed and coded in a highly structured
way. Any programming system, no matter how large or complex, can be
represented as a finite set of flowcharts (hardware interrupt mechanisms
may be used to transfer control from one flowchart to another in such a
programming system). The new theoretical results deal with converting
arbitrarily large and complex flowcharts into standard forms so that they
can be represented by iterating and nesting a small number of basic and
standard control logic structures.

A sufficient set of basic control logic structures consists of three
members:

1. A sequence of two operations (Figure 12-1).
2. A conditional branch to one of two operations and rejoined (an

IF-THEN-ELSE statement) (Figure 12-2).
3. Repeating an operation while some condition is true (a DO-WHILE

statement) (Figure 12-3).

FIGURE 12-1. SEQUENCE

FIGURE 12-2. IF-THEN-ELSE

Programming Techniques From Private Art to Public Practice 109

FIGURE 12-3. DO-WHILE

The basic theorem (due to Bohm and Jacopini, "Flow Diagrams,
Turing Machines, and Languages with Only Two Formation Rules,"
Comm. ACM 9, May 1966) is that any flowchart can be represented in
an equivalent form as an iterated and nested structure in these three basic
and standard figures.

Note that each structure has one input and one output and can
be substituted for any box in a structure, so that complex flowcharts can
result. The key point (not obvious here) is that an arbitrary flowchart
has an equivalent representative in the class so built up. In fact, Figure
12-1 , a simple sequence, is so natural that it rivals the number zero (in
algebra) in the difficulty of its discovery as a bona fide structural figure.

Needless to say, there is no compelling reason in programming to
use such a minimal set of basic figures, and it appears practical to aug
ment the DO statement with several variations, such as ordinary "Fortran
DO loops" in order to provide more flexibility for programmers and
greater adaptability to given machine characteristics.

When converted into PL/I terms, the foregoing theorem demon
strates that PL/I programs can be written in terms of IF-THEN-ELSE
and DO-WHILE statements. Note that the idea of a general GO TO is
never introduced in these basic structures and is thus never required in a
representation. Because of questions of efficiency, one may in fact wish
to use GO TO's occasionally in some PL/I programs, but not through
any logical necessity. The use of GO TO's can be made on an exception
basis, so that special justification and documentation would be called for
in any such use.

A major characteristic of programs written in these structures is
that they can be literally read from top to bottom typographically; there
is never any "jumping around" as is so typical in trying to read code

110 SOFTWARE PRODUCTIVITY

that contains general GO TO's. This property of readability is a major
advantage in debugging, maintaining, or otherwise referencing code at
later times. Another advantage of possibly even greater benefit is the
additional program design work that is required to produce such struc
tured code. The programmer must think through the processing problem,
not only writing down everything that needs to be done, but writing it
down in such a way that there are no afterthoughts with subsequent
jump-outs and jump-backs nor indiscriminate use of a section of code
from several locations because it "just happens" to do something at the
time of the coding. Instead, the programmer must think through the con
trol logic of the module completely at one time, in order to provide the
proper structural framework for the control. This means that programs
will be written in much more uniform ways because there is less freedom
for arbitrary variety than there is with general GO TO's.

Such structured programming can also be carried out in OS/360
assembly language using macroprocessing facilities. The 360 macropro
cessing is sufficiently powerful to allow standard block structure macros
to be developed so that assembly language programs can be written without
instruction labels or branches except those generated in the standard ma
cros. The assembler language also has enough facility (though it is seldom
used) to permit the typographical representation of control logic through
indentation, that is, so that code which is nested (within a DO loop, for
example) is indented to show that nesting typographically.

It is expected that Chief Programmers write in highly structured
forms; this represents a high degree of creativity on their part. This serves
a major function in permitting communication at a precise level between
the Chief Programmer and the Backup Programmer and any other pro
grammers to whom coding is delegated. That is, the Chief Programmer
expects to read and understand all the code going into the system no
matter who wrote it. If others write code in the same block structured
way, this facilitates the code reading by the Chief Programmer to verify
its content and correctness for the system under development.

Top Down Programming

There is a new principle in system implementation that has been followed
intuitively in module development (but not in system development) for
some time. It is to produce code in execution sequence, that is, to code
only instructions that could be executed by the machine because all pre
vious instructions required have already been coded. Note that this prin-

Programming Techniques From Private Art to Public Practice 111

ciple is being applied here to the sequence in which code is created, not
the sequence in which it is executed.

In general, system development has evolved as a "bottom up"
process, where the lowest level modules are coded, then the next level,
on up to subsystems and systems. In the top down approach, the system
level code is written first, then the subsystem code, and so on, down to
the lowest levels of code.

These two ways of coding have a direct counterpart in the theory
of computable functions. Computable functions have the property, at any
point of computation, that all the elements required to compute the next
value have already been computed. That is, one never incurs a set of
simultaneous equations, even though those equations may be well defined
and have a unique solution. Note that a solution to a system of simul
taneous linear equations is not included in the theory of computable func
tions; but an algorithm for solving such a system (in finitely many steps)
is so included.

It would be possible to develop a far more complex theory of com
putability in which simultaneous equations were permitted. Such a theory
might require that at each point of computation there would exist a set of
equations for several variables that had a unique solution. It would be
vastly more complex than the ordinary theory of computable functions,
and no real development of such an extended theory even exists.

However, it is this latter, highly complex process that has been
going on in system development right along. That is, while coding at the
low-level modules in the bottom up approach, programmers are assuming
hypothetical interfaces. That is, they are attemptingto solve "simultaneous
interface equations" in their programming process to arrive at a consistent
set of low-level modules. The next level of modules check out these con
sistencies, and in fact a great deal of the debugging and reworking is
usually required because of inadvertent inconsistencies that appear. This
process of combining more and more modules represents, in a computa
bility theory, the process of solving simultaneous interface equations at
higher and higher levels until finally the entire interface system has been
"solved," or the program has been debugged.

In contrast, the principle defined above follows the computable
function approach. The proof that this is possible comes directly out of
the machine execution itself. Hardware cannot execute hypothetical data .
Its function is to always produce new data out of old data in a comput
able way.

In programming terms this means that an external data set must
be defined in its format, and so on, before a file can access it. The file
must be defined with its records before a program can make use of data
from it, and so on. Notice in the process that there are no hypothetical

112 SOFTWARE PRODUCTIVITY

interfaces and no logical points at which confusion or misunderstanding
can arise. Human fallibility cannot be eliminated, but we can eliminate
the hypothetical interface communication, and this may indeed eliminate
the majority of the errors that are now made through human fallibilit y
in programming.

At first glance, the idea of top down programming may sound
prohibitive in terms of elapsed coding time. It is typical in a large project
to get coding started at the lower levels early because there seems to be
so much of it and the feeling is that it will be the bottleneck in the de
velopment process. This will probably turn out to be false; it is like!
that what actually happens in projects is that at the integration time.
programs are checked, modified, and corrected with more than sufficient
time spent on them to write them from the beginning to firm interfaces.
For many programming systems, writing top down is not expected to take
any more elapsed time than writing bottom up, particularly with the
high-level languages and macroprocessing facilities that are available
today.

There is another facet of system implementation standards and the
top down approach. It deals with an idea called "main-line programming.'
Usually, most programs have paths that can be called main-line paths
because that is the expected control path for typical program execution
and the additional "exception" code that handles unusual or error con
ditions. It is common in programming development to write main-line
code and get that running first and then to write exception data later on
at a more leisurely pace. This can be done in the top down approach
simply by recognizing that debug data can be written in top down manner
as well. That is, debug data should be written to exercise the main-line
path to begin with, and be augmented later, as exception paths are devel
oped in code, to exercise that code. Again the principle is exactly the
same, only now regarding debug data and programming code as a unit
in a top down approach. (It should be pointed out here that debug data
is distinguished from test data, which is defined at the point of functional
specification of the system and not referred to here. The debug data
referr~d to here is used in development to identify programmer fallibility
and serve as a continuous check on the system development to date for
the programmer. Of course, at acceptance the system should be subjected
to data called for by functional specifications, but that is considered as
a separate matter, outside the programming development itself.)

In OS/360, for example, job control, linkage editor, "supervisory"
and "data management" source code is written in that order, and only
then the source modules that typically give a system its functional capa
bility. Thus system development proceeds through the controlled addition
of new modules to an always checked out system. That is, supervisory

Programming Techniques From Private Art to Public Practice 113

programs run early in the development phase, first calling on dummy
modules into which later functional modules can be substituted. The sys
tem is then developed by expanding the set of modules it can call and
run. In this process the Chief Programmer can maintain complete
and direct control over the system, usually having written the nucleus and
personally specifying and checking out the modules produced by other
programmers or specialists in the very system environment for which they
are intended.

The top down approach permits the effective use of OS/360 lan
guages in a project. No matter what is written in memos or discussed in
meetings, the machine will end up reading what is punched on cards in
OS/360 languages. Concepts that cannot be stated in OS/360 languages
cannot be utilized in the machine. Instead, module interface specifications
can be done entirely in OS/360 languages, with less opportunity for mis
understanding and error. As was noted, in the top down programming
approach there is no programming to hypothetical or temporary inter
faces; every interface is defined at one logically defined point in the project
and used as a fully specified reference from there on .

Mathematical Foundations
for
Structured Programming

(1972)

Introduction

ARTICLE

13

The first name in structured programming is Edsger W. Dijkstra (Hol
land), who has originated a set of ideas and a series of examples for
clear thinking in the construction of programs. These ideas are powerful
tools in mentally connecting the static text of a program with the dynamic
process it invokes in execution. This new correspondence between pro
gram and process permits a new level of precision in programming.
Indeed, it is contended here that the precision now possible in programming
will change its industrial characteristics from a frustrating, trial-and-error
activity to a systematic, quality-controlled activity.

However, in order to introduce and enforce such precision pro
gramming as an industrial activity the ideas of structured programming
must be formulated as technical standards, not simply as good ideas to
be used when convenient, but as basic principles that are always valid.
A good example of a technical standard occurs in logic circuit design.
There, it is known from basic theorems in Boolean algebra that any logic
circuit, no matter how complex its requirement, can be constructed by
using only AND, OR, and NOT gates.

Our interest is similar: to provide a mathematical assurance, for

Reprinted with permission from International Business Machines Corporation.

115

116 SOFTWARE PRODUCTIVITY

management purposes, that a technical standard is sound and practical.
This mathematical assurance is due, in large part, to Corrado Bohm and
Giuseppe Jacopini (Italy), who showed how to prove that relatively simple
(structured) program control logics were capable of expressing any pro
gram requirements.

Initial practical experience with structured programming indicates
that there is more than a technical side to the matter. There is a psycho
logical effect as well, when programmers learn of their new power to
write programs correctly. This new power motivates in turn a new level of
concentration, which helps avoid errors of carelessness. This new psy
chology of precision has a mathematical counterpart in the theory of pro
gram correctness, which we formulate in a new way.

The mathematical approach we take in formulating structured
programming and the correctness problem emphasizes these combinatorial
aspects, in order to demonstrate for programmers that correct program
ming involves only combinatorial selection and not problems requiring
perfect precision on a continuous scale. Because of this we are confident
that programmers will soon work at a level of productivity and precision
that will appear incredible compared to early experience with the pro
gramming problem.

Complexity and Precision in Programming

The digital computer has introduced a need for highly complex, precisely
formulated, logical systems on a scale never before attempted. Systems
may be large and highly complex, but if human beings, or even analog
devices, are components in them, then various error tolerances are pos
sible, which such components can adjust to and compensate for. How
ever, a digital computer, in hardware and software, not only makes the
idea of perfect precision possible- it requires perfect precision for satis
factory operation. This complete intolerance to the slightest logical error
gives programming a new character, little known previously, in its require
ments for precision on a large scale.

The combination of this new requirement for precision and the
commercial demand for computer programming on a broad scale has
created many false values and distorted relationships in the past decade.
They arise from intense pressure to achieve complex and precise results
in a practical way without adequate technical foundations. As a result, a·
great deal of programming uses people and computers highly inefficiently.
as the only means presently known to accomplish a practical end.

It is universally accepted today that programming is an error-prone

Mathematical Foundations for Structured Programming 117

activity. Any major programming system is presumed to have errors in it;
only the very naive would believe otherwise. The process of debugging
programs and systems is a mysterious art. Indeed, more programmer time
goes into debugging than into program designing and coding in most large
systems. But there is practically no systematic literature on this large
undertaking.

Yet even though errors in program logic have always been a source
of frustration , even for the most careful and meticulous, this may not be
necessarily so in the future. Programming is very young as a human ac
tivity- some 20 years old. It has practically no technical foundations yet.
Imagine engineering when it was 20 years old. Whether that was in 1620
or 1770, it was not in very good technical shape at that stage either! As
technical foundations are developed for programming, its character will
undergo radical changes.

We contend here that such a radical change is possible now, that
in structured programming the techniques and tools are at hand to permit
an entirely new level of precision in programming.

This new level of precision will be characterized by programs of
large size (from tens of thousands to millions of instructions) that have a
mean time between detected errors of a year or so. But to accomplish
that level of precision, a new attitude toward programming expectations
will be required in programmers as well .

The Psychology of Precision

A child can learn to play the game of tic-tac-toe perfectly- but a person
can never learn to saw a board exactly in half. Playing tic-tac-toe is a
combinatorial problem, selecting at every alternative one of a finite num
ber of possibilities. Sawing a board exactly in half is a physical problem
for which no discrete level of accuracy is sufficient.

The child who has learned to play tic-tac-toe need never make a
mistake, except through a loss of concentration. In any game the child
believes important (say, played for a candy bar), he or she is capable
of perfect play.

Computer programming is a combinatorial activity, like tic-tac-toe,
not like sawing a board in half. It does not require perfect resolution in
measurement and control; it only requires correct choices out of finite
sets of possibilities at every step. The difference between tic-tac-toe and
computer programming is complexity. The purpose of structured program
ming is to control complexity through theory and discipline. And with
complexity under better control it now appears that people can write sub
stantial computer programs correctly. In fact, just as a child moves from

118 SOFTWARE PRODUCTIVITY

groping and frustration to confidence and competence in tic-tac-toe, so
people can now find solid ground for program development.

Child ren, in learning to play tic-tac-toe, soon develop a little theory,
dealing with "center squares," "corner squares," "side squares," and the
self-discipline to block possible defeats before building threats of their
own . In programming, theory and discipline are critical as well at an adult's
level of intellectual activity. Structured programming is such a theory,
providing a systematic way of coping with complexity in program design
and development. It makes possible a discipline for program design and
construction on a level of precision not previously possible .

But for children, knowing how to play tic-tac-toe perfectly is not
enough. They must know that they know. This knowing that they know is a
vital ingredient in self-discipline-knowing that they are capable of an
alyzing the board and do not need to guess and hope.

It is the same with programmers. If programmers know that what
is in their minds is correct, then getting it onto paper precisely is more
important, as is checking details of data definitions, and whatever, in the
coding process. On the other hand, if programmers think that what is in
their minds is probably all right, but are subconsciously counting on de
bugging and integration runs to iron out logic and interface errors, then
the entire process of getting it onto paper and into the computer suffers
in small ways to later torment them.

It takes some learning on the part of experienced programmers to
discover that structured programs can be written with unprecedented
logical and interface precision . As with the child, it is not enough to be
able to program with precision . Programmers must know their capabilities
for precision programming in order to supply the concentration to match
their capabilities.

The Problem of Complexity

Five hundred years ago, it was not known that the air we breathe and
move through so freely had weight. Air is hard to put on a scale, or even
to identify as any specific quantity for weighing at all. But now we know
that air has weight-at sea level, the weight of a column of water 34 feet
high.

It is easy to imagine, in hindsight, the frustrations of a well pump
manufacturer, whose "research department" is operating on the theory
that "nature abhors a vacuum." Water can be raised up a well pipe 15,
20, then 25 feet, by using a plunger and tightening its seals better and
better. All this merely seems to confirm the "current theory" about the

Mathematical Foundations for Structured Programming 119

operation of such pumps. But at 35 feet, total frustration ensues. No mat
ter how tight the seals, the water cannot be raised.

In computer programming today we do not yet know that "com
plexity has weight." Since it is not easily measured or described, like storage
requirements or throughput, we often ignore the complexity of a planned
program or subprogram. But when this complexity exceeds certain un
known limits, frustration ensues. Computer programs capsize under their
own logical weight or become so crippled that maintenance is precarious
and modification is impossible . Problems of storage and throughput can
always be fixed, one way or another. But problems of complexity can
seldom be adequately recognized, let alone fixed.

The syndrome of creating unsolvable problems of complexity be
cause of anticipated problems of storage and throughput is well known.
It is the work of amateurs. It arises in a misguided arrogance that "what
happened to them won't happen to me!" But it keeps happening, over
and over.

The Idea of Structured Programming

Closely related to many original ideas of E. Dijkstra [1 0] and using key
results of C. Bohm and G. Jacopini [5], P. Naur [31], and R. Floyd [13],
structured programming is based on new mathematical foundations for
programming (in contrast to the use of programming to implement mathe
matical processes or to study foundations of mathematics). It identifies
the programming process with a step-by-step expansion of mathematical
functions into structures of logical connectives and subfunctions, carried
out until the derived subfunctions can be directly realized in the program
ming language being used. The documentation of a program is identified
with proof of the correctness of these expansions. Aspects of this approach
are illustrated as well in work of Ashcroft and Manna [3], Hoare [17],
and Wirth [39]. A major application to a programming system of con
siderable size is described by Baker [4].

Four mathematical results are central to this approach. One result,
a "Structure Theorem" due in original form to Bohm and Jacopini, guar
antees that any flowchartable program logic can be represented by ex
pansions of as few as three types of structures, for example, (1) f THEN
/?, (2) IF p THEN f ELSE g, (3) WHILE p DOt, where f and g are
flowcharts with one input and one output, pis a test, and THEN, IF, ELSE,
WHILE, and DO are logical connectives. This is in sharp contrast to the
usual programming practice of flowcharting arbitrary control logic with
unrestricted control branching operations.

120 SOFTWARE PRODUCTIVITY

In block-structured programming languages, such as Algol or PL/ I,
such structured programs can be GO TO-free and can be read sequen
tially without mentally jumping from point to point. In a deeper sense
the GO TO-free property is superficial. Structured programs should be
characterized not simply by the absence of GO TO's, but by the presence
of structure. Structured programs can be further organized into trees of
program "segments," such that each segment is at most some prescribed
size, for example, one page (some 50 lines) in length, and with entry only
at the top and exit at the bottom of the segment. Segments refer to other
segments at the next level in such trees, each by a single name, to represent
a generalized data processing operation at that point, with no side effects
in control. In this way the size and complexity of any programming sys
tem can be handled by a tree structure of segments, where each segment
whether high level or low level in the system hierarchy-is of precisely
limited size and complexity.

The Structure Theorem has a constructive proof, which itself pro
vides insight into program design and construction techniques . Although
a flowchart may be of any size, the Structure Theorem guarantees that its
control logic can be represented on a finite basis, with a corresponding
reduction in the complexity characteristic of arbitrary flowcharts. The
Structure Theorem also provides a canonical form for documenting and
validating programs, to help define operational procedures in program
ming.

The second mathematical result is a "Top Down Corollary," which
guarantees that structured programs can be written or read "top down, ''
that is, in such a way that the correctness of each segment of a program
depends only on segments already written or read and on the functional
specifications of any additional segments referred to by name. The appli
cation of this corollary requires a radical change in the way most program
mers think today, although advocates of "functional programming" have
proposed such ideas independently (as Zurcher and Randell [40], Landin
[22], Strachey [37], Burge [6], and Scott [35]). It is a nearly universal
practice at the present time to write large programs "bottom up"-coding
and unit testing program modules, then subsystems, and finally systems
integration and testing. In top down programming, the integration code
is written first, at the system, then subsystem levels, and the functional
modules are written last. As discussed by Mills [29], top down program
ming can eliminate the necessity for the simultaneous interface assumptions
that frequently result in system errors during integration.

The third mathematical result is a "Correctness Theorem," which
shows how the problem of the correctness of structured programs can be
reduced to function theoretic questions to which standard mathematical
practices apply. These questions necessarily go into the context of in ten-

Mathematical Foundations for Structured Programming 121

tions and operations available for writing programs. Ordinarily, they will
require specific mathematical frameworks and procedures for their resolu
tion. Indeed, for complex programs the mathematical question may be
more comprehensive and detailed than is practical to resolve at some ac
ceptable level of mathematical rigor. In any case the questions can be for
mulated on a systematic basis, and technical judgments can then be applied
to determine the level of validation that is feasible and desirable for a
given program.

In this connection we note that mathematics consists of a set of
logical practices, with no inherent claim to absolute rigor or truth (for
example, see Wilder [38, p. 196]). Mathematics is of human invention and
subject to human fallibilities, in spite of the aura of supernatural verities
often found in a schoolboy world. Even so, the reduction of the problem
of program meanings to such mathematical practices permits the classifi
cation and treatment of ideas in terms of processes that have been sub
jected to considerable analysis and criticism by humankind.

The fourth mathematical result is an "Expansion Theorem," which
defines the freedom available in expanding any functional specification
into a structure at the next level. Perhaps the most surprising aspect of
this result is how little freedom a programmer has in correctly expanding
programs top down . For example, it will be clear in defining the structure
"IF p THEN f ELSE g" that the choice of p automatically defines f and
g-that the only freedom in such a structure is in its predicate. Even more
surprising is the result that in the expansion "WHILE p DO f" no free
dom exists at all in the selection of p-the looping predicate will be seen
to be totally determined by the functional specification itself.

Our motivation in this final result is to exhibit programming as an
analysis, rather than a synthesis, activity, that is, to identify the top down
programming process as a sequence of decompositions and partitions of
functional specifications and subspecifications, each of which produces
simpler subspecifications to handle, until finally the level of programming
language instructions or statements is reached. This is in contrast to pro
gramming as a synthesis of instructions or statements that "accomplish"
the functional specifications. It is in this distinction that programming
emerges as a readily perceived combinatorial activity.

The Correctness of Structured Programs

With structured programming, programmers are capable of high-precision
programming, but, as in tic-tac-toe, it is important for their concentration
to know their own capability for this high precision. The Correctness Theo
rem provides concepts and procedures for realizing this precision in pro-

122 SOFTWARE PRODUCTIVITY

gramming. Correctness proofs are demonstrations of human devising for
human consumption. There is no such thing as an absolute proof of
logical correctness. There are only degrees of rigor, such as "technical
English," "mathematical journal proof," "formal logic," and so on, each
of which is an informal description of mechanisms for creating agreement
and belief in a process of reasoning.

It is clear that a whole spectrum of rigor will be useful in correct
ness proofs. A casual program, used in an experimental investigation, may
warrant no more than a few lines of explanation. A heavily used program
-say, a text editor or a compiler-may warrant a much more formal
proof. London has furnished several realistic examples of proof at a math
ematics level [23, 24, 25], including the proof of an optimizing LISP
compiler. Jones [20] has given an example of a proof in more formal terms.
King [21] and Good [14] have developed more automatic machinery.
Dijkstra [9] has illustrated less formal ideas that may be even more con
vincing in some programs. The persuasion of a proof depends not only
on its formality, but on its brevity. Unfortunately, formality and brevity
do not often cooperate, and the programmer has a difficult balancing prob
lem in selecting the best compromise ,between formality and brevity.

Our approach is functional (or denotational, as used by Ashcroft
[2]), rather than computational; instead of proving assertions about com
putational steps in a program (as introduced by Naur [32], Floyd [12],
and others), we formulate assertions about functions whose values are
computed by programs and subprograms. In this approach, the set theoretic
definition of a function as a set of ordered pairs is of critical convenience.
For example, an IF-THEN-ELSE subprogram corresponds to a partition
of a corresponding function into two subsets of ordered pairs, which, as
subfunctions, correspond to the THEN clause and ELSE clause of the
original subprogram.

As noted, structured programs admit decompositions into subpro
grams of very simple types, such as THEN, IF-THEN-ELSE, and DO
WHILE subprograms. Our main interest is to show that each type leads
to a characteristic logical assertion about the correctness of a subprogram.
These assertions are eventually embodied in function theoretic questions,
dealing with composition and partition of functions; for example, for some
sets f, g, h, (not necessarily distinct), it is to be proved that

f=g*h or f = g u h.

These relations assert equalities between sets of ordered pairs. There
are many acceptable ways in current mathematical practice to prove such
assertions, such as an induction over some common structural feature of

Mathematical Foundations for Structured Programming 123

the sets involved. But such ways are outside our current interest in for
mulating the assertions themselves.

We recognize, with Floyd [12], that the question of program cor
rectness is simply the question of program meaning, that is, knowing what
a program does. Any program, including pure gibberish, exhibits some
behavior, and it is correct with respect to that behavior, independent of
what other capabilities may be envisioned for it. In this context it is crucial
to distinguish between correctness and capability. A program under con
struction top down can be correct at every stage but not capable of its
eventual requirements until completed. An error in a program is an un
expected action. A function theoretic description of the behavior of a
program can thus be regarded as a pure description or a normative pre
scription, but the correctness problem comes down to the agreement
between a functional description and a program behavior.

Functions

We adopt the common mathematical notion that a function is a set of
ordered pairs (see Halmos [15]), say,

such that if (x, y) E /, (u, v) E /, x = u, then y = v. The relation (x, y)
E f is often written as

Y = f(x),

and x is called the argument, and y is called the value of function f. The
sets of first and second members of the ordered pairs of a function are
called the domain and range of the function, respectively. In the example
above,

domain (f) = {x, x2, .. . }

range (f) = {y1, Y2, ... }

Note that these definitions for domain and range include only arguments
and values of the function, and no other elements.

Since a function is a set, it makes sense to use the terms "empty
function," "subfunction," "function partition," and so on, with the word,
suffix or prefix "set" replaced by "function" whenever the conditions fur
ther required by a function can be guaranteed to hold. Instances that

124 SOFTWARE PRODUCTIVITY

violate these conditions include the case of the power set (the set of subsets
of a function is not itself a function, but is a set of functions), and the union
of functions (the uniqueness of a value for a given argument may be lost
in forming the union of two functions). However, the union of disjoint
functions or intersection of two functions is again a function, as is the
difference (set) of two functions.

Functions and Rules

In the description of a function f as a set of ordered pairs it is often con
venient to give a rule for calculating the second member from the first,
as in

f = { (x, y) I y = x2 + 3x + 2}
or

(x,x 2 +3x+2) Ef
or even

f(x) = x2 + 3x + 2,

where domain (f) is given in some broader context. A rule used in defining
a function in this way is not unique. For example, if

x2 + 3x + 2 = (x + 1) (x + 2),

then the new function and rule

g={(u,v) I v = (u+l)(u+2)}
or

g(u) = (u + 1) (u + 2)

defines the same set as before, that is, f = g (as sets).
If a function is finite, then its enumeration can serve in a rule. The

rule is to find any given argument as a first member of an ordered pair,
if possible, and to extract the second member, if found, as the value for
that argument. Otherwise, if enumeration is impossible or impracticable,
a rule must be expressed as an algorithm, possibly very complex but with
unambiguous outcome for every argument.

In programming there is a direct correspondence to the relationship
between functions and rules-it is between functional specifications and
programs. The problem of program correctness then becomes the problem
of showing that a given function is defined by a given rule. Perhaps the
simplest form of the program correctness problem is defined by function

Mathematical Foundations for Structured Programming 125

rules of enumeration, or "table lookup." If a table lookup program has
previously been proved to be correct, then any finite functional specifica
tion, entered as a table, can be verified to be correct by verifying the table
entries therein.

Since functions are merely sets of ordered pairs, we regard the
usual idea of a "partial function" to be a relationship between two sets,
one of which is the domain of some function under consideration. In our
case we use the term partial rule to mean a rule of computation not always
defined over some given set.

Function Composition and Completion

Beyond operations directly inherited from sets, function composztwn is
based on the fact that functions are sets of ordered pairs. A composition
of two functions is a new function that represents the successive use of the
values of one function as the arguments of the other. That is, we define
the new function composition, using an infix notation:

f * g = {(x, y) I 3: z (z = g(x) I\ Y = f(z))}.

If range (g) and domain (f) are disjoint, then f * g is the empty function;
otherwise, j * g is just the set of ordered pairs that is defined through the
application of g then f to arguments of g to get values of f.

Conversely, we say that an ordered pair of functions, (f, g), is a
decomposition of a function, h, if h = f * g. Clearly, for any function h,
there may be many decompositions.

It is clear that function composition is associative, that is, that

(f * g) * h = f * (g * h)

for all functions f, g, and h; hence the parentheses c_.:m be omitted without
ambiguity, as in

f * g *h.

Then the composition of a function with itself can . also be denoted simply
by an exponent notation:

f2 =f*f

/
3 = j * j2 = f2 * f = f * f * f

/
4 = f * f3 = f * f * f * f.

126 SOFTWARE PRODUCTIVITY

It will occasionally be convenient to permit a zero exponent and interpret
f0 as an identity function (see below).

Given a function, we consider its repeated composition with itself,
reusing values as new arguments until, if ever, such values are not mem
bers of the domain of the function. The number of compositions then
possible depends on the original argument, of course. Thus we define a
function completion, say, for function f, to be

f ={(x,y) l3:k((x,y)Efk) Ay¢domain(f)}.

Special Functions

We identify for future convenience, several general classes of functions,
namely:

1. Identity functions:

I= {f I (x,y) E f :J y=x}

2. Constant functions:

C(a) = {f I (x,y) E f :J y=a}

3. Permutation functions:

P = {f I domain (f) =range {f)}

4. Inverse function pairs:

R = { {f, g) I t * g = g * t E I}

(If {f, g) E R , we say g = t- 1 or f = g-1.)

Programs

We abstract the commonly known idea of a (computer) program as a
finite set of functions, called instructions, each with a finite domain con
tained in a common set, called the data space, and a finite range contained
in the Cartesian product of the data space and the program, called the state
space. Members of the data space and state space are called data values
and state values, respectively.

Mathematical Foundations for Structured Programming 127

A program execution is a sequence of state values, say,

S;=(d;,/;) , i=O, 1, ...
such that

S; + J =fi (d;), i=O, 1, ...

which terminates, if ever, when f;(di) fails to exist-that is, when d; i do
main (f;). The state value s0 is called the initial value of the execution. If
the execution is finite, say,

S = So, S1, ... , Sn = t,

then t is called the final value of the execution.
Since the state space of a program is finite, it is decidable, for

every initial value, s, whether that execution terminates and, if so, what
the final value, t, is. Therefore a program automatically defines a function
of ordered pairs (s, t) defined by terminating executions, called the pro
gram function. If a program is given by a set P, we denote its program
function by [P]. In retrospect, a program is a specific (non unique) rule
for calculating the values of its program function.

A subprogram is a subset of a program, which inherits its state
space. A subprogram execution is a contiguous subsequence of a program
execution which terminates, if ever, when an instruction not in the sub
program appears in the state value. To each subprogram corresponds a
subprogram function as well.

Control Graphs

The instructions (functions) of a program determine a directed control
graph whose nodes are instructions and whose directed lines are the next
possible instructions. A node of such a graph may have several input
lines and several output lines, which denote the direction of control flow,
as shown in Figure 13-1.

An instruction (node) has a natural decomposition between con
trol and data effects that can be displayed by its partition (of its set of
ordered pairs) into subsets, each of whose values contains identical (next)
instruction components. The instruction node displayed in Figure 13-1
then has the form in Figure 13-2, where the diamond (control node) rep
resents an identity function for values in the data space and a square
(process node) represents a constant function for values in the program
(next instruction). Since the program (set) is finite, this partition can be

128 SOFTWARE PRODUCTIVITY

~

/
FIGURE 13-1

refined so that control nodes each contain exactly two output lines, called
predicate nodes.

From these considerations we are led to directed graphs with
predicate and process nodes of the form shown in Figure 13-3.

It will be convenient to introduce a symmetry into such directed
graphs by augmenting the original program with "no-op" instructions (col
lecting nodes), which collect and transfer control from exactly two input
lines each, which we diagram as shown in Figure 13-4. Control graphs
are also called program schemas (see Ia nov [19]).

Programs in Flowchart Form

We can represent a program in flowchart form. A flowchart is defined by
a control graph and by operations and tests to be carried out on data in

~

/
FIGURE 13-2

Mathematical Foundations for Structured Programming 129

FIGURE 13-3

FIGURE 13-4

130 SOFTWARE PRODUCTIVITY

~
Process

Predicate Collecting

FIGURE 13-5

a sequence determined by that control graph. As noted, we consider con
trol graphs with only three types of nodes (see Figure 13-5). The upper
and lower lines out of a predicate node are labeled "True" and "False,"
respectively, just to be definite, unless otherwise noted.

In a flowchart each process node is associated with a function, or
data transformation, and each predicate node is associated with a predi
cate function, or a binary-valued data test. Each line of a flowchart is
associated with a set of possible data states. A set of data states may be
the set of all possible machine states, for a program in a machine lan
guage, or may be the set of all variables allocated at a point in a program
in a programming language. The function associated with a process node
maps a set of data states associated with its jnput line into a set of data
states associated with its output line. A function f from X to Y is iden
tified in a flowchart as

_X~·~

This mapping is a subfunction, say, g, off, namely:

g = {(x, y) I x EX A (x, y) E fAy E Y}.

If x ¢ X, no such input is possible; if y ¢ Y, no such output is possible; if
x E X but (x, y) ~ for y ~ Y, the operation is not completed.

The predicate function associated with a predicate node maps the
set of data states associated with its input line into the set {True, False}

Mathematical Foundations for Structured Programming 131

y

X

but does not transform data otherwise; that is, theflowchart -figure is asso
ciated with the identity mappings of data from input to output. But in
order to complete the test satisfactorily, the condition

xE XI\ (((x, True) E pl\x E Y) V ((x, False) EpA xE Z))

must be satisfied.
The collecting node is also associated with an identity mapping,

from the flowchart figure.

X

z

Also, to complete the transfer of control, the condition

(x E X A x E Z) V (y E Y A y E Z)

must be satisfied. In early practice and in current programming theory the
sets associated with control lines are often taken to be identical-a "state
vector" set. However, with data scoping and dynamic storage allocation,
as found iri contemporary practice, the data space is variable, rather than
constant, over a program or flowchart.

132 SOFTWARE PRODUCTIVITY

Program Execution

The execution of a program is easily visualized in a flowchart, using the
control graph to identify the sequence of operations and tests on data re
quired. For example, consider the program f in flowchart form as shown
in Figure 13-6.

T v

u

FIGURE 13-6

Where possible, initial data r E R is converted by f into interme
diate data s E S, then t E T and v E V, or u E U, then wE W, and ulti
mately into final data x E X, by functions g, h, and k, under the control
of predicate p. That is, the program function (f] of program f has values,
when they exist, given by

x = k(h(g(r)))

x = k(g(r))

More precisely, we mean

if

if

p(g(r)) =True

p(g(r)) =False.

[f]={(r,x) lrERA(3:s,v((r,s)EgA (s,True)E pi\
(s,v) E hA (v,x) E k)) V (3:s ((r,s) EgA
(s, False) EpA (s, x) E k)) A x EX}.

Proper Programs

We define a proper program to be a program in which:

1. there is precisely one input line and one output line, and
2. for every node, there exists a path from the input line through that

node to the output line.

Mathematical Foundations for Structured Programming 133

Note that we admit the possibility of programs with no nodes and
a single input/output line. We call such a program A. Clearly, the pro
gram function [A] is an identity function; [A] E /. In illustration, the flow
charts in Figure 13-7 are not proper programs.

s

R v

T u

R

s

T
f

u

FIGURE 13-7

This definition of proper programs is primarily motivated by the
interchangeability of proper programs and process nodes in larger pro
grams.

Henceforth, we take "proper program" and "program" to be syn
onymous. If necessary, we will use the term "improper program" to refer
to a program that is not a proper program.

134 SOFTWARE PRODUCTIVITY

Program Equivalence

We will say that two proper programs are equivalent when they define
the same program function, whether or not they have identical control
graphs, require the same number of operations, and so on. For example,
the two programs

R
f

R

R R

and

R s

have the same program function, as do the two programs in Figure 13-8.
That is, two programs are equivalent if they define the same program
function, even though the programs may represent different rules for com
puting the values of the program function. In particular, given program f
and its program function [f], the new program g

domain ([f]) I I :ange ([!])
----'-"--~·~. [!] . •

is equivalent to f. In this case, g is a table lookup version of f.

Mathematical Foundations for Structured Programming 135

R s v

T u

s R s

T

u

T u

FIGURE 13-8

Program Expansions

If a program contains a process node, as

it may happen, that a rule for computing the values of f is defined as
another program. We call such a program an expansion of the function
f, such as is shown in Figure 13-9.

In this case it is asserted that the program function of the latter
program is f. That is, any expansion of a function is simply a rule for
computing its values, possibly using other functions and predicates to
do so.

Programs with loops may or may not terminate. This property of

136 SOFTWARE PRODUCTIVITY

T

p

X

u z

FIGURE 13-9

termination partitions an input set R into R 1 and R - R 1, where R 1 is the
subset of inputs for which the evaluations terminate. If R 1 7 R, then the
program defines a partial rule rather than a rule. Note that in fact a pro
gram may terminate by reaching an output line (normal termination) or
by reaching a node with a data value not in the domain of the corre
sponding function (abnormal operation termination) or by reaching a line
with a data value not in the data space (abnormal storage termination).

Control Graph Labels

The set of all control graphs of proper programs can be enumerated and
labeled. The beginning of such an enumeration is given in Figure 13-10.

In fact, a few such control graphs are given special mnemonic
labels in various programming languages. For example, the following labels
in Figure 13-11 are common. (IF-THEN is 9, in the enumeration started
above, IF-THEN-ELSE might be 37, 42, and so on.)

However, there is nothing special about these graphs except for
their simplicity. Any control graph possibly more complicated than these

1.

2. ·D •

3. ·D ·D •

4.

5. ·6 ·<> •

{? ·? •
6.

7.

8.

9.

etc.

FIGURE 13-10. Control Graphs

137

138 SOFTWARE PRODUCTIVITY

IF-THEN

IF -THEN-ELSE

DO WHILE DO-UNTIL

FIGURE 13-11

might be so labeled if it were usefuL In particular, we label the sequence
of two process nodes

BLOCK

for future reference.

Program Formulas

A program can be given as a formula, by associating an ordering with the
set of process nodes, predicate nodes, and control lines of its control graph
and by listing the label of its control graph, followed by labels for the
functions, predicates, and state sets of the program. For notational con
venience we will use parentheses and commas to denote the list structure
of a program formula; for example,

(A, p, q, /, g, h, R, S, T, U)

Mathematical Foundations for Structured Programming 139

means a program given by a control graph labeled A, with predicates p
and q, functions f, g, and h, and state sets R, S, T, and U, associated with
the nodes and lines of A. For example,

(BLOCK f, g, R, S, T)

defines a program

R T

whose action on an input r E R is to produce output t E T if it exists,
such that

t=g(f(r))

or, more precisely,

The list

[(BLOCK, f, g, R, S, T)] = {(r, t) \ 3: s (r E R
lisE S II tE T II (r, s) E f II (s, t) E g)}.

(IF-THEN-ELSE, p, f. g, R, S, T, U, V, W)

defines a program

s u

R

T v

w

140 SOFTWARE PRODUCTIVITY

which maps any r E R into some wE W, if it exists, such that

More precisely,

{

f(r) if p(r) =True

w = g(r) if p(r) =False.

[(IF-THEN-ELSE, p, f, g, R, S, T, U, V, W)]

={(r, w) IrE RAw E W A (((r, True) EpA rES A (r, w) E f
wE U) V ((r, False) E p A r E T A (r, w) EgA wE V)) }.

In much of what follows, the list of data sets is not central to the
ideas under development. In this case they will be suppressed. Howeve
such data sets are always implicit to program descriptions and discussions

Since function composition is associative, that is,

(f*g) *h=f"' (g*h),

then so is BLOCK formation, that is,

[(BLOCK, [(BLOCK, f, g)], h)]= [(BLOCK, f, [(BLOCK, g, h))]] ,

and no ambiguity results by extending the meaning of BLOCK to sever~
nodes, for example

(BLOCK3, f, g, h)= (BLOCK, (BLOCK, f, g), h),

and so on. In particular, we permit zero or one nodes in a BLOCK as in
Figure 13-12. Then, for example, we have the identity

f = [(BLOCKl, f, domain(!), range(/))].

~
(BLOCKO) = A. (BLOCK I ,f)

FIGURE 13-12

Mathematical Foundations for Structured Programming 141

It may happen that a function listed in a program formula is itself
a program function given by another formula, such as

(IF-THEN, p, [(BLOCK, g, h)]).

We extend the idea of program formula to permit the replacement of a
program function by its program formula, such as

(IF-THEN, p, (BLOCK, g, h)).

It is clear that while these are different programs they have identical pro
gram functions, just by the definition of program functions.

Program Descriptions

Flowcharts and formulas are simply two alternative ways of describing
(possibly partial) rules, with some internal structure, in terms of other
rules (or partial rules). Still another method of description is in program
ming language text such as

and

and

IF p THEN
f

ELSE
g

END IF

WHILEp DO
f

END DO

BLOCK
f
g

END BLOCK

and so on. We find all three types of description useful in various circum
stances in programming. Typically, flowcharts are useful in general dis
cussions because of their graphics, formulas are useful in stating and

142 SOFTWARE PRODUCTIVITY

proving theoretical properties of such rules, and the text is useful in the
actual construction of large complex programs. For example, the same
program is given in the formula

(IF-THEN-ELSE, p, (DO-WHILE, q, f), (BLOCK, g, h)),

in the flowchart

or in program text

IF p THEN
WHILE q DO

f
END DO

ELSE
BLOCK

g
h

END BLOCK
END IF

Mathematical Foundations for Structured Programming 143

Structured Programs

As flowcharts increase in size, we can often identify patterns that give
more coherence and understandability to a whole flowchart. For example,
the control graph in Figure 13-13 has three definite nested substructures,

,------ --- --------.............

r-------------~ ~, "
\ -....,_

\ '\
I \

\
\
\

I

\
I
I

I l
I
I

I
I
I
I
\ I

I
I

\
\

\
\

\

' '-

\
\

\

" " ' ___ ____ ___

FIGURE 13-13

/

I
/

/

!
I

which are control graphs for proper programs, that make the whole more
easily considered. But the control graph in Figure 13-14 admits no such
structuring. By simply continuing this last pattern indefinitely it is easy to
see that indecomposable control graphs of any size exist.

Having noted that programs of arbitrary size may be indecompos
able, we next add the possibility of operations and tests on data outside
the original data sets of a program. The additional operations and tests
correspond to "flag" setting and testing. But we can couch these opera
tions in the concept of a push down stack to show their economy. In
addition to the functions and predicates original to a given program we
introduce three new functions and one predicate.

144 SOFTWARE PRODUCTIVITY

FIGURE 13-14

More specifically, we define process nodes with functions named
TRUE, FALSE, and POP, and a predicate node with function named
TOP, which add truth values True and False, remove, and test such truth
values in an input data set, respectively. That is, for any data set Y, and y
E Y and z E {True, False},

TRUE(y) = (y, True)

FALSE(y) = (y, False)

POP(y, z) = y

TOP(y, z) = z

T

u

FIGURE 13-15

X

w

u

T

v

y w

FIGURE 13-16

145

146 SOFTWARE PRODUCTIVITY

These new functions and predicate allow us to construct explicit
control logic in the form of flags. For example, a program whose control
structure is in the indecomposable pattern above is shown in Figure 13-15.
This program is equivalent to the new program, where the output line X
and return line Y are tagged, and the tag is later tested.

Only the original data sets have been shown in Figure 13-16; the
remaining ones can be inferred from the definitions above. Close inspec
tion will reveal that the net effect of TRUE, FALSE, POP, and TOP is to
present just the correct original data set to each of the original functions
and predicates of the program. It may not be obvious that this equivalent
program is of any value in this case. It seems rather more complex
except that there is now a substructure, a proper program, which contains
all the original functions and predicates and, furthermore, has no loop in
it. This particular application previews a fundamental construction in the
proof of the main Structure Theorem below. As a result, this new program
can now be decomposed into two sections, of the forms shown in Figure
13-17, where process node f is given by Figure 13-18.

Before proving this Theorem we introduce a simple lemma, which
counts the control lines of a proper program in terms of its function and
predicate nodes.

FIGURE 13-17

T

y

FIGURE 13-18

Mathematical Foundations for Structured Programming 147

The Number of Control Lines in a Proper Program

Lemma: If the number of function, predicate, and collecting nodes is ¢, -rr, and
1', respectively, and the number of control lines (that is, edges) is e, in a
proper program, then

and
e=I+<P+3-rr.

Proof: In order to prove this lemma, count the "heads and tails" of the
control lines, adjacent to all the nodes, and at the input and output of the
program, to get Table 13-1.

TABLE 13-1

Control Function Predicate Collecting
Line Input Node Node Node Output Total

Heads <P 7r 2y <P + 7r + 2'Y + 1
Tails <P 2-rr i' <P + 27T + i' + 1

Since the total number of heads must equal the total number of tails and
each must equal e,

<P + -rr + 2i' + 1 = e = <P + 21r + i' + 1,

and the equations of the lemma follow.

Structure Theorem

Theorem: Any proper program is equivalent to a program whose formula
contains at most the graph labels BLOCK, IF-THEN-ELSE, and DO
UNTIL, and additional functions TRUE, FALSE, and POP, and predicate
function TOP.

Proof:* We prove the theorem by induction on the number of lines of
a proper program. The induction step is constructive and identifies, for
any proper program of more than one node, an equivalent proper pro
gram that is a formula in at most graph labels BLOCK, IF-THEN-ELSE,

* Thanks go to J. Misra for suggestions and assistance in developing the following
proof. Thanks are also due to S. Cole for discussions about the theorem and methods
for its proof.

148 SOFTWARE PRODUCTIVITY

and DO-UNTIL and new proper programs, each with fewer lines than
the initial program.

In order to carry out the induction, we first define a structuring
process, S, on any proper program, f, whose result we denote by S(f) ,
as follows. For convenience, we abbreviate the graph labels BLOCK,
IF-THEN-ELSE, DO-UNTIL to BLK, IF, DO, respectively, in the re
mainder of the proof.

Since f is a proper program, it has exactly one input and one out
put. We identify several cases that are possible.

Case 1: No Nodes. Iff has no nodes, we define

S(f) = A.

Case 2: One or More Nodes. If f has at least one node, we examine the
unique node reached by the input line. There are three possible cases:

Case 2a: Predicate Node. If the first node is a predicate node, then f is
of the form in Figure 13-19. Since f is a proper program, the line z can

X

I \ z :-.....

0 / '
----;·~ p t,, _) ,.

y

FIGURE 13-19

be reached from both x andy,* and we construct two constituent programs
that consist of all nodes accessible in f from x and y, respectively, calling
them g and h, respectively.

-
/ ' I \ z

X I g ;
\ I ' __ ,

.......-
/ ' y I \ z

\ h) ,.

' /__,
FIGURE 13-20

* Our definition of proper programs is necessary for this assertion. The proof of
Bohm and J acopini [5] breaks down at this point.

Mathematical Foundations for Structured Programming 149

The constituents may contain identical nodes from t, so that g and
h represent duplications of parts of f. If a collecting node in g or h is
reached by only one input line (the other line in f being in the other con
stituent), we suppress that collecting node, that is,

becomes

Note that g and h are proper programs; otherwise, f is not a proper
program. Note also that g and/or h may be A., a program with no nodes.

Since each of g and h contains at least one less predicate node than
does f, at least one collecting node is suppressed in each constituent. Next
we consider the new proper program, (IF, p, g, h), as shown in Figure
13-21, with the original predicate p and the constituents g and hoff (and
a new collecting node, not from g or h). In this case we define

S(f) =(IF, p, g, h) .

X

... -,
/ \

'
z

\ g I
' I --/

FIGURE 13-21

150 SOFTWARE PRODUCTIVITY

Also, in this case we observe that

e(g) ~ cp(f) + 3(7r(f)- 1) + 1 = e(f) - 3

e(h) ~ cp'(f) + 3(7r(f) - 1) + 1 = e(f)- 3,

since g and h at least do not contain predicate note f. (We use e(f), cp(f),
and 1r(f) to denote the number of lines, function nodes, and predicate
nodes, respectively, in f.)

Finally, it is clear by construction that S(f) is equivalent to f.

Case 2b: Function Node. If the first node is a function node, then f is of
the form shown in Figure 13-22, and h is a proper program, possible X.
In this case we define

.... -

Q / \h
----l)lo~ g ~ ...!I _ __, • .,..

\ I , __
FIGURE 13-22

S(f) = (BLK, g, h).

Also, in this case it is easy to count the number of lines in h, given
that there are e(f) lines in f. The number is

e(h) = (cp(f) - 1) + 37r(f) + 1 = e(f) - 1.

Finally, it is clear by construction that S(f) is equivalent to f.

Case 2c: Collecting Node. If the first node is a collecting node, then f
must be of the form shown in Figure 13-23, and we examine the next
unique node reached from this collecting node. It is clear that such a next
node exists, because a predicate node, at least, must be reached in the

..... ,
\

)lo

FIGURE 13-23

Mathematical Foundations for Structured Programming 151

remaining improper program in order to have two output lines. There are
three subcases to be examined.

2.c.(1). Predicate Node. If the next node is a predicate node, then f is of
the form shown in Figure 13-24.

r ..----......_
r-------------------r./' ~

" /
I \

X \
\ z
I
I

y \ I
\ I

'\. / ' / /
____

FIGURE 13-24

As before, we construct two programs that consist of all nodes that
can be reached from x andy, which terminate in z orr. We suppress col
lecting nodes with only one input, as before. These programs will not be
proper programs if both r and z can be reached from x or y. However,
since f is a proper program, we know that each constructed program must
reach at least z or r and that each z and r must be reached by at least one
constructed program. These constructed programs have the form shown in
Figure 13-25, where the solid output line is necessary and the dotted out
put line may or may not exist. We use TRUE and FALSE function nodes
(to set flags) and possibly collecting nodes to construct new proper pro-

... -
/' \ r

____ x __ ~t- \ •
\ -}--- __ z

... -
" ' r y I ..l. __ _ _.

-----!1,... I
\ -+-' -----l·~
\ I __ , z

FIGURE 13-25

152 SOFTWARE PRODUCTIVITY

grams from these shown, of the form in Figure 13-26, the forms in Figure
13-27, or the form in Figure 13-28, depending on whether or not the
dotted output lines r and z exist.

,---,,
/"' "\. •I /

I
I

X I
::.=_____J

\
\
\

X

' / ' / '...... _ ---
FIGURE 13-26

.,.....----......,
/ ',

/ ' / \
I \

I \ r •I FALSE I I . ------, I

\ I

y

\ I
\ // ', .,/' ' ____ ___

.,.,.-----
_,/
, ",

/ ' •I / 4[

I
I
I
l
\
\
\
\

' ', ,..,_ ___ .,
FIGURE 13-27

•

Mathematical Foundations for Structured Programming 153

,..,.,..--._...,
/

/ '
/ ' I \

I \

y I \ I
--~--~,~ -,r--2--~•~ TRUE

\ I
\ I
' I ' // ,, ./_ ___ .,

FIGURE 13-28

We label these proper programs g and h (such that g has at least
the r output line and h has at least !he z output line). Now we consider
the new program shown in Figure 13-29, with g and has constituent pro
grams. In this case we define

S(f) = (BLK, TRUE, (BLK, (DO, TOP, (BLK, POP, (IF, p, g, h))),
POP)).

We observe that g and h do not have the predicate node p, and each has
at most two more function nodes. Hence,

e(g) ~ <f>(f) + 2 + 3(7T(/)- 1) + 1 = e(f)- 1

e(h) ~ </>(/) + 2 + 3-(7T(f)- 1) + 1 = e(f)- 1

Finally, it can be verified that S(f) is equivalent to f.

2.c.(2). Function Node. If the next node is a function node, then f is of
the form shown in Figure 13-30, and we consider the new program shown
in Figure 13-31, with new program labeled h. In this case we define

S(f) = (BLK, g, h).

Also, in this case we observe directly that

e(h) = e(f)

...

I ' (h \
\ I ' -/

154

POP

FIGURE 13-29

.....
/

I
\

'
g

' \

/ ' I

Mathematical Foundations for Structured Programming 155

FIGURE 13-30

....... ------- -...... / '
/ '

/ '
/ ' / \ h

I ' I \
I \
I \
I \
\ /- , :

b------------+/ ~)~L~----··
\ I I , _ _./ I

.......... / _ _,.. -------
FIGURE 13-31

/
/

I
/

but that also, the number of lines, say, i(f), required to reach the first
predicate of f is reduced by one, that is,

i(h) = i(f) - 1

Finally, it is clear that S(f) is equivalent to f.

2.c.(3). Collecting Node. If the next node is a collecting node, then f is of
the form shown in Figure 13-32, and we consider the new program shown
in Figure 13-33, called g. In this case we define

S(f) = g

156 SOFTWARE PRODUCTIVITY

FIGURE 13-32

FIGURE 13-33

Also, in this case we observe directly that

e(g) = e(f)

i(g) = i(f) -1

It is clear that S(f) is equivalent to f.

/II'
I '\

I
'. .. / --

..

Summary. This completes the analysis of cases for the input region of f
and the definition of the structuring process, S. In summary, in each case
we have defined a new program, S(f), equivalent to f, such that S(f) is a
formula in, at most, graph labels BLOCK, IF-THEN-ELSE, and DO-UN
TIL, functions, predicates, and constituent proper programs. In several
cases the number of edges of the constituents of f is seen to be less than

Mathematical Foundations for Structured Programming 157

the number of edges in f. In two cases this number of edges was not de
creased, but the number of edges from input to the first predicate node was
decreased. It is clear that the number of edges from input to the first pred
icate node is bounded by the number of edges of a program. When we
apply this information to that generated in the case analyses above, we get
Table 13-2.

We are now ready to summarize our proof, as follows:
First, it is clear that the Structure Theorem is true for proper pro

grams with one line, for such a program is simply A..
Next, suppose that the Structure Theorem is true for proper pro

grams of n lines or less for n > 1. Let f be a proper program with n + 1
lines. We apply S to f. If case 2a, 2b, or 2c(1) applies, we have a new
equivalent program, whose constituent programs are proper and have at
most n lines; and each such constituent, by our induction hypothesis, sat
isfies the theorem. Moreover, the new equivalent program has a formula
in, at most, graph labels BLOCK, IF-THEN-ELSE, DO-UNTIL, pred
icates, and their constituents. Therefore the new program satisfies the
theorem. If none of cases 2a, 2b, or 2c(l) applies, then i(f) :::; n, and
case 2c(2) or 2c(3) must apply. In each such case there remains only one
constituent, say, g, and

e(g) = e(f), i(g) = i(f) - 1

Therefore after, at most, n such applications, case 2c(1) must apply, and
the final equivalent program satisfies the theorem.

This completes the proof of the Structure Theorem.

TABLE 13-2. Case Analysis: Structuring Process

Case e values i values

2a e(g) :::; e(f) - 3 i(g) :::; e(f) - 3
e(h) :::; e(f) -3 i(h) = e(f) - 3

2b e(h) = e(f) - 1 i(h) :::; e(f) - 1

2c(l) e(g) :::; e(f) - 1 i(g) :::; e(f) - 1
e(h) :::; e(f) - 1 i(h) :::; e(f) - 1

2c(2) e(h) = e(f) i(h) = i(g) - 1

2c(3) e(g) = e(f) i(g) = i(f) - 1

158 SOFTWARE PRODUCTIVITY

Top Down Corollary

Any proper program is equivalent to a program of one of the forms

(BLOCK, g, h)

(IF-THEN-ELSE, p, g, h)

(DO-UNTIL, p, g)

where p is a predicate of the original program or TOP, and g, hare proper
programs, functions of the original program, TRUE, FALSE, or POP.

S-Structured Programs

The Structure Theorem motivates the definition of a structured program
as follows:

Let S be any finite set of labels associated with control graphs of
proper programs. Then any program whose formula contains only graph
labels from S is said to be an S-structured program.

When the prefix "S" is not critical, or understood, it will be sup
pressed.

Program Representations

The result of the Structure Theorem is similar to representation theorems
in other branches of mathematics, in which it is shown that all elements
of a set, or "space," can be represented by combinations of a subset of
"basic elements" of the space. For example, three nonplanar vectors span
a three-dimensional Euclidean space, the set {sin nx, cos nx I n = 0, 1,
... } spans a set of real functions in the interval [0, 2?T]- that is, a "func
tion space." The foregoing examples refer to linear combination for rep
resentation.

In the Structure Theorem it is shown that three simple types of
programs, defined by BLOCK, IF-THEN-ELSE, and DO-UNTIL control
graphs, span the set of all proper programs, using substitution of proper
programs for process nodes as the only rule of combination. Such a repre
sentation theorem permits the resolution of questions of the adequacy of a
programming language simply and effectively. For example, all one needs
in order to show that a new set of basis programs will span the set of all
proper programs is that one can represent BLOCK, IF-THEN-ELSE, and
DO-UNTIL programs in this new set.

Mathematical Foundations for Structured Programming 159

FIGURE 13-34

One simple illustration of a new basis is to represent DO-UNTIL in
terms of BLOCK, and DO-WHILE, as shown in Figure 13-34, or

(DO-UNTIL, p, f) = (BLOCK, f, (DO-WHILE, p, f)).

Hence BLOCK, IF-THEN-ELSE, and DO-WHILE provide a suffi
cient control structure to represent all proper programs as well as BLOCK,
IF-THEN-ELSE, and DO-UNTIL.

· Program Trees

The formula of a structured program can be displayed in a program tree
in a natural way, with the graph labels, functions, and predicates assigned
to nodes of the tree. For example, the formula

(IF-THEN-ELSE, p, g, h)

defines the program tree in Figure 13-35; and the formula

IF -THEN -ELSE

/~
p g h

FIGURE 13-35

(DO-WHILE, p, (IF-THEN-ELSE, q, g, (BLOCK, h, k)))

defines the program tree in Figure 13-36.

160 SOFTWARE PRODUCTIVITY

DO-WHILE

/~
p IF-THEN-ELSE

/~
q g BLOCK

/~
h k

FIGURE 13-36

Conversely, given any program tree of graph labels, functions, and
predicates, the original program can be recovered. In particular, any sutr
tree defined by a node plus all its successors in the tree defines a subpro
gram of the original program.

The program tree provides a convenient way of visualizing program
structure in the form of subprograms. By labeling subprograms and re
ferring to their program functions at higher levels in the program, an
original program of any size can be organized as a set of subprograms.
each of a prescribed maximum size.

It is clear that each subprogram so defined is a proper program.
That is, each maps an input data set into an output data set, with no con
trol side effects.

Program Correctness

We have already noted that program correctness is a question of pre
dictability. More precisely, given a program, f, and a function, g, we are
interested in whether g is the same as the program function [fl. If we know
both g and [f), we can resolve the question by comparison. Carrying ou
such a comparison of two sets is a general mathematics problem whose
solution will depend on how the sets are defined. In a few cases they will
be enumerated. Then their elements can be ordered and matched, a pair
at a time. In most cases such sets will be defined by conditions or rules

Mathematical Foundations for Structured Programming 161

in some broader (less formal) context than set theory per se. There may
be natural numbers involved, in which case inductive definitions and com
parisons may be possible. In any case the techniques for comparison are
beyond our present interest and must be formulated in whatever terms are
available.

In the case of structured programs the program tree permits the
decomposition of the correctness problem into a series of nested problems,
each of a simple type that can be prescribed in advance.

Correctness Theorem

Theorem: If the formula of a program 'contains at most graph labels BLOCK,
IF-THEN, IF-THEN-ELSE, DO-WHILE, and DO-UNTIL and satisfies a
loop qualification, then it can be proved correct by a tour of its program
tree, in which, at each node, the relevant one of five cases must be proved
(data sets suppressed; see below for data set versions) :

1. Iff= (BLOCK, g, h), prove

£n = { (r, t) I 3: s((r, s) E [g] A (s, t) E [h])}

2. Iff= (IF-THEN, p, g), prove

[f] = {(r, s) I ((r, True) EpA (r, s) E [g]) V
((r, False) E pi\ (r,s) E pi\ r=s)}

3. Iff= (IF-THEN-ELSE, p, g, h), prove

(f] = { (r, s) I ((r, True) A p A (r, s) A [g]) V
((r,False) (pl\(r,s) E[h])}

4. Iff= (DO-WHILE, p, g), prove

£n =[(IF-THEN, p, (BLOCK, [g), [f)))]

5. Iff= (DO-UNTIL, p, g), prove

[/]=[(BLOCK, (g], (IF-THEN, p, [f)))]

Proof: By hypothesis each node in the program tree is one of the five
types listed. Beginning at the root of the tree, the program function [f)
of program f is determined by possibly a predicate, and program functions
{g], [h] of constituent subprograms g, h, and so on, until functions are

162 SOFTWARE PRODUCTIVITY

reached at the endpoints of the tree. If the program function at each node
is known with respect to program functions of its successor nodes, then
by finite induction the program function at the root of the tree is known
with respect to the functions in the program.

It remains to validate the detailed assertion case by case.

Case f =(BLOCK, g, h)

In flowchart form,

f = R ·I g I s ·[] T •

Now

[f) = [R ·I [g I 1 s ·G:~~r · J
by the definition of program functions [g), [h]. Then program function [f]
can be formulated directly as

[f] = {(r, t) j r E R 3: s((r, s) E [g] A s E SA (s, t) E [h)) A t E T}.

This agrees with the statement of the theorem with the data sets suppressed.

Case f = (IF-mEN, p, g)

In flowchart form,

s T

R v
f=

u

Mathematical Foundations for Structured Programming 163

Now

s T

R v
[!] =

u

Then

[fl = {(r, v) I r E R A (((r, True) EpA r E S A (r, v) E [g] A
v E T) V ((r, False) E p A f = v A v E U)) A v E V}.

This agrees with the statement of the theorem with the data sets suppressed.

Case f = (IF-THEN-ELSE, p, g, h)

In flowchart form,

s T

f =
R w

h
u v

164 SOFTWARE PRODUCTIVITY

Now

s T

R w
[!] =

u v

Then

[f] = {(r, w) IrE R /\ (((r, True) E p /\rES/\ (r, w) E [g] /\ w
E T) A ((r, False) EpA rE U /\ (r,w) E [h] /1. wE V)) /\wE W}.

This agrees with the statement of the theorem with the data sets suppressed.

Case f = (DO-WHILE, p, g)

In flowchart form,

u T

R v
f= s

Now

u T

R
(!) =

v
s

Mathematical Foundations for Structured Programming 165

and, indeed,

[f] =

by construction and inspection, where i is an identity function. We note
that if R = U, then the DO-WHILE subprogram in the dotted section has
program function [f], that is,

u v

v
v

[f)=
Rns

This agrees with the statement of the theorem with the data sets sup
pressed. We call the condition R = U the loop qualification on f; that is,
both input lines to the collecting node have identical data spaces.

Case f = (DO-WHILE, p, g)

In flowchart form,

u

f=

166 SOFTWARE PRODUCTIVITY

Now,

u

[!] =

and, indeed,

- --- - ----------,
I u I
I I
I I
I IV

U I I
I I
I I
I _ _ __ _ .J
L -- - -----

v

by construction and inspection. If R = U (the loop qualification), then the
DO-UNTIL subprogram in the dotted section has program function [f) ,
that is,

T v

[!] =. R n s v
v

This agrees with the statement of the theorem with the data sets suppressed.
With this case, the proof of the theorem is completed.

Mathematical Foundations for Structured Programming 167

Correctness Notes. At first glance the verification conditions for DO
WHILE and DO-UNTIL seem to involve a recursive relation in program
function (f]. But this is not the case; the verification conditions involve
[f] as an input, not as an unknown to be solved for.

It is also noteworthy that the top down approach to correctness
avoids the problem of incomplete rules (or in other formulations, incom
plete functions, for which we have no counterparts) and termination. In a
program equation such as

/=WHILE p DOg,

the functions p and [g] are usually taken to be the "independent variables"
and the function [f) to be the "dependent variable," a "bottom up" view
point. Of course, even though p and [g] may be given by complete rules,
the new rule "WHILE p DO g" may turn out to be partial because of
nontermination. However, in the top down viewpoint the function (f] is
the "independent variable," and the program equation defines "dependent
variables" p and [g] implicitly (and meaningfully). Now, since [f] is a
function, p and [g] must be defined such that the rule "WHILE p DO g"
terminates for any input in the domain of [fl.

The loop qualification required in the Correctness Theorem is a
serious restriction with respect to the allocation and freeing of storage
space. If the body of a DO loop allocates or frees space, then the loop
qualification is not satisfied, and the reduction of a loop verification to
the form of the theorem is not valid.

Top Down Program Expansions

Thus far, we have considered programs first and then their meanings as
program functions. In top down programming we want to reverse that
order of conception; that is, given a function (a program specification),
we want to find some program (a rule) that has that program function.
This reversal of conception allows us to avoid questions of "partial rules,"
"partial correctness," and the general termination problem, because they
never arise. In the usual way of looking at program equations, such as

f =(DO-WHILE, p, g),

the graph label DO-WHILE, predicate p, and function or subprogram g
usually taken to be the "independent variables," and program f is taken

168 SOFTWARE PRODUCTIVITY

to be the "dependent variable." In this case, even though p and g are
given by rules defined everywhere on their domains, the new program
(DO-WHILE, p, g) may not terminate and thus be called a partial rule.
One may prove properties relating p and g to f in case of termination to
get partial correctness, but one must also establish termination separate!
to get total correctness.

We observe that if we take f to be the independent variable in the
foregoing equation, then these partial rule and partial correctness prob
lems disappear. If f denotes a complete rule, then p and g must denote
complete rules in order to satisfy the equation as dependent variables.
That is the essence of top down programming, regarding the constituent
subprograms and predicates of an expansion as dependent variables that
satisfy a prescribed equation which is inherited top down.

When this approach is taken, perhaps the most surprising result is
the amount of freedom available to a programmer in writing a correct
program. In the bottom up approach, programming appears to be an
activity with almost unlimited freedom to improvise or solve problems in
various ways. But in developing a program top down it is clear that this
freedom is highly restricted. At first glance it may seem that there is less
freedom in programming top down than in bottom up, but a second
thought shows that is not the case. They must lead to equivalent results,
and in fact what really is exhibited in the bottom up approach is a false
freedom that is subsequently paid for in a painful error elimination pro
cess, following an original "gush of originality."

In order to exhibit the degree of freedom available in programming
we foimu\ate the Expansion Theorem below in both a verba\ and a set
theoretic version. The Structure Theorem exhibits characteristics of a com
pleted program, while the Expansion Theorem shows how programs can
look at every intermediate stage of their construction. At every such inter
mediate stage a program developed in a top down discipline can be
guaranteed to be correct, insofar as it is developed, without the necessity of
altering parts of the program already done in order to accommodate the
remaining parts of the program yet to be developed. It is a familiar ex
perience in large program development to get "90% done" and to remain
at that 90% level for a lengthy period. That phenomenon occurs not
'u~\:.C.\\<:,~ \\\~\c.<:,\ \<'00fc \<:, ~\~\:.\\\\ \1\) ~t\\~, 'u\\\ 'u~<.:.'O.~"-~ \~ 1\)t\.\~t \1\) ~t\.\~
the last 10%, critical sections of the first 90% need to be altered. The
Expansion Theorem and top down programming can guarantee that the
first 90% can remain intact while the last 10% is finished on schedule.

Mathematical Foundations for Structured Programming 169

Expansion Theorem (Verbal Version)

Theorem: In a program function expansion of the form (data sets suppressed;
see below for more detail):

1. f =[(BLOCK, g, h)]

Any pair (g, h) whose composition is f may be chosen.

2. f =[(IF-THEN-ELSE, p, g, h)]

Any predicate p with the same domain as f may be chosen; then g
and h are fully determined, as the members of the partition of f de
fined by p.

3. f =[(DO-WHILE, p, g)]

The program function f must be the identity in the intersection of its
domain and range; any function g may be chosen whose completion
is the varying part of f; and p is fully determined by f and g.

In short, the invention of an IF-THEN-ELSE program is equiva
lent to a partition of a prescribed program function, while the invention
of a DO-WHILE program is equivalent to the determination of a function
whose completion is a prescribed program function. That is, the only
freedom in an IF-THEN-ELSE program is its predicate, and the only
freedom in a DO-WHILE program is its iterative process-all other free
doms, in the THEN or ELSE clauses, or in the WHILE predicate, are
illusions. THEN and ELSE clauses are frequently used for elaborating
functional specifications not fully stated; but these are not freedoms of
choice, but interpretations of intentions at more detailed levels. The point
is that if functional specifications are sufficiently well defined to decide
whether a program satisfies them, then there is no freedom beyond the
choice of the predicate in an IF-THEN-ELSE program. In the case of the
DO-WHILE the question is more subtle and relates to the character of
the termination questions in programming top down, in contrast to bot
tom up. The WHILE predicate is completely determined on the domain
and range of the function (specification). The DO-WHILE program must
terminate on reaching any element of the range and must continue other
wise, because if not, it cannot possibly satisfy the prestated (top down
inherited) function specification.

In order to formulate a more concise, set theoretic version of the

170 SOFTWARE PRODUCTIVITY

Expansion Theorem, we introduce a reinterpretation of the logical con
stant "True." Ordinarily, a predicate is taken to be a function, p, such that

range(p) = {True, False}.

We reinterpret the constant True by the statement for an associated
function

p = {(x,y) I (x, True) E p};

that is, if p(x) is true, then for any element y, (x, y) E p.
We also introduce the idea of a refinement of a function, corre

sponding to the ordinary idea of the refinement of a partition. (A refine
ment of a partition is simply a new partition, each of whose members is
a subset of some member of the original partition.) We form a partition
of the domain of a function, called a partition of level sets, or the contour
of the function, by grouping arguments that have identical values into sub
sets of the domain. Then we say that one function is a refinement of
another if its contour is a refinement of the others.

Finally, we define the fixed points of a function f, denoted as the
fixed(/) subset:

fixed(f) = { (x, y) I (x, y) E fAx = y}.

Expansion Theorem (Set Theoretic Version)

Theorem: In a program expansion of the form (data sets suppressed; see be
low for more detail) :

I= [(BLOCK, g, h)]

1. Choose function g as any refinement of program function / .
2. Then h is uniquely determined by the relation

f = g *h.

j =[(IF-THEN-ELSE, p, g, h)]

1. Choose predicate p such that domain(p) = domain(!).
2. Then g and h are uniquely determined by the relations

c='Pnt
h = f-g.

Mathematical Foundations for Structured Programming 171

f = [(DO-WHILE, p, g)]

1. Verify that

domain(fixed(f)) = domain(!) n range(!).

2. Choose function g such that

* g * = f - fixed(!) .

3. Then p is uniquely determined such that

p(x) = True if x E domain(g) - range(!)

p(x) = False if x E range(!).

Proof:

Case f = [(BLOCK, g, h)]

In flowchart form,

s
h

Consider the following construction of g, h, R, S, T:

Set R = domain (f) .

Set T = range (f).

Choose any refinement of f, say, g; then for any x E R, y E R,
g(x) = g(y) :::l f(x) = f(y).

SetS = range(g).

Set h = { (s, t) I (r, s) E g A (r, t) E !} .

Now it is easy to verify by this construction that

[(BLOCK,g,h)] = {(x,y) I (x,y)Ef),

as was to be shown. The function h is uniquely determined in the con
struction by f and g.

172 SOFTWARE PRODUCTIVITY

F=

Case I= [(IF-THEN-ELSE, p, g, h)]

In flowchart form,

s T

R w

u v

Consider the following construction of p, g, h, R, S, T, U, V, W:

Set R =domain(/).

Choose any predicate p such that domain(p) =domain(/) = R.

SetS = {s I (s, True) E p}.

Setg ={(s,t) lsESA(s,t)Ef}.

Set T = range(g).

Set U = {u I (u, False) E p}.

Seth = {(u, v) I u E U A (u, v) E 1}.

Set V = range(h).

Set W = T U V.

Now it is easy to verify by this construction that

[(IF-THEN-ELSE, p, g, h)]= {{x, y) j (x, y) E f},

as was to be shown. Note that g is a subset of I defined by p, that is,
p n I, and h is the complement of g in I, that is, I- g.

Case I= [(DO-WHILE, p, g)]

f=

Mathematical Foundations for Structured Programming 173

In flowchart form,

u T

R v
s

Consider (s, v) E /, that is, v E range (f). We note that necessarily
p(v) =False. Otherwise, the control path tog is taken, and the program
cannot terminate with value v, which contradicts the correctness of the
expansion.

Next, consider (r, v) E f such that r E domain(!) n range(!); then
p(v) =False by the foregoing remark, and the function g is bypassed, so
that necessarily v = r orr E domain(fixed(f)). Conversely, if r E domain
(fixed (f)), then r E range(!) and p(r) =False; hence r E domain(!)
n range(!). That is, domain(fixed(f)) =domain(!) n range(!), as
needed to be shown.

Next choose_junction g such that * g * = f- fixed (f). At least one
such choice is possible, namely, for g = f- fixed (f), since the domain and
range off - fixed (f) are disjoint.

Finally, we have already seen that necessarily p(x) =False when x E
range(!). But clearly, we must have p(x) =True when x E domain(g),
in order that the correct control path be taken to finally reach an output
v E range (f); in addition, since * g * :J f, then necessarily domain (g)

:J domain (*g*) :J domain(!), so that x E domain(g) implies x E domain
(f). Thus in summary,

p(x) = .True if x E domain(g) - range(!)

p(x) =False if x E range(!),

as was to be shown.
The data sets required are as follows:

Set R =domain(!) .

Set V =range (f).

Set T = domain(g).

174 SOFTWARE PRODUCTIVITY

Set U = range(g).

SetS = R U U.

This discussion is concluded with a combinatorial characterization of
g, the iterative process of a DO-WHILE program.

For function j, consider any superfunction h such that range(h) =
range(/). For each level set, or contour, of h, define any arbitrary set
of rooted trees on its elements. If x of domain (h) is a root of such a tree.
then we set

y(x) = h(x).

If x E domain(h) is not a root of such a tree, let y denote the parent of
x in that tree, and define

g(x) = y.

It is easily verified that any function g so defined, and no other, will sat
isfy the relation * g * = f.

With this it is clear that in all three cases the entire freedom of choice
is a combinatorial one. In a BLOCK program it is the choice of a func
tion; in an IF-THEN-ELSE program the choice is a partition of a function:
in a DO-WHILE program the choice is a tree structure within the level
sets of a function.

Indeterminate Programs

In certain applications, particularly those of artificial intelligence (see Nils
son [33]), it is convenient to generalize the idea of a program to a con
struct that permits ambiguity in execution, rather than uniqueness. For
example, an algorithm may specify a selection of a member of some set
for processing, without naming a specific member. In this event, interme
diate and/ or final results may be indeterminate. Such "indeterminate al
gorithms" are often useful in describing the essentials of a process without
getting unduly involved with its specifics. Indeterminate algorithms are
also useful for treating a person-machine computing system, in which the
actions of people-say, at terminals-are indeterminate. Then an entire
system can be defined to be governed by an indeterminate algorithm.

Our development of programs, which we call "determinate pro
grams," where necessary, can be generalized to include "indeterminate
programs" by a very simple extension-namely, by extending the idea of
function throughout to the idea of relation. A relation is defined to be a

Mathematical Foundations for Structured Programming 175

set of ordered pairs, without the additional qualification required of a
function to provide unique values for given arguments. As with functions,
relations inherit set properties. In fact, not only the intersection and differ
ence of two relations are new relations (as in the case of functions), but
the union of two relations is also a relation (not generally so for func
tions). Domains and ranges of relations are defined as for functions.

Next we define an indeterminate program to be a finite set of
relations, called indeterminate instructions, each of whose domains is in
cluded in a data space, and each of whose ranges is included in the Carte
sian product of the data space and the indeterminate program, again called
the state space. An indeterminate program execution is, again, a sequence
of state values

s = (d;, ri), i = 0, 1, ...
such that

which terminates, if ever, when di ~ domain(ri) . Precisely as before, all
executions that terminate define a set of ordered pairs, now a relation
instead of a function, which we call the indeterminate program relation; that
is, in retrospect an indeterminate program is a (nonunique) rule for cal
culating the members of its relation, using other relations in so doing.

At this point we leave it to the reader to observe that every con
struction and theorem goes through for indeterminate programs and their
relations, just as for determinate programs and their functions.

References

1. Allen, C. D. "The Application of Formal Logic to Programs and
Programming." IBM Systems Journal 10, No. 1 (1971): 2- 38.

2. Ashcroft, E. A "Program Correctness Methods and Language Defi
nition." In Proceedings of the ACM Conference on Proving Asser
tions about Programs, pp. 51-57. Las Cruces, N. M.: New Mexico
State University, 1972.

3. Ashcroft, Edward A, and Manna, Zohar. "The Translation of 'GO
TO' Programs to 'WHILE' Programs." Stanford Artificial Intelli
gence Project Memo AIM-138, Computer Sciences Department Re
port STAN-CS-71-188, Jan. 1971.

4. Baker, F. T. "Chief Programmer Team Management of Production
Programming." IBM Systems Journal 11, No. 1 (1972): 56- 73.

5. Bohm, Corrado, and J acopini, Giuseppe. "Flow Diagrams, Turing

176 SOFTWARE PRODUCTIVITY

Machines and Languages with Only Two Formation Rules." Comm.
ACM9 (1966): 366- 371.

6. Burge, W. H. "Some Examples of Programming Using a Functional
Notation." Paper presented at Second Symposium of Special Interest
Group Association for Computing Machinery on Symbolic and Alge
braic Manipulation, Los Angeles, March 1971.

7. Burstall, Rod M. "An Algebraic Description of Programs with As
sertions, Verification and Simulation." In Proceedings of the Associ
ation for Computing Machinery Conference on Proving Assertions
about Programs. Las Cruces, N. M.: New Mexico State University
1972.

8. Church, A. Introduction to Mathematical Logic. Vol. 1. Princeton,
N. J .: Princeton University Press, 1956.

9. Dijkstra, E. W. "A Constructive Approach to the Problem of Pro
gram Correctness." BIT 8, No. 3 (1968): 174-186.

10. Dijkstra, E. W. "Notes on Structured Programming," Technische
H ogeschool Eindhoven (THE), (1969).

11. Dijkstra, E. W. "Structured Programming." In Software Engineering
Techniques, edited by J. N. Burton and B. Randell, pp. 88-93. Nato
Science Committee, 1969.

12. Floyd, R. W. "Assigning Meanings to Programs." In Proceedings of
the Symposium in Applied Mathematics, vol. 19, edited by J. T.
Schwartz, pp. 19- 32. Providence, R . I.: American Mathematical
Society, 1967.

13. Floyd, R . W. "Nondeterministic Algorithms." ACM 14, No. 4 (Oct.
1967) : 636- 644.

14. Good, D. I. "Toward a Man-Machine System for Proving Program
Correctness ." Ph.D. thesis, University of Wisconsin, 1970.

15. Halmos, Paul R. Naive Set Theory. Edited by J. L. Kelley and P. R.
Halmos. Princeton, N.J.: D. Van Nostrand, 1960.

16. Hoare, C. A. R. "An Axiomatic Approach to Computer Program
ming." Comm. ACM 12, No. 10 (Oct. 1969): 576-580, 583.

17. Hoare, C. A. R. "Proof of a Program : FIND." Comm. ACM 14,
No. 1 (Jan. 1971): 39-45.

18. Horning, J. J., and Randell, B. "Structuring Complex Processes."
IBM T. J. Watson Research Center Report RC 2459, May 1969.

19. Ianov, Iu. "The Logical Schemas of Algorithms." Problems of Cy
bernetics 1 (English translation (Pergamon Press)) (1960).

20. Jones, C. B. "Formal Development of Correct Algorithms: An ex
ample based on Earley's recognizer." In Proceedings of the Asso
ciation for Computing Machinery Conference on Proving Assertions
about Programs, pp. 51-57. Las Cruces, N. M.: New Mexico State
University, 1972.

Mathematical Foundations for Structured Programming 177

21. King, J. C. "A Program Verifier." Ph.D. thesis, Carnegie-Mellon
University, Pittsburgh, 1969.

22. Landin, P. J. "A Correspondence between ALGOL 60 and Church's
Lambda-Notation," Comm. ACM 8 (Mar. 1965).

23. London, R. L. "Certification of Algorithm 245 Treesort 3: Proof
of Algorithms-A New Kind of Certification." Comm. ACM 13
(1970): 371-373.

24. London, R. L. "Proving Programs Correct: Some Techniques and
Examples." BIT 10, No.2 (1970): 168-182.

25. London, R. L. "Correctness of a Compiler for a LISP Subset." In
Proceedings of the Association for Computing Machinery Confer
ence on Proving Assertions about Programs, pp. 51-57. Las Cruces,
N. M.: New Mexico State University, 1972.

26. McCarthy, J. "Towards a Mathematical Science of Computation."
In Proceedings of the IFIP Congress. Amsterdam: North-Holland,
1962.

27. Mendelson, E. Introduction to Mathematical Logic. Princeton, N.J. :
D. Van Nostrand, 1964.

28. Mills, H. D. "Syntax-Directed Documentation for PL360." Comm.
ACM 13, No.4 (April 1970): 216-222.

29. Mills, H. D. "Top Down Programming in Large Systems." In De
bugging Techniques in Large Systems, Courant Computer Science
Symposium 1. Edited by Randall Rustin, pp. 41-55. Englewood
Cliffs, N. J.: Prentice-Hall, 1971.

30. Nahikian, Howard M. Topics in Modern Mathematics. Edited by
C. B. Allendoerfer. London: The MacMillan Co., Collier-MacMil
lan Ltd., 1966.

31. Naur, P. "Proof of Algorithms by General Snapshots." BIT 6
(1966): 310-316.

32. Naur, P. "Programming by Action Clusters." BIT 9 (1969): 250-
258.

33. Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence.
New York: McGraw-Hill, 1971.

34. Scott, D. "The Lattice of Flow Diagrams." Programming Research
Group report, Oxford University, 1970.

35. Scott, D. "An Outline of a Mathematical Theory of Computation."
Programming Research Group report, Oxford University, 1970.

36. Snowdon, R. A. "PEARL: An Interactive System for the Prepara
tion and Validation of Structured Programs." University of New
castle Upon Tyne, Computing Laboratory Tech. Report No . 28,
edited by Dr. B. Shaw, 1971.

37. Strachey, Christopher. "Towards a Formal Semantics." In Formal

178 SOFTWARE PRODUCTIVITY

Language Description Languages, edited by T. B. Steel, pp. 198- 220.
Amsterdam: North-Holland, 1966.

38. Wilder, Raymond L. Evolution of Mathematical Concepts- An Ele
mentary Study, New York: John Wiley and Sons, 1968.

39. Wirth, Niklaus. "Program Development by Stepwise Refinement."
Comm. ACM 14, No.4 (April 1971): 221-227.

40. Zurcher, F., and Randell, B. "Iterative Multi-Level Modelling- A
Methodology for Computer System Design." In Proceedings of the
IFIP Congress, pp. D138-D142. Amsterdam: North-Holland, 1968.

Reading Programs as a
Managerial Activity

(1972)

ARTICLE

14

It is standard business practice for managers to measure the quantity and
quality of the production of their organizations. But to a great extent
there has been an exception in programming, where the work has been
of mysterious and specialized origin. This exception was necessary in the
past because producing computer programming was an ad hoc process
whose results were more visible in their execution than in themselves.
But as technical foundations emerge and programming becomes a more
manageable process, this condition will change.

As human endeavors go, programm.ing is a very young activity. It
has seen a succession of machines, beginning some 25 years ago. At the
start, machines had very simple operations, necessarily done sequentially
and related to only a single set of data storage elements. But up to the
present we have gone through three major generations of hardware, each
with increasing sophistication. There are new complexities in concurrent
data processing operations, which involve not only several processors but,
for each processor, many channels (which are themselves special proces
sors), operating out of the same memories as the main central processing
units. Extensive data storage and addressing techniques have been de
veloped, in terms of based and indexed addressing in main storage, multiple
register addressing for multiple high-speed processing, and a variety of
mass storage and input/ output units, each of which has a peculiar kind

Reprinted from Defense Systems Management Review, Robert Wayne Moore, Ed.,
Summer 1980, Vol. 3, No. 3, pp. 140-144.

179

180 SOFTWARE PRODUCTIVITY

of data storage and transfer linkage with the main storage . These changes
in hardware architecture have had the effect of keeping the programming
state of the art "off balance," making obsolete much of the knowledge of
earlier machine generations (for example, IBSYS in the 7094, insofar as
the 360 is concerned) and keeping programming the mysterious, black
art that it often seems to be today.

As painful as hardware development has been in terms of soft
ware adaptation and the programming state of the art, that hardware de
velopment has produced spectacular results in terms of processing and
storage capabilities. Machines can now process and store several orders of
magnitude more data for the same cost as could be done at the beginning
of computing. Hardware has proliferated complexity in software, but this
very economy has also made certain simplifications in software develop
ment possible, by permitting inefficiencies in hardware usage. For exam
ple, high-level languages such as Fortran or PL/l are possible and prac
tical in today's machines, where they would not have been reasonable for
the efficiencies required of the early machines. The machines today can
be used to help supervise their own activities and the activities of pro
grammers, where they were too scarce and expensive a resource for that
purpose in the early days of computing.

These economic and technical influences are converging to a new
mode of operation in which the baseline for programming and software
development is a "virtual machine" composed jointly of hardware, soft
ware, and often some firmware (that is, microprogramming). As a result
the software management problem is seeing a more stable platform from
which to develop. This more stable platform includes languages such as
PL/I, Fortran, and Jovial, in which it is practical to carry out the main
sections of large programming systems and in which the idiosyncracies
of this or that machine are largely hidden by the translation from high
level language to machine language automatically and in a practically
error-free way. This stable platform introduces a new possibility for man
aging programming and for the development of large programming sys
tems that has not been present before. Until now there has been no good
reason for managers to learn to read programs written in one machine
code or another, since that ability would be obsolete by the next project,
when a new machine architecture was implemented. But the stability of
the present software platform at programming language levels above in
dividual machines makes programming reading a skill and resource for
managers that is worth acquiring and, in fact, is necessary for the effec
tive development of large programming systems or the evaluation of pro
grammers in development projects.

Programs are imperative statements to machines to accomplish
purposes of some set of users. These imperative statements are phrased

Reading Programs as a Managerial Activity 181

in programming languages, and their authorship is called programming.
But as in any written language, it is usually easier to learn to read the
language than to write it, and in fact a great deal can be accomplished
in the acquisition of information or the critical review of documents in
the language with a reading-only capability . Ordinarily, in reading a lan
guage, one picks up automatically a certain ability to write it, but not
necessarily the ability to accomplish particular objectives in such writing.

For these reasons it seems that the time has come for managers
to begin reading programs in a systematic way, even though the writing
of such programs is not, and never will be, part of their responsibility.
The advent of structured programming makes the reading of programs
more easily accomplished than was ever before possible because it per
mits the reader to enjoy a special privilege in the reading, namely, that
of reading in a sequential, systematic way, as in an ordinary English
text, in order to follow the imperative requirements being laid down by
the program. In programs that are not structured, program reading re
quires a great deal of jumping back and forth in the sequence of the text
and keeping track mentally of many contingencies at which branches
might be taken and special or different conditions handled. Structured
programming forces the writer of programs to organize the language state
ments so that they can be read sequentially. The main beneficiaries of
this discipline are the programmers themselves, but anybody else who has
an occasion to read the code benefits in even greater individual ways
because of the problem of familiarity with the program. Quite often a
programmer writing an unstructured program will have in mind some
pattern of operations that permits jumping back and forth in an efficient
way. But just as often, the jumping back and forth even ends up confus
ing the original programmer, and the result is that program errors may
go as far as system integration or even into user operation before being
detected. For someone unfamiliar with the program, structured program
ming has an even more dramatic effect because this person does not
have the problem of determining which jumps to look at first or how to
keep track of the various jumps in some pattern of thinking that must
be developed ad hoc during the reading process.

In time, it is expected that we will get the horse before the cart
and teach program reading to anyone before program writing. In fact, our
present programming courses are patterned along those of a "course in
French dictionary." In such a course we study the dictionary and learn
what the meanings of French words are in English (that corresponds to
learning what PL/I or Fortran statements do to data). At the completion
of such a course in French dictionary we then invite and exhort the grad
uates to go forth and write French poetry. Of course, the result is that
some people can write French poetry and some not, but the skills critical

182 SOFTWARE PRODUCTIVITY

to writing poetry were not learned in the course they just took in French
dictionary. For example, the ones who could write English poetry will
probably end up as the best writers of French poetry. This corresponds in
programming to the fact that the people taking the programming course
who end up doing the best programming are those who came into the
course with certain algorithmic and analytical skills, quite independent
of anything they learned in the course itself.

But it is a fact that one may read programs for quite different rea
sons than one might have for writing them, and that skills of verification
or of translation may be quite different than the algorithmic and analytical
skills required in writing programs.

With the wholesale reading of programs by managers, other
anomalies of programming can be expected to fall into place. It is curious
that in programming, the typical programmer never expects to see anyone
else read the program. The programmer will be judged by execution and
judged in highly superficial ways at that. When machines do a million
multiplies a second, a factor of ten in inefficiency is not even detectable
unless the program is a well-worn set of problems that many other people
have done for comparison. Similarly, the use of core is difficult to judge
unless there are well-worn standards of comparison around. We know
from experience and spot sampling that programs can be very inefficien
in both throughput and core, and we also know that program logic can be
very tortured, difficult to maintain, and practically impossible to build oe
or extend; yet programs with such gross deficiencies pass "the inspection
of execution" successfully every day. It is small wonder that programmers
have psychological problems at times because they are deprived of a very
human need in their work- the need to be appreciated or the need to be
commended for work well done. As long as no one reads their code and
as long as everyone concerned knows that the inspection of execution is
such a gross measurement tool, there is not a great deal of incentive or
reward for doing a very good job.

It is surprising sometimes to think of how fast a society can become
inflexible. Programming is less than 20 years old; as a management activity.
it is less than 10 years old. It has already developed some sacred cows.
such as seeing the reading of code as a sign of mistrust or the judgmen
of code by anything but the gross inspection by execution an impertinence
of management. These sacred cows were born easily, and they will be slain
easily as well. Any experience at all with managers who read code intelli
gently shows that the programmers are more motivated and proud of their
work in a way not possible otherwise.

The reading of programs by managers will also introduce a new
level of precision in programming that is made possible, but not made
inevitable, by new technical developments in programming. Structured pro-

Reading Programs as a Managerial Activity 183

gramming and results in program correctness give programmers a technical
foundation for writing nearly error-free code, but this potential will not be
realized without a psychological transformation as well. We go back to the
problem of a 20-year-young activity groping its way into a systematic
process, moving from a frustrating trial-and-error, highly "creative" activity
in which cleverness and obfuscation are virtues to a systematic engineering
like process in which the emphasis is on precision, logic, and repeatability.
This psychological transformation is not a process that is reserved for a
very few gifted individuals. It is a process that we have seen begin to
happen on a broad scale from junior up to senior personnel. It simply
amounts to this. When a programmer knows that what is in his or her
head is correct, it becomes more important all of a sudden to get it on
paper in exactly that correct form, to look up past data definitions in order
to be sure that they are precisely compatible, and to examine every special
case with more care in order to make sure that they treat the subject in
exactly the right way. This psychology of precision moves from that under
standing of the programmer's own logical capability clear through to the
development of machine-readable material, however it is accomplished.
On the other hand, if a programmer thinks that what is in his or her mind
is correct but is subconsciously counting on debugging runs to iron out
small errors in logic, then concentration is lost here and in the entire
process, and small errors are made that later torment the programmer
and others in the debugging process. The critical matter is not simply for
a programmer to be able to program correctly. The programmer must know
that he or she is able to program correctly. For it is this latter knowledge of
the ability to program correctly that affects the psychological transforma
tion and makes possible the concentration that is necessary to write the
correct programs. This difference between being able to program correctly
and knowing it is a distinction that is available to a programmer only after
considerable education in questions of mathematics and logic that allow
a person to regard programming as a logical activity similar in form to a
game such as tic-tac-toe, and differing from the game only in the degree
of complexity, but not in any inherent requirement that transcends the
programmer's human capabilities.

Programmers with this kind of psychological transformation will
be disappointed indeed if their code is not read and if the reasoning that
they formulate for their code is not appreciated.

The question of documentation has plagued programming manage
ment for a long time. In the mathematical theory behind structured pro
gramming, documentation turns out to have a natural home. The doc
umentation of a program and the proof that it is correct are synonymous.
In fact, anything beyond that is superfluous. This proof of correctness may
be at several levels: at the user level, the program maintenance level, or

184 SOFTWARE PRODUCTIVITY

even in some cases at a machine level. But the correctness problem gives
the rationale and a basis for judgment of the relevance and quality o
documentation that we have not had before.

In the proofs of program correctness, documentation appears as
an adjunct of the program itself. It is easy to point to documentation tha
attempts to replace the code. When this occurs, there is a frequent danger
that the code gets changed without the documentation being changed; the
result is that documentation loses its currency. When programs are main
tained in a visibly correct form, the standards of correctness are them
selves standards for maintaining documentation in a current and relevan
form.

How to Buy
Quality Software

(1974)

Some Lessons Learned-and Some Not!

ARTICLE

15

Software procurement has many similarities to and analogies with hard
ware procurement, but a blind transfer of concepts and procedures has
led to monumental disasters. And a strange thing about these disasters is
that they are usually hidden by both buyer and seller. The buyer does not
want to look dumb or taken in, so the reaction to the disaster usually takes
the form "Look how much we learned in phase 0; we're in good shape to
begin phase 1 development"- when in truth the term "phase 0" came into
being only some six months ago, when something seemed amiss; three
years ago the project had no phases-it was the real thing! The seller does
not want to look dumb either, or to have the disaster known and affect
the seller's reputation. So disasters are often hidden, and chances to learn
important lessons are missed.

Admitting that there are similarities to hardware procurement, we
also note crucial differences in software procurement [4].

1. More flexibility to engineering changes is required. "Everyone knows
that hardware has to be fixed for manufacturing, but software has
a trivial manufacturing process-duplicating a tape, and that sort of
thing, so why can't the software respond?"

@ 1974 IEEE. Reprinted, with permtsston, from EASCON 1974 Record, IEEE
Electronics and Aerospace Systems Convention, October 7- 9, 1974, Washington, D.C.

185

186 SOFTWARE PRODUCTIVITY

2. Hardware deficiencies need to be made up in software. "So the
memory packaging didn't work out and only half the planned memory
is available, but some clever programmers ought to be able to work
around that."

3. Sheer complexity has to be taken into account. Hardware function
is typically provided in an instruction set of small, independent oper
ations, each of which can be designed and tested in relative isolation.
Software function is typically provided in the user interface that calls
complex interdependent sets of operations that are difficult to design
and test.

A Pragmatic Conclusion

It is not possible to adequately accept a software system "pitched over
the wall" without exorbitant expense. Why? Because what needs to be
tested is the design of the software itself. In hardware the design is rela
tively simple, but the manufacturing is critical, so tests of hardware func
tion confirm manufacturing to relatively simple design. In software the
design is relatively complex, and the manufacturing is trivial, so tests of
software function depend critically on design.

Even more crucial, the most important thing about a software
system is the integrity of its design- but that integrity cannot be specified
except in qualitative terms. Yet it is just that integrity that makes the
software system easy or hard to maintain and modify, impossible or not
to use as a platform for a follow-on capability. A software system can
pass its performance and capability acceptance tests and still be an internal
nightmare of ad hoc designs put together as a tour de force in the short
term memories of a team of programmers that is disbanded and scattered
as soon as the tests are completed.

The basic problem in buying software is that complexity still defies
measurement in pragmatic terms [7]. We can measure whether a software
system requires too much memory, or too much time, and react accord
ingly. But we do not have practical, objective ways to tell a well-designed
system of deep simplicities from a brute force bowl of spaghetti. Structured
programming has made a quantum jump in addressing the design problem
[5, 6, 9], but there is still need for the practical measurement of com
plexity within structured systems.

One way around this is not to buy software systems at all, but to
rent them. In this case there are significant incentives for the supplier to
provide a system that works after acceptance testing, as well as through

How to Buy Quality Software 187

acceptance testing, and the burden of maintaining a bowl of spaghetti falls
on the supplier. For one-of-a-kind systems, renting may not be feasible,
but providing incentives for the post-acceptance performance and main
tenance may stili be possible.

A Pragmatic Proposal

Stop accepting software systems "pitched over the wall." Instead, require
two conditions for systems development, which are observable during the
development process: (1) top down structured programming [6] to provide
better visibility of system integrity during its construction and (2) develop
ment accounting [8] in order to better assess the quality of the develop
ment process itself.

In top down structured programming, a systematic discipline per
mits a continuous, orderly review of development progress, as systems
specifications are translated into design and functional software. This is in
sharp contrast with traditional bottom up development, in which little
effective review is possible until the integration phase late in the develop
ment. Top down structured programming requires more design skill and
thinking at the beginning of a development but pays off in management
visibility during development [1]. Top down development also makes de
velopment accounting feasible, which is not feasible in bottom up devel
opment because of the sheer amount of rework and finger pointing at in
tegration time.

The idea of development accounting is to record enough data on
development history, including the fate of every line of code created, that
meaningful management statistics can be generated and studied. There
may be resistance to recording the fate of every line of code-every pro
grammer mistake-in some projects, but it has already been done [1, 3]
and represents minor growing pains in an adolescent profession. There
will be costs associated with such recording, but at most 5% in projects
where 20% overruns are the rule and 100% overruns occur more often
than anyone cares to admit.

It is to be expected that many new ideas and uses for such data
will arise when it becomes available for study and use. Just as in financial
accounting, management standards of integrity, objectivity, and judgment
need to be developed. But with so much at stake and so little to risk, de
velopment accounting seems first-order business for systems management
in learning better "how to buy quality software."

188 SOFTWARE PRODUCTIVITY

Development Accounting

Software development is a new activity for the human race, dealing with
complexity and logical precision never required of humans before. So
frustrations and subsequent improvements can be expected. As a conse
quence of its infancy and adolescence, software development has been
practiced as a black art-not maliciously, but because it never seemed
possible or necessary to make a public practice out of it. But software
development technology is coming of age and moving from private art to
public practice [1, 3].

The young (people or industries) are never much interested in
history, but they learn. Theoretically, a software system exists at any
moment independent of its historical development, and any other history
arriving at the same system will produce the same subsequent usage history.
But the practical chance of two different development histories producing
an identical software system is near zero. The systems may look alike to
the user, each may have "no known errors," and so on, but their internals
will be different, and their design integrity and future error properties
will be different. Suppose two such systems, called A and B and developed
to the same specifications, produced the statistics in Table 15-1. After
acceptance, each system has "no known errors." In fact, system A may
have more errors left in it than system B. But the evidence points to
system B, which was hard to put together, with apparently subtle interface
errors that took considerable time to find, and therefore has the likelihood
of more such errors not yet turned up. From a practical standpoint these
are not the same systems, and usually A will turn out to be better designed
(fewer old errors) and more reliable.

TABLE 15-1

A B

Development
Lines of Code 50,000 50,000
Errors Fixed

day old 500 500
week old 10 50
month old 5 50
year old 5 100

Known Errors 0 0

Acceptance
Errors Fixed 10 50
Known Errors 0 0

How to Buy Quality Software 189

The foregoing statistics are not kept, of course, in the typical black
art software development process, because of the notion that it is a private
matter how a system gets to a state of "no known errors." But it does
indeed matter how a system gets to such a state because it foretells how
the system will fare in the future.

Development Statistics

A well-designed system of deep simplicities has a development history that
is sharply distinguished from the brute force bowl of spaghetti. The most
noticeable difference is the debugging history. A well-designed system can
be put together with few errors during its code and integration phases [1,
2]. A bowl of spaghetti will have a history of much error discovery and
fix up.

So one critical accounting parameter is the number of errors found
and fixed- all errors from the coding pad or terminal on. It is state-of-the
art procedure today to track errors from unit test on, but not state-of-the
art procedure to track errors from lines of code on.

Another difference is in the age of the errors found. In a well-de
signed top down structured programming development [6], testing under
actual system conditions begins early, with system errors found in typically
a day or so. In the brute force approach, code is frequently unit tested with
drivers, and system errors are often found later in integration-weeks or
months later.

The number and age of errors lead to the idea of error days as
probably the best single statistic we could measure for estimating the
quality of an otherwise accepted system. It indicates probable future error
incidents, but also indirectly indicates the effectiveness of the design and
testing process. High error days indicate either many errors (probably
due to poor intermediate design products) or long-lived errors (probably
due to poor integration and testing procedures).

With experience, other statistics will prove useful in evaluating
system development quality. Reasonably objective classifications of all
program additions, deletions, and modifications into various categories are
possible, such as the following.

Planned Work
1. Normal production
2. Scaffolding
3. Drivers

190 SOFTWARE PRODUCTIVITY

Unplanned Rework
1. Specification changes
2. Design improvements
3. Design errors
4. Logic errors
5. Syntax errors

For example, syntax errors are found during assembling/compiling,
logic errors are found in test execution, and design errors are found in
coding, and so on. Such ratios as

Design errors
Logic errors '

Logic errors
Syntax errors'

Design errors
Normal Production

will describe different aspects of the development process and provide
quality indicators and standards with programming management and pro
curement experience.

References

1. Baker, F. T. "Chief Programmer Team Management of Production
Programming." IBM Systems Journal11, No. 1, (1972): 56- 73.

2. Baker, F. T. "System Quality Through Structured Programming." In
AFIPS Conference Proceedings. 1972 Fall Joint Computer Confer
ence, val. 41, part I, pp. 339- 343. Arlington, Va.: AFIPS Press,
1972.

3. Baker, F. T., and Mills, H. D. "Chief Programmer Teams." Data
mation (Dec. 1973): 58- 61.

4. Boehm, B. W. "Software and Its Impact: A Qualitative Assessment."
Datamation (May 1973): 48-59.

5. Dahl, 0. J., Dijkstra, E. W., and Hoare, C. A. R. Structured Pro
gramming. London: Academic Press, 1972.

6. Mills, H. D. "Top Down Programming in Large Systems." In De
bugging Techniques in Large Systems, Courant Computer Science
Symposium 1. Edited by Randall Rustin, pp. 41- 45. Englewood
Cliffs, N.J.: Prentice-Hall, 1971.

7. Mills, H. D. "The Complexity of Programs." In Program Test
Methods. Edited by W. C. Hetzel, Englewood Cliffs, N.J.: Prentice
Hall, 1972.

How to Buy Quality Software 191

8. Mills, H. D. "On The Development of Large Reliable Programs."
In 1973 IEEE Symposium on Software Reliability, pp. 155-159.

Silver Spring, Md.: IEEE, 1973.
9. Wirth, N. Systematic Programming: An Introduction. Englewood

Cliffs, N.J.: Prentice-Hall, 1973.

ARTICLE

16

How to Write
correct Programs
and Know It

(1975)

Abstract

There is no foolproof way ever to know that you have found the last
error in a program. So the best way to acquire confidence that a pro
gram has no errors is never to find the first one, no matter how much
it is tested and used. It is an old myth that programming must be an
error-prone, cut-and-try process of frustration and anxiety. The new
reality is that you can learn to consistently write programs that are
error free in their debugging and subsequent use. This new reality is
founded on the ideas of structured programming and program cor
rectness, which not only provide a systematic approach to programming
but also motivate a high degree of concentration and precision in the
coding subprocess.

Key Words and Phrases

structured programming
program correctness

Introduction

programming practices

An Old Myth and a New Reality

It is an old myth that programming must be an error-prone, cut-and-try
process of frustration and anxiety. The new reality is that you can learn

193

194 SOFTWARE PRODUCTIVITY

to consistently write programs that are correct ab initio and prove to be
error free in their debugging and subsequent use.

By practicing principles of structured programming and its mathe
matics you should be able to write correct programs and convince yourself
and others that they are correct. Your programs should ordinarily compile
and execute properly the first time you try them, and from then on. If you
are a professional programmer, errors in either syntax or logic should be
extremely rare because you can avoid them by positive actions on your
part. Programs do not acquire bugs as people do germs-just by hanging
around other buggy programs. They acquire bugs only from their authors.

There is a simple reason that you should expect your own programs
to be completely free of errors from the very start, for your own peace
of mind. It is that you will never be able to prove that such a program has
no errors in it in a foolproof way. This is not because programs are so
complex that it isn't worth the effort; it is because there simply is no human
way-logical or mathematical-to prove it, no matter how much effort
you might put into it.

The ultimate faith you can have in a program is in the thought
process that created it. With every error you find in testing and use, that
faith is undermined. Even if you have found the last error left in your
program, you cannot prove it is the last, and you cannot know it is the
last. So your real opportunity to know you have written a correct program
is to never find the first error in it, no matter how much it is inspected,
tested, and used.

Now the new reality is that professional programmers, with pro
fessional care, can learn to consistently write programs that are error-free
from their inception-programs of 20, 50, 200, 500 lines, and up. Just
knowing that it is possible is half the battle. Learning how to write such
programs is the other half. And gaining experience in writing such pro
grams, small ones at first, then larger ones, provides a new psychological
basis for sustained concentration in programming that is difficult to imagine
without direct personal experience. Professional programmers today are
producing code at the rate of one error per year in their finished work ;
that performance is not possible by cut-and-try programming. The pro
fessional programmer of tomorrow will remember, more or less vividly,
every error in his career.

What is a Correct Program?

Cut-and-try programming faces three kinds of difficulties:

1. Specification changes
2. Programming errors
3. Processor discrepancies

How to Write Correct Programs and Know It 195

A correct program defines a procedure for a stated processor to satisfy
a stated specification. If you do not know what a program is supposed to
do, or do not know how the processor is supposed to work, you cannot
write a correct program. So we presume a known specification and a known
processor throughout. Even so, a practicing programmer must be prepared
to deal with incomplete and changing specifications and with processors
that behave differently than their manuals say. For those difficulties we
have no systematic remedy, except for radical reductions of programming
errors that can help isolate difficulties in these other areas. Nevertheless,
the usual experience in programming often fails to separate these three
sources of difficulty, so that programming errors-lumped in with every
thing else- seem much more inevitable than they really are.

Writing correct programs does not mean that you can write pro
grams once and for all. It means that you can write programs to-do exactly
what you intend them to do. But as intentions change, program changes
are required as well. The same opportunities and principles apply to these
program changes. You should be able to modify programs correctly, if
they are well designed and explained, as well as write them correctly to
begin with.

This distinction between correctness and capability is critical in
understanding this new reality. Determining what a program should do is
usually a much deeper problem than writing a program to do a predeter
mined process. It is the latter task that you can do correctly. For example,
you might wish to program a world champion chess player; that is a matter
of capability, and a problem you may or may not be able to solve. Or you
could wish to program a chess player whose move has been determined
for every situation that can arise. You can write such a program correctly,
but whether or not it becomes a world champion is another matter.

The Difficulty with Correctness Proofs

We begin with a fundamental difficulty, which may seem fatal to our ob
jective but which paradoxically tells us what to do. There is no foolproof
way to prove that a program is correct. This fundamental difficulty is not
in programming, but in mathematics-because the schoolboy idea of math
ematics (or logic) as a body of supernatural verities and infallible pro
cedures is simply not so. Mathematics is a human activity subject to human
fallibility. It has no basic secrets of truth or reason. One simple example
is in what we call the "natural numbers," which are not natural at all.
Everyone learns to count in the "natural numbers" from someone else,
who learned to count from someone else. But reaching back far enough,
nobody knew how to count! The natural numbers are conscious human

196 SOFTWARE PRODUCTIVITY

inventions, just as radios, Hamlet, and airplanes are. They have survived
because they work. And so it is with what school children learn of frac
tions, quadratic equations, calculus, and so on, as though they were "the
truth, the whole truth, and nothing but the truth," when nothing could be
further from the truth.

Even so, mathematics is very useful, and we believe it to be largely
correct in most of its development. It is correct enough to conduct business,
design computers that run, and send men to the moon and back. And that
is pretty good. It just is not foolproof. Indeed, you should use all the math
ematics you can to help convince yourself that your programs are correct.
But you should do so knowing the limitations of mathematics yourself,
and not looking for some magic to replace your own responsibility.

What is a Mathematics Proof?

If there is no infallible road to a mathematics proof, what is it, and why
bother anyway?

A mathematics proof is a repeatable experiment, just as an experi
ment in a physics or chemistry laboratory. But the main subject in each
experiment is another person. The intended result of the experiment is a
subjective conviction on the part of this other person that a given hypothe
sis leads to a given conclusion. The experiment may be carried out in a
conversation, collectively in a lecture, or in writing. In a lecture or in
writing, many people may be involved. A successful experiment ends in a
subjective conviction by a listener or reader. The conviction may be in
correct. The conviction may be correct but based on a faulty conversation.
Any human fallibility may be present, because it is a human activity.

The conversation deals with a proof that the hypothesis leads to
the conclusion. The proof may consist of a single claim, "It is obvious,"
or a sequence of such claims for a succession of intermediate conclusions,
each of which serves as a hypothesis for the next conclusion. At each
claim the subject agrees or disagrees; in the first case the experiment con
tinues, and in the second case the experiment terminates . If the final con
clusion is reached, the experiment terminates in success; otherwise, it ends
in failure.

Mathematical notation plays no role in the proof, except in its
effect on the experimental subject. What mathematical notation does is to
facilitate human communication and memory. It permits a succession of
claims to be stated and agreed to rapidly, so that more ground can be
covered for the same human effort. It permits, by pencil and paper, a
person to extend memory for details (for example, doing long division or

How to Write Correct Programs and Know It 197

simplifying an algebraic expression). It even permits humans to agree on
rules for agreeing about proof claims (mathematical logic).

What is a convincing proof? Clearly, that depends on the experi
mental subject. But for a given subject there are many conversations pos
sible about the same hypothesis and conclusion. If there are too few steps,
the leap in intuition may be too large. If there are too many steps, human
exhaustion or lack of interest may set in. So there is a balance needed,
which depends on the subject. But it is a typically human problem, whose
resolution requires human experience and judgment.

Why bother with mathematics at all, if it only leads to subjective
convictions? Because that is the only kind of reasoned conviction possible,
and because the principal experimental subject of your conversation is
yourself! Mathematics provides language and procedure for your own
mental security.

Acquiring Confidence in Programs

As we have noted, our ultimate confidence in a program is subjective,
whether we realize it or not. If we believe a program is correct because of
a formal proof of its correctness, our subjective confidence is in the proof
methodology and in the further belief that this methodology applies to the
full scope of the program.

More often, our subjective confidence in a program is based on a
combination of experience from its inspection (including formal proofs of
correctness), testing, and usage.

If programming is practiced as a cut-and-try activity, a certain
number of errors are expected in syntax and logic, and the compiling, test
ing, and debugging phase is further expected to uncover most of these
errors. But even in a cut-and-try activity, if the number of errors found in
testing and debugging is excessive, a thoughtful programmer becomes un
easy. Instead of being grateful for finding so many errors, the programmer
begins to doubt the thought processes that produced them. Many program
mers recommend starting all over when this occurs.

On the other hand, as happens occasionally even in a cut-and-try
activity, if a program is free from error in all its testing and usage- with
no debugging required- the subjective confidence of the programmer is
remarkably affected. It will never be possible to prove that such a program
has no errors. But each new hurdle it passes in more testing and usage
improves the plausibility that this is so and that the thought processes that
produced the program are holding up.

Thus when you think about it, the real objective in programming

198 SOFTWARE PRODUCTIVITY

should be to write correct programs from the start-not merely to emerge
from debugging with no errors. The new reality is that writing such correct
programs from the start is a very possible human activity. And so it is that
the very impossibility of foolproof proofs of the correctness of programs
tells us what we must do. If no error ever occurs in a program, then a proof
of correctness can tell us no more.

The personal discovery of this new reality changes the life of a
programmer by introducing an entirely new psychological awareness of the
power and benefits of concentration in program design and coding. There
is little motivation to concentrate in a cut-and-try activity; one more error
to discover among many is of little consequence. But in a precision mental
activity the difference between no errors and one is profound. When a
programmer discovers the power of his or her own mental capabilities,
what goes into the program as a reflection of the programmer's thinking
becomes much more important.

If a child knows how to play a perfect game of tic-tac-toe but does
not know what he knows, he still loses games occasionally from a lack of
concentration but does not recognize his lapses. If asked to play an im
portant game (say, for a candy bar), his attitude is "I hope I win," but if
he loses, he says "Tough luck." If that same child discovers that he knows
how to play tic-tac-toe perfectly, his whole attitude is changed. Instead
of saying, "I hope I win," he says. "It's up to me!" He may lose, but in
stead of "Tough luck," he says, "I goofed!", and he has discovered his own
lack of concentration. And if he likes candy bars, he soon learns to con
centrate during important games and to relax later. It is the same with
the programmer who discovers that it is important to know "how to write
correct programs and know it."

Programming Fundamentals

Functions as Expressions of Essential Program Logic

A program operates on data, some of it intentional, some of it often a
byproduct of doing something else. For example, a program may operate
on an array to recalculate its elements but will at the same time calculate
subscripts in order to identify specific elements of the array during execu
tion. In particular, the last values for subscripts will be left lying around
in memory. Ordinarily, one will be interested in the array elements and
whether they are correctly computed, and not in the last values various
subscripts happened to have. But in some cases computed data not central

How to Write Correct Programs and Know It 199

to the intention of the program may find a use in another program if its
condition is known.

This picture of programs that operate on data, whether of central
interest or not, arises naturally from viewing data as it occurs in machine
storage. It is well known that such usage of data is one of the principal
pitfalls in making larger and larger systems of programs work. It is the
question of side effects, where some data not immediately visible at a
program interface is altered or used.

The idea of a mathematical function allows one to be precise about
the intentional effect of programs on data. For example, in the array case
its elements can be mapped into new elements using a functional descrip
tion. Nothing is said about subscripts or even if subscripts are used in the
computation of its elements. In this form anyone else is forewarned that
any assumptions about subscripts are made at one's own peril and are
probably untrue.

A typical first encounter with the idea of a function is one that
relates two variables, say, a function f that relates y to x in the form

y=f(x),
where

f(x)=x2 +3x+2.

For our purposes in dealing with finite but complex combinatorial objects
another definition of a function, as a set of ordered pairs, is more useful.
For example, we may write (x, y) E f instead of y = f(x) to emphasize
the set aspect. Since a function is a set, the ordinary set operations apply
to functions. The expression x2 + 3x + 2 is a part of a rule that defines
which ordered pairs belong to f; in fact, it is only one of many possible
rules. In programming, functional specification corresponds to function,
and program corresponds to rule.

For the example above, we can use set notation to describe f as

f= {(x,y) I y=x2 + 3x+2}.

The variables x and y are dummy variables, since

g = { (u, v) I v = u2 + 3u + 2}
or

h={(u,v) I v=(u+l) (u+2)}

are both sets identical to f. In this context we see that the three rules cor
respond to three different programs (different operations and different vari
ables) that realize the same functional specification.

200 SOFTWARE PRODUCTIVITY

Structured Programming and Program Correctness

You can write programs with correct function logic by using principles of
structured programming and program correctness that are applied in your
line-by-line program construction. The task of the programmer begins with
a functional specification that describes what the program-to-be is to do.
In the traditional process the programmer somehow converts that specifi
cation into program statements and then verifies that the statements created
in fact do what the program was intended to do. In structured programming
there is a precise description of the results of this mental activity. It begins
with the functional specification and repeatedly divides it, a step at a time,
into new functional subspecifications, connected by program statements,
until the program is complete. It does not consist of a large leap in faith
and hope from a functional specification to a loose collection of program
statements that are fitted piece-by-piece into a program. The structured
programming process analyzes functional specifications rather than synthe
sizing program statements. One brief way of understanding structured
programming and how to prove the correctness of programs written in
this way is as follows.

a. Any functional specification can be defined in terms of a math
ematical function that maps inputs into outputs without regard to its in
ternal construction. We show such a function (functional specification) as

-----i•~l function I •

b. Any flowchartable program realizes a function that can be
expressed by the repeated use of only the three basic program figures
shown in Figure 16-1.

Each IF-THEN-ELSE, SEQUENCE, and DO-WHILE on the left
hand side is a function realized in a new way on the right-hand side. Each
THEN part, ... , DO part on the right-hand side is just a new function
and can be replaced by another IF-THEN-ELSE, SEQUENCE, or DO
WHILE figure in a subsequent expansion step.

The structured programming process proceeds from an original
functional specification as a series of design decisions that specify which
figure and what resulting new tests and functions are required to expand
the original and any intermediate functions required. When the functions
required can be written directly as program statements, the expansion
process is completed.

In a language such as PL/I these expressions can be written di-

How to Write Correct Programs and Know It 201

1. IF-THEN-ELSE

~=

2. SEQUENCE

~ = ~ first part 1-------~·~1 second part ~
3. DO-WHILE

~=
FIGURE 16-1

rectly in matching statements, without labels or GO TO's to result finally
in a GO TO-free program. Such a GO TO-free program can be read se
quentially, without jumping around. The relationship between program text
and execution thus becomes especially clear.

c. At each expansion step the correctness of that step can be
decided by answering a standard question that goes with that type of ex
pansion. If the answer is yes, the step is correct, and the program expan
sion can proceed. If the answer is no, the step is not correct, and a new
one should be defined right then. The questions are:

1. IF-THEN-ELSE: Whenever the IF test is true, does the THEN part
do the IF-THEN-ELSE, and whenever the IF test is false, does the
ELSE part do the IF-THEN-ELSE?

2. SEQUENCE: Does the first part followed by the second part do the
sequence?

202 SOFTWARE PRODUCTIVITY

3. DO-WHILE: (a) Is termination guaranteed? (b) Whenever the
WHILE test is true, does the DO part followed by the DO-WHILE
do the DO-WHILE, and whenever the WHILE test is false, does
the identity function (no-op program) do the DO-WHILE?

The questions for the IF-THEN-ELSE and SEQUENCE expan
sions are self-evident. The question for the DO-WHILE becomes self-evi
dent by observing this sequence of equivalent expansions: Expand the ex
ecution of the DO-WHILE into an IF-THEN (no ELSE part), and then
observe that the DO-WHILE reappears as the second part of the sequence
making up the THEN part (see Figure 16-2).

~= •I

DO part

FIGURE 16-2

How to Write Correct Programs and Know It 203

d. When steps b and c are carried out to the point where no
subspecifications remain, the result is a complete program, and the proof
of its correctness has been completed as well.

Some illustrations of individual steps with their correctness questions are:

1. IF-THEN-ELSE: z = max(x, y)

x,y

Whenever x 2 y does z = x do z = max(x, y) and whenever x < y
does z = y do z = max(x, y)?

2. SEQUENCE: z = max(x, abs(y))

x,y •I '-__ w_=_ab_s_(Y_) _ __, X, w ·IL. _______ t----l'~ z ,... . z = max(x, w) -

Does w = abs(y) followed by z = max(x, w), do z = max(x,
abs(y))?

3. DO-WHILE: remove leading zeroes (from a positive decimal in
teger)

remove
leading digit

204 SOFTWARE PRODUCTIVITY

(a) Is termination guaranteed? (b) Whenever there is a leading zero,
does remove leading digit followed by remove leading zeros do re
move leading zeros; and whenever there is no leading zero, does
doing nothing do remove leading zeros?

The Disease of Syntax Errors

The problem of writing correct program logic is more difficult than that
of writing correct syntax, and most of this article is about the latter prob
lem. Our concern with correct syntax is to identify an attitude of preci
sion that will carry over with good effect into the problem of program
logic. In fact, this emphasis on syntax is based on the reverse experience
that when programmers get program logic correct from the start, the atti
tude of precision carries back into the coding, and they begin to get pro
gram syntax right from the start, with no special effort.

With the advent of compilers and other debugging aids, it has been
easy to adopt an attitude of "let the compiler do it" in finding errors of
syntax. But in the long run this is a devastating attitude because it fosters
ignorance and carelessness that slides over to program logic that the com
piler cannot uncover.

If your programming is a vocation rather than an avocation, there
is no reason for you to take errors of syntax lightly in writing a program.
Syntax errors are errors of either ignorance or carelessness. If they are
errors of ignorance, you need to do more homework on the syntax of
your programming languages. If they are errors of carelessness, you need
to learn how to concentrate and take what you are doing more seriously.

Writing correct syntax is like playing a perfect game of tic-tac-toe,
not like sawing a board exactly in half, which requires perfect precision.
It is a combinatorial process that requires only a fixed and humanly pos
sible degree of precision for correctness. For example, a complicated ex
pression may end with five (or six) parentheses; but it will never end
with 5.37521 . . . parentheses. The difference between five and six is dis
tinguishable in writing and reading, and whether it should be five or six
depends only on previous characters of discrete kinds and locations in the
expression.

Writing Some Searches

Search 1

In order to see these principles in action, consider the problem of search
ing for an item called KEY in a list called TABLE, with a total of N

How to Write Correct Programs and Know It 205

elements, denoted TABLE (1), ... , T ABLE(N), respectively; we are to
display the results of the search in an item called I, which is to satisfy
the relation

TABLE(I) =KEY, if possible

I = 0, otherwise.

Note that we have defined a function in words. The argument is N + 2
items, namely N, TABLE(l), ... , TABLE(N), KEY, and the value is I,
as diagrammed

N, TABLE(l), ... , T ABLE(I) = KEY,
------l~ ifpossible 1----_..

TABLE(N), KEY I = 0, otherwise

It is easy to invent a program, say in PL/I, for this function.

SEARCHl :PROCEDURE;
I= 0;
DO 1 = 1 TON;

IF TABLE(J) =KEY THEN
I= J;

END;
END SEARCH!;

It is not an efficient program, to be sure, but it seems to be correct. Why?
First, it is a sequence of two subprograms whose functions are

1. first part: set I to zero.
2. second part: find, if possible, a value for I for which T ABLE(I) =

KEY; otherwise, leave I unchanged.

The sequence question above asks if first part followed by second
part does the sequence. It is believed so. Next, the second part above is
itself a loop, but not a DO-WHILE figure. Instead, it is the familiar in
dexed loop, which we will call DO loop for short. It is worth our atten
tion as an extra convenience beyond the three basic figures given above,
under an extra point of discipline. This extra discipline is that the index
of the DO loop is not altered in any way by the DO part of the DO loop.
Then the DO loop becomes an extended sequence, with a first part, second

206 SOFTWARE PRODUCTIVITY

part, .. . , nth part. The corresponding correctness question is a simple ex
tension of the sequence question as well. The DO part in this case is

DO part: if TABLE(J) =KEY then set I to J;
otherwise, leave I unchanged

and it is easy to see that the sequence of such DO parts, for J = 1, .. . , N
indeed does the DO loop (second part above). Finally, the DO part is
itself an IF-THEN (IF-THEN-ELSE with null ELSE) figure, and it is easy
to see that it satisfies its functional requirement.

In summary, we have articulated an analysis a programmer does
at a glance to illustrate the building blocks of a skilled observer. In this
case they are structured in a tree of the form shown in Figure 16-3.

SEARCH I

I = 0; DO J = 1 toN;

IF T ABLE(J) = KEY

/
I= J;

FIGURE 16-3

Each node defines a subfunction and subprogram simultaneously. A
skilled pianist has learned to play scales and arpeggios with little attention
to the individual notes, and a skilled programmer also learns to put small
combinations of statements together in almost the same way. Even so,
the basic questions are valid and need consideration explicitly. If the
answers are obvious, they will not take much time to verify; if not ob
vious, they are worth looking into.

How to Write Correct Programs and Know It 207

Search 2

It is easy to see how to improve SEARCHl to SEARCH2 as follows:

SEARCH2: PROCEDURE;
I = 0;
DO J = 1 TON WHILE(I = 0);

IF TABLE(J) = KEY THEN
I = J;

END;
END SEARCH2;

Whereas SEARCHl looked at every item in TABLE, whether successful
or not part way through, SEARCH2 has enough sense to stop looking at
the first success in TABLE. The only change in SEARCH2 is the WHILE
clause. The effect is a DO loop with a conditional termination, which can
be rewritten as:

J = 1;
DO WHILE(J <= N & I = 0);

END;

IF TABLE(J) = KEY THEN
I = J;

J = J + 1;

That is, the DO loop WHILE becomes a sequence of a first part for initial
ization and second part of DO-WHILE, whose DO part includes incre
menting the index. In this form the DO-WHILE question applies; it asks:

whenever J s N and I = 0, does the DO part
followed by the DO-WHILE (with J = J + 1
now) do the DO-WHILE; and whenever J > N
or I 7':- 0, does doing nothing do the DO-WHILE?

We can see that it does. If KEY bas not yet been found in TABLE,
and we have not looked at every item, then we can look at the next item
and set I, J accordingly and still complete the task required of the DO
WHILE.

Looking back to the functional idea in programming discussed
earlier, note also that the improved SEARCH2 leaves an unpredictable
value for J, whereas SEARCH! left J = N + 1 always. If a programmer
took the program, rather than the functional specification, as definitive,
there could be trouble depending on a value for J.

208 SOFTWARE PRODUCTIVITY

Search 3

If the elements of TABLE are sorted (say, in ascending order), then a
possibly more efficient search can be defined as a binary search. By ex
amining an element near the middle of the table, either we find KEY or
we then know that KEY is to be found only in one half or the other of
the remaining table. That basic step can be repeated in the half indicated
and continued until a table of only one element is reached. If KEY is
not found by that step, it does not exist in the table. We put the fore
going in a program, as follows, introducing variables LO and HI, which
define the lower and upper subscript of the table being searched at each
step.

SEARCH3: PROCEDURE;
I= 0;
LO= 1;
HI=N;
DO WHILE(LO <=HI & I= 0);

J = (LO + HI)/2;
IF TABLE (J) = KEY THEN

I= J;
ELSE

END;
END SEARCH3;

IF TABLE (J) < KEY THEN
LO = J + 1;

ELSE
HI=J-1;

The tree of questions about SEARCH3 is given by Figure 16-4. There
are five nonterminal nodes in this tree, corresponding to two sequences,
one DO-WHILE, and two IF-THEN-ELSE's. (Note that we regard a
sequence of assignments as simply one generalized assignment for our
purposes here.) Each node defines a function which in turn serves as a
component in the next function.

The function for SEARCH3 is the same as that stated already,
namely, given N, TABLE (I), ... , TABLE(N), KEY, find I that satisfies
the relation

TABLE(I) =KEY, if possible, I= 0, otherwise.

I= 0;
LO = 1;
HI = N;

How to Write Correct Programs and Know It 209

SEARCH3

DO-WHILE (LO <=HI & I = 0);

J = (LO + HI)/2; IF T ABLE(J) = KEY

I= J ; IF TABLE(J) <KEY

LO = J+ 1; HI = J- 1;

FIGURE 16-4

The function for the DO-WHILE is, given N, TABLE(l), ... , TABLE(N),
KEY, LO ~ 1, HI ~ N, find I which satisfies:

TABLE(!)= KEY and LO ~I~ HI, if
possible, I unchanged otherwise.

It is clear, with the three initialization assignments, that this sequence (of
initialization and the DO-WHILE) does SEARCH3.

Next, the DO part of the DO-WHILE is a sequence. The function
of this DO part is, given N, TABLE(l) , ... , TABLE(N), KEY, LO,
HI, find I, LO, HI so that:

I = (LO + HI) / 2 and TABLE (I) =KEY, if
possible or I is unchanged and

LO is changed to (LO + HI) /2 + 1
if TABLE ((LO + HI) / 2) <KEY

and HI is changed to (LO + HI) /2 -1
if TABLE((LO + HI) / 2) >KEY

210 SOFTWARE PRODUCTIVITY

In order to see that the DO-WHILE is accomplished by this
WHILE test and this DO part, two principal considerations are needed.
First, doing the DO part once without finding KEY cannot prevent the
DO-WHILE finding KEY if it is possible; second, doing the DO part
sufficiently many times (finitely) guarantees the ultimate failure of the
WHILE test. For the first consideration the assumption of a sorted
TABLE must be invoked, with the verification that each failure to find
KEY in the TABLE ensures that KEY will not be found above or below
that point as the case may be. For the second consideration it is sufficient
to consider the algebraic difference HI - LO and to observe that when I
remains 0 (otherwise, the WHILE test is false), then either LO or HI
is changed so that

(HI- LO)arter < (HI- LOherore -1,

so that eventually,

HI- LO < 0,

and the WHILE test will fail.
We will not elaborate the arguments for the two IF-THEN-ELSE's.

But note that their functions are defined by the preceding arguments for
the DO-WHILE. Note also the essential difference in the argument for a
DO-WHILE and for an indexed DO loop.

To Dig Deeper

In Structured Programming

The first name in structured programming is Edsger W. Dijkstra, who early
recognized the problem of complexity in the programming process and
identified the need for mental discipline in functional abstractions and
control logic. In a famous letter, "GOTO Statement Considered Harmful"
[7], Dijkstra set off a controversy that has rocked computer science. In
the chapter, "Notes on Structured Programming" of Structured Program
ming [5], he gave the motivation and method for structured programming
as a systematic process of divide and conquer by abstraction and refine
ment.

The first proof that structured programs were sufficiently powerful
to represent any flowchartable program logic was due to Giuseppe Jaco
pini in the paper, "Flow Diagrams, Turing Machines, and Languages with

How to Write Correct Programs and Know It 211

Only Two Formation Rules" [4], coauthored with Corrado Bohm. As
Dijkstra points out [7], the mindless conversion of general flowcharts into
structured programs is not to be recommended, but Jacopini shows that
you can design structured programs for any logic requirements to begin
with.

The correctness of structured programs is given an elegant treat
ment by C. A. R. Hoare in "An Axiomatic Approach to Computer Pro
gramming" [12], which introduced a new systematic approach for proving
structured programs correct. This approach is illustrated by N. Wirth in
Systematic Programming: An Introduction [22] and by J. R. Kelley and
C. L. McGowan in Top-Down Structured Programming [14]. The approach
of Hoare et al. is somewhat different for loops than the approach we
gave above. It stems from ideas of Naur [19] and Floyd [11], which ad
dress the loop iteration directly by means of discovery of an invariant
condition, which is satisfied in every iteration and can be used to deduce
the loop exit condition. In contrast, the approach we gave above ~onverts
an iteration into a recursion, after ideas that go back to McCarthy in "A
Basis for a Mathematical Theory of Computation" [16].

The stepwise expansion of specifications into structured programs
was discussed early by Dijkstra in "A Constructive Approach to the Prob
lem of Program Correctness" [8], by Wirth in "Program Development by
Stepwise Refinement" [21], and by Mills in "Top Down Programming in
Large Systems" [17].

In Programming Practices

A major application of structured programming (in conjunction with cer
tain organizational techniques) is described by F. T. Baker in "Chief
Programmer Team Management of Production Programming" [2] and in
"System Quality Through Structured Programming" [3]. Baker reports a
substantial increase in productivity and an even more remarkable decrease
in error incidence over industry norms in the development of a large con
versational information system.

In a special issue on programming of the ACM Computing Sur
veys [11, edited by P. J. Denning, authors P. J. Brown, J. M. Yohe, N.
Wirth, D. E. Knuth, and B. W. Kernihan and P. J. Plouger discuss vari
ous aspects of programming practice. Dijkstra gives special insights into
good mental practices in programming in an early paper, "Programming
Considered as a Human Activity" [6], and a later one, "The Humble
Programmer" [9].

The stepwise refinement approach to program development can
be identified as· a system design methodology as well, as discussed in an

212 SOFTWARE PRODUCTIVITY

early paper by F . Zurcher and B. Randell, "Iterative Multi-Level Modelling
- A Methodology for Computer System Design" [23]. In "A Design
Methodology for Reliable Software Systems" [15], B. H. Liskov combines
principles of structured programming and program correctness into a sys
tematic approach to software development.

In Mathematics

It is said that war is too important to be left to the generals, and so it is
that clear thinking in programming is too important to be left to the math
ematicians. Dijkstra, in "Programming as a Discipline of a Mathematical
Nature" [10], expresses the needs and opportunities for incorporating
mathematical thinking into programming very well. Mills, in "The New
Math of Computer Programming" [18], discusses structured programming
and why it works in algebraic terms. W. Huggins has observed [13] that
"algebra is the natural tool to study things made by man, and analysis is
the natural tool to study things made by God." That apt remark seems to
apply to man-made programs, indeed.

R. L. Wilder, in Evolution of Mathematical Concepts-An Elemen
tary Study [20], points out (pp. 196f) that "it appears to be a universal
phenomenon in the evolution of culture, that when a culture has evolved
sufficiently to achieve a certain degree of maturity, there then arises a need
among its participants for an 'explanation' of its origin ... the mathe
matical subcultu_re of modern western culture furnished no exception ...
the faith in the 'truth' of mathematical theories that has been sustained in
the general culture is shared to a considerable extent by the mathematical
subculture." Professor Wilder then goes on to conclude that mathematics
will continue to evolve just as any other human activity- on the basis of
its value to the human condition.

Acknowledgment

It is a pleasure to acknowledge stimulating discussions in "How to Write
Correct Programs and Know It" in theory and practice with R. C. Linger.

Bibliography

1. ACM Computing Surveys 6, No.4 edited by P. J. Denning, (Decem
ber 1974): 209-321.

How to Write Correct Programs and Know It 213

2. Baker, F. T. "Chief Programmer Team Management o{ Production
Programming." IBM Systems Journal 11, No. 1, (1972): 56- 73.

3. Baker F. T. "System Quality Through Structured Programming."
In AFIPS Conference Proceedings. 1972 Fall Joint Computer Con
ference, vol. 41, part I, pp. 339-343. Arlington, Va.: AFIPS Press,
1972.

4. Bohm, Corrado, and Jacopini, Giuseppe. "Flow Diagrams, Turing
Machines, and Languages with Only Two Formation Rules." Comm.
ACM 9, No.5 (May 1966): 366-371.

5. Dahl, 0. J., Dijkstra, E. W., and Hoare, C. A. R. Structured Pro
gramming, London: Academic Press, 1972.

6. Dijkstra, E. W. "Programming Considered as a Human Activity." In
Proceedings of the IFIP Congress 1965, pp. 213- 217. Amsterdam:
North-Holland, 1965.

7. Dijkstra, E. W. "GOTO Statement Considered Harmful." Comm.
ACM 11, No.3 (March 1968): 147-148,538,541.

8. Dijkstra, E. W. "A Constructive Approach to the Problem of Pro
gram Correctness." BIT 8, No. 3 (1968): 174-186.

9. Dijkstra, E. W. "The Humble Programmer." Comm. ACM 15, No.
10 (October 1972): 859-866.

10. Dijkstra, E . W. "Programming as a Discipline of a Mathematical
Nature." Amer. Math. Monthly 81, No.6 (June/July 1974): 608-
611.

11 . Floyd, R. W. "Assigning Meanings to Programs." In Proceedings
of the Symposium in Applied Mathematics, vol. 19, edited by J. T.
Schwartz, pp. 19-32. Providence, R. I.: American Mathematical
Society, 1967.

12. Hoare, C. A. R. "An Axiomatic Approach to Computer Program
ming." Comm. ACM 12, No . 10 (October 1969): 576-580, 583.

13. Huggins, W. Personal communication. Johns Hopkins University.
1973.

14. Kelley, J. R., and McGowan, C. L. Top-Down Structured Program
ming. New York: Petrocelli, 1975.

15. Liskov, B. H. "A Design Methodology for Reliable Software Sys
tems." In AFIPS Conference Proceedings. 1972 Fall Joint Com
puter Conference, vol. 41, part I, pp. 191-199. Arlington, Va.:
AFIPS Press, 1972.

16. McCarthy, J . "A Basis for a Mathematical Theory of Computation."
In Computer Programming and Formal Systems. Edited by P. Braf
fort and D. Hirschberg, pp . 33-70. Amsterdam: North-Holland,
1967.

17. Mills, H. D. "Top Down Programming in Large Systems." In De-

214 SOFTWARE PRODUCTIVITY

bugging Techniques in Large Systems. Edited by Randall Rustin,
pp. 41- 55. Englewood Cliffs, N.J.: Prentice-Hall, 1971.

18. Mills, H. D. "The New Math of Computer Programming." Comm.
ACM 18, No. 1 (January 1975): 43-48.

19. Naur, P. "Proof of Algorithms by General Snapshots." BIT 6
(1966): 310-316.

20. Wilder, R. L. Evolution of Mathematical Concepts-An Elementary
Study. New York: John Wiley and Sons, 1968.

21. Wirth, N. "Program Development by Stepwise Refinement." Comm.
ACM 14, No. 4 (April 1971): 221-227.

22. Wirth, N. Systematic Programming: An Introduction. Englewood
Cliffs, N. J.: Prentice-Hall, 1973.

23. Zurcher, F., and Randell, B. "Iterative Multi-Level Modelling-A
Methodology for Computer System Design." In Proceedings of the
IFIP Congress, pp. Dl38-D142. Amsterdam: North-Holland, 1968.

ARTICLE
17

The New Math of
computer Programming

{1975)

Abstract

Structured programming has proved to be an important methodology
for systematic program design and development. Structured programs
are identified as compound function expressions in the algebra of func
tions. The algebraic properties of these function expressions permit
the reformulation (expansion as well as reduction) of a nested sub
expression independently of its environment, thus modeling what is
known as stepwise program refinement as well as program execution.
Finally, structured programming is characterized in terms of the selec
tion and solution of certain elementary equations defined in the algebra
of functions. These solutions can be given in general formulas, each in
volving a single parameter, which display the entire freedom avail
able in creating correct structured programs.

Key Words and Phrases

structured programming
algebra of functions

stepwise refinement
program correctness

CR (ACM Computing Reviews) Categories: 4 .6, 5.21, 5.24

In honor of Alston S. Householder

© 1975, Association for Computing Machinery, Inc. Reprinted, with permission,
from Communications of the ACM, January ·l975, Vol. 18, No.1.

215

216 SOFTWARE PRODUCTIVITY

Computer Programming

History

Computer programming as a practical human activity is some 25 years
old, a short time for intellectual development. Yet computer program
ming has already posed the greatest intellectual challenge that mankind
has faced in pure logic and complexity. Never before has man had the
services of such logical servants, so remarkable in power, yet so devoid
of common sense that instructions given to them must be perfect and
must cover every contingency, for they are carried out faster than the
mind can follow.

The practical electronic computer was the invention of some of
our best minds in mathematics and engineering [7], e.g. von Neumann,
Goldstine, Burks, Bigelow, Williams, Eckert, Mauchly, Atanasoff, Pom
erene. Many people from the world's best universities and laboratories
came into its development early, in both hardware design and program
ming, e.g. Wilkes [17], Forrester, Alexander, Forsythe, Rutishauser,
Hopper. In the beginning, the emphasis was on numerical computation,
and a new mathematics for numerical analysis emerged, spearheaded by
the classic studies of von Neumann and Goldstine [16], Householder [10],
Wilkinson [18], Henrici [8], et a!. Later an additional emphasis devel
oped in symbolic computation, and another new mathematics for symbolic
analysis emerged, spearheaded by McCarthy [13], Newell and Simon [15],
Minsky [14], et a!. The hallmark of numerical computation is iteration
and real analysis, and the main conceptual problem is the approximation
of iterative algorithms for the reals in floating point numbers. The hall
mark of symbolic computation is recursion and combinatorial analysis,
and the main conceptual problem is the representation of complex objects
in flexible recursive data structures.

The foregoing required computer programming of mathematical
processes . But it is only recently that a new mathematics of computer
programming itself has begun to emerge, in works of Dijkstra [6], Hoare
[9], Wirth [19], et al. In this case, the mathematics models the mental
processes of programming-of inventing algorithms suitable for a given
computer to meet prescribed logical specifications. Bauer [2], Dijkstra [5],
and Knuth [11] have summarized much of this development and its unique
characteristics under the term structured programming.

A Mathematical Perspective

We discuss structured programming in mathematical form to illustrate the
relevance and power of classical mathematical concepts to simplify and

The New Math of Computer Programming 217

describe programming objects and processes. It is applied mathematics
in the classic tradition, providing greater human capability through abstrac
tion, analysis, and interpretation in application to computer programming.

Our principal objective is to model the mental process of structured
programming with the selection and solution of certain function equations
which arise as a natural abstraction of concrete programming processes.
Before these function equations can be abstracted, however, we need to
develop the idea of structured programming, and the corollary that struc
tured programs can be viewed as compound function expressions in the
algebra of functions. It is the algebraic properties of structured program
ming that provide its practical power-in the natural nesting of algebraic
expressions-and the ability to consider a nested expression independently
of its environment in a compound expression.

In illustration, we can all remember from elementary mathematics
classes that the problem wasn't simply to get the right answer, but to find
the right process for getting the answer. Frequently we got only part credit
for a correct answer because we didn't show how we got it. There was
a reason. If we do simple mathematical problems by guessing the answers,
then when we get to the harder problems we won't be able to guess the
answers . That is exactly the role of the new math in computer program
ming- to go from programming as an instinctive, intuitive process to a
more systematic, constructive process that can be taught and shared by
intelligent people in a professional activity.

Structured Programming

Flowchart Theorems

Flowcharts are graphical rules for defining complex state functions1 in
terms of simpler state functions known to a computing device. More pre
cisely, let X be a finite set of possible states of a computation; a flowchart
is an oriented, directed graph with three kinds of nodes (see Figure 17-1) .

A function node is labeled with a finite state function, say,
f c X x X. A predicate node is labeled with a finite state predicate, say,
p c X x {T, F}, and directs control to one of the two out-lines of the

I A function is a set of ordered pairs, say f. with all first members unique. If (x, y) E
f we may write y = f(x) instead, and call x an argument, y a value of /. The set
of all arguments, values is called the domain, range of /, denoted by D(f), R(f),
respectively.

218 SOFTWARE PRODUCTIVITY

~
function node predicate node collecting node

FIGURE 17-1

T

FIGURE 17-2

FIGURE 17-3

node. A collecting node is not labeled, and merely passes control from
the two in-lines to the out-line.

Different flowcharts may define the same calculations and same
functions; for example, the forms in Figure 17-2 define identical calcula
tions. Different flowcharts may define different calculations, but the same
function (see, for example, Figure 17-3).

Thus, several levels of flowchart equivalence can be defined, which
preserve calculations, function, etc. In particular, Bohm and Jacopini [3],
Cooper [4], and others have studied the expressive power of various classes
of flowcharts in defining calculations and functions. The principal outcome
of these studies is that relatively small, economical classes of flowcharts
can define the calculations and functions of the class of all flowcharts,
possibly at the expense of extra calculations outside the original descrip
tion of the state set.

The New Math of Computer Programming 219

The foregoing motivates a more formal treatment, as follows. De
fine a class of D-charts (D for Dijkstra [5]) over a set of state functions
F = {fb ... , f,,} and a set of state predicates P = {p1, ... , Pn} as follows:

1. Iff E F, then

is a D-ehart.
2. If p E P and

are D-charts, then

(composition)

(alternation)

(iteration)

are D-charts.

220 SOFTWARE PRODUCTIVITY

A Structure Theorem. Consider any flowchart whose functions form a se! F
and predicates form a set P. Augment sets F and P with functions and
predicates which set and test variables outside the state set of the given
flowchart. Then there exists a D-ehart in the augmented sets which simu
lates the calculations of the given flowchart.

In illustration, following Cooper [4], consider any given flowchart,
and label each of its lines uniquely. Then the flowchart in Figure 17-4,
using a new variable L (for label), will simulate the ca:lculations of the
original flowchart.

1. go to the Lin-line
2. perform the node calculation
3. reset L to proper out-line

FIGURE 17-4

The operation inside the loop can be expanded into a loop-free
D-ehart of tests on L, leading to the various nodes of the original flow
chart, as a set of nested alternations. In brief, this flowchart shows that,
at the expense of setting and testing a single variable L (outside the
original state set), the calculations of any flowchart whatsoever can be
simulated as a subsequence of the calculations of a D-ehart with a single
loop.

Bohm and Jacopini [3], Ashcroft and Manna [1], and Kosaraju
[12] have sharper results, which preserve more of the structure of the
original flowchart. Bohm and Jacopini preserve the loops of the original
flowchart, with a more efficient simulation of its calculations. Kosaraju
has found a hierarchy of expressive capabilities among several classes of
flowcharts. In particular, Kosaraju has discovered the precise conditions
under which a D-ehart can simulate a given flowchart without augmenting
its functions and predicates.

Theorem (Kosaraju [12]). Consider any flowchart A whose functions form
set F, and whose predicates form set P. Then, there exists a D-ehart over
F and P which preserves the calculations of the given flowchart A if and
only if every loop of A has a single exit line.

The New Math of Computer Programming 221

Function Expressions

The algebra of functions inherits function expressions from the algebra of
sets, e.g., if g, h are functions, then so are g n h (set intersection) and
g - h (set difference); of course g U h may or may not be a function, but
will be a relation in any case.

Basic flowchart programs of common use, such as defined for
D-charts, are conveniently represented as additional function expressions,
e.g.,

composition
for

where

(1)

write

----~·~l ___ g_;_h __ ~~--~·~

g ;h= {(x,z) J (3:y)(y=g(x) A z=h(y))}

(note that the operator ; reverses the operands of the ordinary function
composition operator *, e.g., g ; h = h * g).

alternation
for

where

write

IF p THEN g ELSE h Fl

(2) IF p THEN g ELSE h FI = { (x, y) (p(x) A y = g(x))
Y ('-p(x) 1\y=h(x))}.

222 SOFTWARE PRODUCTIVITY

semi-alternation
for

where

write

IF pTHENgFJ

(3) IFpTHENgFI={(x,y) I (p(x) J\y=g(x))
V (-p(x) J\ y=x)}.

iteration
for

which defines the same calculations as

write

---i·~l WHILE p DOg OD I)lo

where

____..

The New Math of Computer Programming 223

(4) WHILE p DOg OD =IF p THEN g; WHILEp DO gODFI

The iteration expression is defined by recursion in terms of semi-alterna
tion and composition.

As a consequence of these definitions, any D-ehart can be repre
sented as a compound function expression, and the calculations of any
flowchart can be simulated by such an expression.

Additional expression types may be useful and efficient for certain
processors, e.g., define

(5) DO g UNTIL p OD = g ; WHILE - p DO g OD,

(6) CASE k OF g1, g~, . . . , gn FO = IF k = 1 THEN gl ELSE
IF k = 2 THEN g2 ELSE

IF k = n THEN gn FI ... FI Fl.

We define a structured program to be a compound function expression in
any prescribed set of expression types. The D-charts are structured pro
grams in the set of types {composition, alternation, iteration} as defined
above.

Stepwise Function Refinement

The powerful properties of structured programming are rooted, finally, in
algebraic properties of function expressions; e.g., arithmetic expressions,2

logic expressions, etc., permit their evaluation, manipulation, etc., a step
at a time in innermost subexpressions, independently of their outer environ
ment. We add 2 + 4 the same way whether we later multiply the result by
9 or divide it by 3, in 9 * (2+ 4) or (2 + 4)/3. Alternately, a number
such as 6 can be expanded as (2 + 4), if useful, or (2 * 3), irrespective
of the operations being performed on it. Similarly, function expressions can
be formulated and contemplated independently of their environments in
more complex compound function expressions.

As noted by Dijkstra [6], Wirth [19], et al., the creative, iterative
mental process of structured programming is the stepwise refinement of a
function into an expression in intermediate functions, until functions avail
a:ble in the computer at hand are reached. Thus, not only is the final ex
pression involved, but also the intermediate mental steps for reaching it
are recorded. For example, the sequence of flowcharts labeled 1 and 2 in

2 Exact, not approximate, arithmetic is meant here.

224 SOFTWARE PRODUCTIVITY

Figure 17-5 lead to the same final (structured) program. But sequence 2
does not follow stepwise refinement.

~

~
Sequence 2

FIGURE 17-5

The difference is critical, because sequence 2 contains a mental
discontinuity (two, in fact), which requires additional mental processing
outside the sequence. In sequence 1, each of the three members are equiv
alent compound expressions, i.e.,

f= (g;h) = (g;WHILEpDOkOD)

But in sequence 2, the first and third members are equivalent, as above,
but the middle member is different from either of the others. Thus, from
f in sequence 2, by some unrecorded insight, the function called h in se
quence 1 is defined as an iteration. This expression equals no other object
in sequence 2, and requires that unrecorded insight for validation. Then,
at last, this expression is fixed up by putting g in front of it, still needing
that unrecorded insight to get g right. When such functions get complex,

The New Math of Computer Programming 225

and many such unrecorded insights need to exist over days, weeks, and
months , it is no wonder that programming can be complex and frustrating.

The Correctness of Function Expressions

The verification of correctness of function expressions can proceed with
stepwise refinement. In fact they are better practiced jointly than separately
and sequentially. Each stage in stepwise refinement identifies a compound
expression in intermediate functions, each of which may be later expressed
in other functions. These intermediate functions are critical in validating
correctness . They serve two roles-first, as functions in expressions being
validated, and second as functions by which their replacement expressions
are validated.

During stepwise refinement, a standard validation procedure can
be defined for each expression type. These procedures state what is to be
proved-the function description determines how such a proof should be
carried out in detail.

Theorem (Correctness). The Correctness of an Alternation Expression. To
prove f = IF p THEN g ELSE h FI it is necessary and sufficient to
show, for every (x, y) E f, that either p(x) = T andy= g(x) or p(x)
=Fandy=h(x).

The Correctness of a Composition Expression. To prove f =
g ; h it is necessary and sufficient to show, for every (x, y) E f, that y

=h(g(x)).
The Correctness of an Iteration Expression. To prove f =

WHILE p DO g OD it is necessary and sufficient to show, for every
(x, y) E f, that the iteration terminates and that either p(x) = T andy=
f(g(x)) or p(x) = F andy= x.

The proof of this theorem follows directly from the definitions of
(1) , (2) , (3) , and (4) .

Function Equations and Their Solutions

The Computation Problem and the Programming Problem

In stepwise refinement, members of a finite set of prescribed function equa
tions arise, one for each expression type, of the forms

(7) f =IF p THEN g ELSE h FI (alternation)

226 SOFTWARE PRODUCTIVITY

(8) f = g;h

(9) f=WHILEpDOgOD
etc.

(composition)

(iteration)

When p, g, h are taken as the independent functions, and f as the
dependent (unknown) function, these equations represent the computation
problem; i.e., given a compound function expression, the problem is to
evaluate it by stepwise evaluations of innermost expressions.

However, the programming problem begins with a function to be
expressed, with f as the independent function, and p, g, and h as the de
pendent (unknown) functions. This motivates the study of these prescribed
function equations, with f given, to characterize the solutions in p, g, h.
With a little analysis we can write the solutions down directly, and exhibit,
thereby, the entire freedom of a programmer in a correct stepwise refine
ment.

The Alternation Equation

The general minimal solution for the alternation equation can be given in
terms of a single parameter, any subfunction (subset) of f, say u. Then
(p, g, h) solves the alternation eq. (7), where3

(10) g = u,

h = f- u,

p = (D(u) X {T}) U (D(f - u) X {F}).

Note that {g, h} is a partition of f .

The Composition Equation

The general minimal solution for the composition equation can be given
in terms of a single parameter, any function, say, u, with domain D(f)

3 The solution (p, g, h) is minimal, in the sense that, for any other solution (p0 , g0 ,

h 0), p £. p0, g £. g0, h ~ ho- In this case, (p0, g0 , h 0) must satisfy the addit ional condi
tions {x I p0 (x)} n D(g0) = D(g) , {x 1- p0 (x)} n D(h0) = D(h) . Nonminimal so
lutions exist similarly for the other equations, as well.

The New Math of Computer Programming 227

whose level sets4 refine the level sets off; i.e., every level set of u is a subset
of some level set of f. Then (g, h) solves the composition eq. (8), where5

(11)
g = u,

h=u - 1 ;/where (u - 1 = {(x,y) I (y,x) E u})

Thus, whereas the solution set of the alternation equation has precisely
the freedom of a binary partition of the function f, the solution set of the
composition equation has the freedom of any system of partitions on the
level sets of f, a much richer choice.

The Iteration Equation

The iteration equation is more complex and interesting than the alterna
tion and composition equations. First, whereas any function can be ex
pressed in an alternation or composition, this is not so for an iteration
expression; it turns out that an existence condition is required for a solu
tion. Second, whereas all functions p, g, h vary over the solution set in the
alternation and composition equations, it turns out that only the function
g varies over the solution set in the iteration equation; that is, the predicate
p is fixed entirely by f alone. In other words, p is a derivative of f, just as
the slope of a differentiable function is a derivative of that function. We call
p the iteration derivative of f.

Consider the iteration equation, given f, to find (p, g) such that
(eq. (9)) f =WHILE p DO g OD. For the moment, suppose g is re
stricted to functions for which D (g) C D (f); we show below that this in
volves no loss of generality.

Then we will see that if the existence condition (x E D(f) n
R(f)) ::l f(x) = x holds (otherwise there is no solution), the general
minimal solution for the iteration equation can be given in terms of a single
parameter, a function u which defines any system of trees on the level sets
off in D(f) - R(f), i.e.,6

u = { (x, y) I y is the parent of x}.

4 A level set Dy(f) = {xI (x, y) E f}, i.e., all arguments with the same value of f.
More directly u must satisfy the predicate D(u) = D(f) A (f(x) =I= f(y) :::> u(x) =I=
u (y)).
5 In general u-1 will be a relation, not a function, but the composition u - 1 ; f will
be a function due to the restriction on u.
6 More directly, the condition on u is
u c (D(f) - R(f)) V (y = u(x) :::> f(y) = f(x)) V u acyclic.

228 SOFTWARE PRODUCTIVITY

Then (p, g) solves the iteration eq. (9), where

(12)
p= ((D(f) -R(f)) X {T} U (R(f) X {F}),

g=u U (f-D(u) XR(f)).

In order to see the foregoing, it is easiest to get the formula for p first,
then the existence condition, and then the formula for g.

First, for any solution (p, g), p must have value F at every point
in R (f), for otherwise the iteration program cannot terminate at that
value; conversely, p must have value T at every point in D(f) - R(f),
for otherwise the iteration program will not reach a value in R(f). This
gives the formula above for pin domain D(f) U R(f).

Next, consider any point in D(f) n R(f). By the foregoing, p has
value F at such a point, and the iteration program never invokes g, but
simply exists without altering the state. This gives the existence condition
above, i.e., that f must be the identity function on D (f) n R (f).

Finally, consider the graph of the state function g in D (f) n R (f).
It is apparent that the graph of the subset of gin D(f) - R(f) can have
no cycles-must be a tree-since otherwise the iteration program would
not terminate in such a cycle. It is also apparent that all points of a con
nected subtree in the graph of g must be in the same level set of t, since
the iteration program will terminate at the same value in R (f) . Thus the
graph of the subset of g contained in D(f) - R (f) must be a system of
trees in the level sets of f. Now consider the arcs of the graph of g which
originate in D(f) -:- R(f) and terminate in R(f) . The originating points
are roots of the trees in D(f) - R (f). Since p is F in R (f), the iteration
program terminates with each such arc. Thus, for each such originating
point, say x, we must have g(x) = f(x). This gives the formula for g,
above, with parameter u, a function defining a system of trees on the level
sets off in D(f) - R (f).

Now we remove the restriction that D(g) c D(f) as follows.
Suppose D(g) ¢ D(f); then pick any (x, y) such that x E D(g) - D(f),
y = g(x). If for no z E D(f) and integer k, gk(z) = x, then (x, y) is
superfluous for g and g- { (x, y)} is also a solution; otherwise let gk(z)
= x, and adjoin (x, f(z)) to f, and g remains a solution. In either case the
number of elements in D(g) - D(f) is reduced by one; this can be con
tinued until D(g) c D(f).

Equations in Compound Function-Expressions

It is direct, but possibly tedious, to extend solutions to function equa
tions in elementary expressions to equations in arbitrary compound

The New Math of Computer Programming 229

expressions of the form f = compound function expre~sion, where no
function variable occurs more than once. For each level of nesting an addi
tional parameter is involved, and is effective only within the scope of that
nesting. Thus, the parameters of the solution can be associated with the
nesting tree of the compound expression.

In particular, the solutions above provide existence predicates on
the parameters for each type of function equation, and the formulas for
the stepwise refined solutions. These predicates and formulas can be in
voked iteratively to describe the set of all solutions to a compound func
tion equation of any complexity. Since there are only a fin ite number of
compound function equations in a fixed number of functions , these for
mulas permit the explicit formulation of all correct D-ehart programs of
any size.

References

1. Ashcroft, E. , and Manna, Z. "The Translation of 'Go To' Programs
to 'While' Programs," Information Processing 71. Amsterdam: North
Holland, 1972, pp. 250- 255.

2. Bauer, F. L. "A Philosophy of Programming." University of London
Special Lectures in Computer Science, Oct. 1973. Lecture notes pub
lished by Math . Inst., Tech. U. Munchen.

3. Bohm, C., and Jacopini, G. "Flow Diagrams, Turing Machines, and
Languages with Only Two Formation Rules," Comm. ACM 9, 5
(May 1966), 366- 371.

4. Cooper, D. C. "Bohm and Jacopini's Reduction of Flow Charts,"
Comm. ACM 10, 8 (Aug. 1967), 463.

5. Dahl, 0. J., Dijkstra, E. W., and Hoare, C. A. R. Structured Pro
gramming. London: Academic Press, 1972.

6. Dijkstra, E. W. "A Constructive Approach to the Problem of Pro
gram Correctness," BIT 8 (1968), 174-186.

7. Goldstine, H. H. The Computer from Pascal to von Neumann . Prince
ton University Press, 1972.

8. Henrici, P. Discrete Variable Methods in Ordinary Differential Equa
tions. New York : Wiley, 1962.

9. Hoare, C. A. R. "An Axiomatic Basis for Computer Programming,"
Comm. ACM 12, 10 (Oct. 1969), 576-580, 583 .

10. Householder, A. S. The Theory of Matrices in Numerical Analysis.
New York: Blaisdell, 1964.

11. Knuth, D. E. "A Review of Structured Programming," Stanford
Comput. Sci. Dept. Rep. Stan-CS-371, June 1973, 22 pp.

230 SOFTWARE PRODUCTIVITY

12. Kosaraju, S. R. "Analysis of Structured Programs," J. Comput. Syst.
Sci. (Dec. 1974) to appear.

13. McCarthy, J. "A Basis for a Mathematical Theory of Computation."
In Computer Programming and Formal Systems, P. Brafford and D.
Hirschberg (Eds.). Amsterdam: North-Holland, 1963, pp. 33-70.

14. Minsky, Marvin. Computation: Finite and Infinite Machines. Engle
wood Cliffs, N.J.: Prentice-Hall, 1971.

15. Newell, Allen, and Simon, Herbert. Human Problem Solving. Engle
woods Cliffs, N.J.: Prentice-Hall, 1971.

16. von Neumann, J., and Goldstine, H. H. "Numerical Inverting of
Matrices of High Order," Bull. Amer. Math. Soc. 53 (1947), 1021-
1099.

17. Wilkes, M. V. Automatic Digital Computers. London, 1956.
18. Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford: Claren

don Press, 1965.
19. Wirth, N. Systematic Programming: An Introduction. Englewood

Cliffs, N.J.: Prentice-Hall, 1973.

ARTICLE

18

Software Development

(1976)

Abstract

Software development has emerged as a critical bottleneck in the
human use of automatic data processing. Beginning with ad hoc heuris
tic methods of design and implementation of software systems, prob
lems of software maintenance and changes have become unexpectedly
large. It is contended that improvement is possible only with more rigor
in software design and development methodology. Rigorous software
design should survive its implementation and be the basis for further
evolution. Software development should be done incrementally, in
stages with continuous user participation and replanning, and with de
sign-to-cost programming within each stage.

Key Words and Phrases

design-to-cost programming
software design
software development

software maintenance
top-down development

Twenty-Five Years of Data Processing

The Data Processing Explosion

In the past twenty-five years a whole new data processing industry has
exploded into a critical role in business and government. Every enterprise

© 1976 IEEE. Reprinted, with permission, from the IEEE Transactions on Software
Engineering, Vol. SE-2, No. 4, December 1976.

231

232 SOFTWARE PRODUCTIVITY

or agency in the nation of any size, without exception, now depends on data
processing hardware and software in an indispensable way. In a single
human generation, several hardware generations have emerged, each with
remarkable improvements in function , size, and speed. But there are sig
nificant growing pains in the software which connects this marvelous
hardware with the data processing operations of business and government.

Had this hardware development been spaced out over 125 years,
rather than just 25 years, a different history would have resulted. For ex
ample, just imagine the opportunity for orderly industrial development
with five human generations of university curriculum development, edu
cation, feedback for the expansion of useful methodologies and pruning
of less useful topics , etc. As it is, we see a major industry with minimal
technical roots, because almost no one in a responsible position has an
original university education in the subject, and the universities have no
experience in even knowing what to teach . In comparison, it is worth
noting just how many years and how much give and take has gone into
the development of the current mathematics curriculum to support engi
neering and the physical sciences-at least the 125 years imagined earlier.

Even so, from ground zero, the technical and industrial progress
of society in 25 years of data processing is impressive. But the needs and
frustrations are so great that some perspective is in order to better under
stand how we got here and where we might be going.

Data Processing Then

Before the last 25 years, these same enterprises and agencies conducted
their operations without automatic data processing, while still processing
data in sufficient amounts to manage their affairs. But the data processing
was done by people. Even if desk calculators, or tabulators, were used
here and there, people still inspected intermediate results, and applied
their common sense, where necessary, to correct obvious mistakes. If data
processing instructions were faulty, or missing, people used common sense,
again, to make the operations work. In other words, data processing sys
tems were forgiving systems, because of the intelligence used in their exe
cution.

Such forgiving systems permit the evolution and natural selection
of data processing improvements in an orderly way. If an improvement
is proposed, it is easily adopted with little risk, because unforeseen side
effects will usually be noticed and suppressed by people. As a result, data
processing is done, in large part with little self-consciousness, as implicit
parts of other activities, such as billing, inventory control, etc.

Software Development 233

Alexander, in Notes on the Synthesis of Form [1] discusses the
notion of "goodness of fit" in architecture between design and a problem
context. In primitive cultures, architectural design is frequently "unself
conscious," and design principles are transmitted in the form of tradition
and custom. Variation in design is discouraged by the very nature of its
recording in cultural terms. But small changes in response to ill fit, e.g.,
to the shape of terrain, etc., are easy and natural. There is a striking cor
respondence here with data processing in previous generations. It was
unselfconscious in just this sense discussed by Alexander.

In retrospect, it is also clear that our previous enterprises and
agencies got by with less data processing than is done now. With indus
trialization accelerated, physical operations are controlled more closely than
before (e.g., compare the logistic management of food stuffs through
present-day grocery chains compared to previous grocery systems) and
administrative activities have mushroomed (e.g., compare tax reporting
requirements of business today and 50 years ago). It is not clear which
is father and which is child- the needs for data processing or the ability
to do data processing. But in any case, an entirely new age of automatic
data processing has replaced those · days when people did it all (or, at
least, most of it).

Data Processing Now

The automatic data processing of today is done by computers with no
common sense at all. As a result, faulty or missing instructions wreak
such wholesale havoc that an entirely new emphasis on the correctness
and completeness of the processing instructions is required. In institution
after institution, the transition from manual to automatic data processing
has been of mixed benefit; while remarkable new capabilities have been
wrought, they have also been traumatic and disruptive.

This new automatic data processing is the beginning of self-con
scious design. Alexander [1) goes on to discuss the emergence of self
conscious design in architecture in Samoa, where " ... custom demands
that guest houses be built exclusively by carpenters. Since these carpen
ters need to find clients, they are in business as artists; and they begin to
make personal innovations and changes for no reason except that pros
pective clients will judge their work by its inventiveness," [1, p. 57]. Again,
the correspondence with programmers and designers of these first 25
years in data processing is very telling.

But Alexander goes on to describe in architecture a general point
of relevance to data processing as well [1, pp. 58-59].

234 SOFTWARE PRODUCTIVITY

In the unselfconscious system the individual is no more than an
agent .. . All that is required is that he should recognize misfits and
respond to them by making minor changes. It is not even necessary
that these changes be for the better. As ·we have seen, the system,
being self-adjusting, finds its own equilibrium ... The selfconscious
process is different ... To achieve in a few hours at the drawing board
what once took centuries of adaptions and development, to invent a
form suddenly which fits its context-the extent of the inventions neces
sary is beyond the average designer.

It is small wonder that shock and frustration appear in converting data
processing operations from informal manual, self-correcting activities to
formal, mechanical, explicit forms. The new, self-conscious data processing
designers have hardware to control and exploit which none of their teach
ers ever heard of. In architecture, it is as though nails, bricks, and mortar
were suddenly invented, unheard of before. One could expect some rather
strange structures to come out!

And in this new environment of frustration and fear, even small
improvements and changes are viewed with suspicion and distrust. In fact,
the computer programs which serve our institutions are both incredibly
correct, and hopelessly incorrect. They are incredibly correct compared
to the manual procedures they have replaced. They represent a level of
precision and completeness unheard of 25 years ago. But they are hope
lessly incorrect because they are the result of 25 years of amateur system
development efforts by people who are entirely new to the problems. As
a result, the programs which support our institutions are frequently mys
terious, incommunicative with other programs which deal with similar
subjects and data, and beyond rational understanding and change.

Human Fallibility-From Grand to Grandiose

In this first 25 years, the major software inventions have been program
ming languages and operating systems. These are good starts in permit
ting the development of data processing applications. But they have a
side effect; since programmers are the only people who know the pro
gramming languages and operating systems, the programmers become a
priesthood between people and computers. The arrogance, power, and
impotence of this priesthood can be seen in the way system development
is carried out today, in the way large systems are conceived and produced.
A large system development may involve several hundred people for sev
eral years in a sequence of stages, called requirements analysis, specifica
tion, design, implementation, testing, operation. It is necessary and useful

Software Development 235

to break this much work into parts such as these. But there are dangers,
too, particularly in the conduct of these stages in sequence, and not in
iteration-i.e., that development is done open loop, rather than in a closed
loop with user feedback between iterations. The danger in the sequence is
that the project moves from being grand to being grandiose, and exceeds
our human intellectual capabilities for management and control.

In illustration, consider a software system needed for inventory
control in an enterprise, say to be developed over a three-year period.
Right off, there is a conflict. The people who know what inventory con
trol is really required in the enterprise are too busy doing it to spend
much time on requirements analysis, so surrogate experts with more time
available (guess why!) are found. After some time (but not much help
from the key people) a software specification is developed, probably in
complete, probably inconsistent, and almost certainly based on a set of
amateur opinions about how to do the inventory control. And at this
point the software specification begins a life of its own-frozen except for
strict change control. The specification is a marvelous shield for program
mers during implementation. They can hide behind it, while the users
to-be wonder what is going on. In the meantime, the inventory control
department has to operate as best it can, with all the new ideas and
procedures it can think up. But left alone for three years, the program
mers finally complete the implementation and testing, and the system is
ready for initial operation. However, there remain a few difficulties. The
people doing inventory control are suspicious and skeptical of the new
system, especially when it produces idiotic results now and then, and
requires idiotic instructions to operate. Furthermore, few of the new ideas
of the past three years have been incorporated in the new system, so that
these new ideas must be abandoned if the system is to be used. But most
critical of all, the software project has been conceived and managed as a
terminal three-year project, with all the tradeoffs and compromises that
implies, while the inventory control operation goes on indefinitely.

This example may seem a bit overdone. In fact, compared with
reality it may be underdone. But if that is so, why do enterprises tolerate
the frustrations and difficulties of such development? Two .reasons are
economics and ignorance. The economics is that automatic data processing
is cheap, if it is repetitive enough, and the administrative data processing
done today in the country could not be done manually-there are not
enough people. The ignorance is due to our adolescence in a 25-year-old
industry. The next 25 years will see much more effective system develop
ment, and system evolution beyond initial development, carried out in
units of small competent teams, rather than casts of hundreds or thou
sands. But that is easier said than done, and in order to see where we
can go, we need to better understand wl}ere we are.

236 SOFTWARE PRODUCTIVITY

From Development to Maintenance

In the beginning of application developments in data processing, it was
commonly supposed that development was the main problem. But in only
25 years, some 75 percent of data processing personnel are already taken
up with maintenance, not development. And unless radical new methods
are found, maintenance will go even higher in its demands and will very
nearly stifle further development. Why is that?

There are two reasons, one of simple but often overlooked logistics,
one of a deeper technical nature. The logistic reason is that an application
system is maintained indefinitely after a definite period of development,
and with every completed development some fraction of the development
team (or its equivalent) must be deleted from development and added to
maintenance. For example, with a constant work force, if a fraction x of
each development team must stay behind for maintenance; then in an
average development period, the fraction of all personnel devoted to de
velopment goes from D to D(l - x). At the end of k periods, starting
at D = 1 (all development), the fraction of development is (1- x)", and
the fraction of maintenance M is 1 - D or

M = 1- (1- x)k.

In illustration, if x = 0.2, k = 6 (say a dozen years of 2-year projects for
an enterprise), then

M = 1 - (0.8) 6 = 0.737856,

i.e., just about the 75 percent which is typical today. There is only one
stable point in this ecology-1 00 percent maintenance. Only the purging
or replacement of applications brings this stable point below 100 percent.

The technical reason for this high level of maintenance is that it
has turned out to be more difficult to develop good systems than com
monly supposed. By "good" is meant both correctness and capability. First,
the difficulty of integrating and debugging systems has been severely under
estimated time after time. And a large work force is used today in correc
tive maintenance, simply to fix software that "could have" been built
correctly to begin with. Note the misuse of the words "debugging" and
"maintenance." Debugging connotes the removal of errors which have
been inserted by some natural process beyond control of the programmers
-but it was the programmers who inserted the bugs! Maintenance con
notes restoring a device to its original correct state-but the program was
not correct to begin with! In both cases, these are kind euphemisms for
a bewildered society of programmers. Second, there has been a consistent

Software Development 237

underestimation of the uncertainties and change facing data processing
applications. For example, tax laws change, and differ from state to state
- users get better ideas- operations change. So a considerable work force
is required in adaptive maintenance, adding to and modifying the basic
system, often until the basic system can no longer be found in the confu
sion caused by the modification process.

From Interaction to Integration

In the beginning of automatic data processing, every application was an
isolated, stand-alone operation. It had to be. Such a single application
would encompass data entry, computation, report generation, etc., as a
self-sufficient system. However, as more and more applications are devel
oped, common elements of data, computations, and reporting emerge. The
same personnel information shows up in payroll, engineering cost esti
mating, and personnel profiles. The same sort of operations are required for
all files against which transactions are updated periodically. The same exec
utives need information from different applications for decision-making
purposes. So data and programs become interrelated, and an integrated
data base emerges for every enterprise or agency, whether consciously
planned or not. The integration may not be physical, or even logical, but
the more different copies and formats used for the same data, the more
extra work and hardship occurs for users.

In the beginning, data processing applications were cost-displacing
luxuries. But today, many data processing applications are embedded
necessities for staying in business. Airline reservation systems, manufac
turing process control systems, insurance underwriting and claim systems
are examples of systems whose costs in down time or limited function are
not found in the machine room, but in the profit and loss sheet of the
business.

Software Design Methodology

Conceptual Integrity

The principal lesson of the first 25 years of data processing is that soft
ware development is harder to manage and control than it appeared to
be at the outset. Without a clean and compelling design, a large applica
tion system soon becomes a jumble of confusion and frustration. Local

238 SOFTWARE PRODUCTIVITY

details may be easily understood and checked, but the system gets beyond
intellectual control anyway.

Fred Brooks, in The Mythical Man-Month, states that "conceptual
integrity is the most important consideration in system design" [4, p. 42]
and backs it up with a dramatic recollection of his experience in manag
ing the development of OS/360, as follows [4, pp. 47-48].

It is a very humbling experience to make a multimillion-dollar mistake,
but it is also very memorable. I vividly recall the night we decided how
to organize the actual writing of external specifications for OS/360.
The manager of architecture, the manager of control program imple
mentation, and I were threshing out the plan, schedule, and division
of responsibilities.

The architecture manager had I 0 good men. He asserted that
they could write the specifications and do it right. It would take ten
months, three more than the schedule allowed.

The control program manager had 150 men. He asserted that
they could prepare the specifications, with the architecture team co
ordinating; it would be well-done and practical, and he could do it on
schedule. Furthermore, if the architecture team did it, his 150 men
would sit twiddling their thumbs for ten months.

To this the architecture manager responded that if I gave the
control program team the responsibility, the result would not in fact be
on time, but would also be three months late, and of much lower quality.
I did, and it was. He was right on both counts. Moreover, the lack of
conceptual integrity made the system far more costly to build and
change, and I would estimate that it added a year to debugging time.

Heuristics and Rigor

The principal basis for maintaining conceptual integrity in software de
velopment is rigorous design. It was imagined, to begin with, that heuristic
design methods were sufficient. And, indeed, the possibility of rigorous
design methods was hardly considered. After all, it seemed a simple, but
tedious, matter for clever people to think up all the data processing pieces
that had to be done, and make sure that nothing was left out. As Brooks
points out, we now know better. But we have a legacy of heuristic thinking
in software development that will still be painful to cure.

The difference between heuristics and rigor in design of data pro
cessing systems is in the integrity and stability of the design. A heuristic
design almost always works-the trouble is in "almost always." When it
fails, the system must be -fixed and patched up. After a succession of such
failures and fixes the design will become highly idiosyncratic, based on the

Software Development 239

particular fai lure history that has occurred. This dependence on failure
histories takes place before actual system operations in a heuristic design
process in the imagination of the designers. If designers mentally test and
fix a heuristic design by thinking up cases and discovering deficiencies,
then the design becomes idiosyncratic based on the imaginary history of
failures.

A rigorous design will take more creativity and thought than a
heuristic one, but, once created, a rigorous design is more stable. A rigor
ous design should survive its implementation, not be swamped by it, and
provide a framework for the intellectual control of changes to the imple
mentation as requirements change.

The difference between heuristics and rigor in design can be illus
trated in constructing a tic-tac-toe playing program, say, to commence
play from any feasible situation (e.g., to sit in at any point of any game).
Anyone with a pad and pencil can readily figure out what to do next in
any such situation. But writing all such possibilities down may be imprac
tical. So the next step might be a heuristic approach, based on introspec
tion on the analysis process imagined above with pad and pencil. The
beginning of such a process (oversimplified for illustration) might be "play
in priority order, if possible, center, any corner, any side." This will ac
count for some reasonable moves, but will fail in many situations, and
an analysis of these situations will suggest additional criteria of play. But
with each addition, a less obvious situation may still lead to a failure.
After many such additions, the program may indeed be capable of per
fect tic-tac-toe. But it will be difficult to prove it, except for an exhaustive
analysis, which itself will be hard to prove complete, etc. As noted before,
such a heuristically developed design, even though possibly correct, will be
highly idiosyncratic based on the history of imagined (or real) failures
encountered in play.

In contrast with such a heuristic design process, a rigorous treat
ment of tic-tac-toe is possible, using a recursively defined function, namely,
a function defined over tic-tac-toe boards (partial games) with values
"win, draw, lose" (or 1, 0, -1) called "best outcome which can be guar
anteed from here on," say "best," for short, e.g., best has values

best (board) = best outcome guaranteed starting with "board."

Then, by using the symmetry of the game for both players, the function
best can be defined recursively, as follows,

best (board) =IF board end THEN outcome of board
ELSE maX move (- best (- (board + move)))

240 SOFTWARE PRODUCTIVITY

where " - board" reverses X's and O's in "board," and "move" is any
choice of a present blank space. With a little study this can be seen to
guarantee the best play possible. How this design is to be programmed is
quite another, but quite straightforward, logical matter. The programming
must take account of whether recursive functions are available in the pro
gramming language to be used, storage and computation strategies best
suited to evaluating the function best, etc. But the logical design for the
program is expressed in a concise and complete way for examination and
criticism at the outset, and as an unambiguous requirement for what is to
be programmed.

There are powerful tools in mathematics for expressing and vali
dating logical design on a rigorous basis. In the first 25 years program
mers have largely ignored them, in part because the tools themselves
have not been particularly tailored to software design, and in part because
the problems solved in software design have been simple enough (or
seemed simple enough) to permit bare-minded, ad hoc approaches. But
there are key ideas in set theory, mathematical logic, axiomatic systems,
automata theory, mathematical linguistics, recursive functions, etc., for
use in rigorous logical expression. One problem today is that the usual
treatment of these ideas of logical expression is often embedded in larger
mathematical subjects, which go much deeper than programmers need or
have time for. But the use of effective logical expression in software de
sign is bound to break through these barriers as benefits of their power
become better known, and as better expository writing makes them more
available to programmers . Liskov and Zilles illustrate several techniques
of logical expression for data abstractions in [12].

Program Design

Jackson begins his book Principles of Program Design with the following
statement [11, p. 1].

The beginning of wisdom for a programmer is to recognize the differ
ence between getting his program to work and getting it right. A pro
gram which does not work is undoubtedly wrong; but a program which
does work is not necessarily right. It may still be wrong because it is
hard to understand; or because it is hard to maintain as the problem
requirements change; or because its structure is different from the
structure of the problem; or because we cannot be sure that it does
indeed work.

Structured programming, as introduced by Dijkstra [5], addresses
this problem. But there is a great deal of oversell and confusion about

Software Development 241

structured programming, primarily because an adolescent data processing
;;ommunity is anxious to find simple answers to complex problems. Al
ihough structured programming began with a famous letter to the CACM
ditor "GOTO Statements Considered Harmful" [7], the essence of struc

:ured programming is the presence of rigor and structure in programming,
:ather than absence of GOTO's in programs. As in logical design, the
idea of a rigorous rather than a heuristic program design method is new,
and is still largely unknown in programming as practiced today.

As Jackson says so well, getting a program to work is not suffi
-ient, but getting it designed right is the important thing, not only to
operate correctly in all circumstances required, but to be understandable
and modifiable. There is a powerful discipline available for getting pro
:>rams designed right: the constructive approach to program correctness,

advocated early by Dijkstra, given in axiomatic form by Hoare [9],
and more recently described and illustrated in a landmark book A Disci
pline of Programming, where Dijkstra states his case as follows [6, p. 216].

The first message is that it does not suffice to design a mechanism of
which we hope that it will meet its requirements, but that we must
design it in such a form that we can convince ourselves- and anyone
else for that matter- that it will, indeed meet its requirements. And,
therefore, instead of first designing the program and then trying to
prove its correctness, we develop correctness proof and program hand
in hand. (In actual fact, the correctness proof is developed slightly
ahead of the program; after having chosen the form of the correctness
proof we make the program so that it satisfies the proof's require
ments.) This, when carried out successfully, implies that the design
remains "intellectually manageable." The second message is that, if
this constructive approach to the problem of program correctness is to
be our plan, we had better see to it that the intellectual labour involved
does not exceed our limited powers . ..

Where this discipline is followed, getting programs to work is a
by-product of getting them right. In fact, as pointed out in the paper
·'How to Write Correct Programs and Know It" [13], well-designed pro
grams can be expected to run correctly ab initio. Since it is well known
that no foolproof methods exist for knowing that the last error in a pro
gram has been found, there is much more practical confidence to be gained
in never finding the first error in a program, even in debugging. Ten years
ago such an objective would have been dismissed as unreal. But it is hap
pening regularly among good programmers today.

The reason program correctness is key to good program design is
that a discipline of rigor is imposed in place of the currently widespread
heuristics. Structured programming is marked by a stepwise refinement

242 SOFTWARE PRODUCTIVITY

design process, in which programs are derived and validated as successive
function expansions into simpler, more primitive functions. At first glance,
stepwise refinement may simply look like an orderly, top down sequence
for inventing program statements, but there is more at stake in going from
heuristic invention to rigorous derivation. What is at stake is a visible
design structure that survives the coding, for use in maintenance and mod
ification as well as implementation. Each refinement marks the top of a
hierarchy which can serve later as a new intermediate starting point for
verifying correctness or adding capability to a program. The paper "The
New Math of Computer Programming" [14] develops a rigorous treatment
of stepwise refinement in mathematical terms, in which correctness is
guaranteed by closed formulas for correct expansions. In another landmark
book, Algorithms + Data Structures = Programs [18], Wirth gives many
excellent examples of rigorous stepwise refinement.

Jackson [11] develops a special synergism between logical design
and program design, based on the following idea. A structured program
based only on control logic of composition (SEQUENCE), alternation
(IF-THEN-ELSE), and iteration (DO-WHILE) produces execution strings
of processing statements which are described by regular expressions . On
the other hand, file structures used in data processing can also be fre
quently described by regular expressions. Given such a file structure and
its regular expression, what is more natural than a program structure
which produces the same regular expression? For example, with file struc
ture given by

A(B I *(CD))

the corresponding program structure is

process A
IFB THEN

process B
ELSE

FI

WHILE COO
process C
process D

OD

Thus, in processing a single file, there is a rigorous connection between
file and program. The very structure of the program guarantees that any

Software Development 243

possible file realization will be processed completely. A more extensive
illustration of the connections between logical design and program design
is given by Noonan [15].

The Basis for Software Reliability Is Design,
Not Testing

It is well known that you cannot test reliability into a software system.
If programs are well designed in both data structure and control structure,
there is no contest between a programmer and a computer in finding
errors ; the programmer will win hands down (this is not necessarily true
for a bowl of spaghetti). So the first defense against errors is well-designed
programs and preventative proofing by authors themselves.

But effective design can do far more than make errors easy to dis
cover. Design can reduce the size of a system, reduce its interconnections,
reduce the complexity of its program specifications. In short, good design
makes correct systems possible out of correct programs. Parnas illustrates
this principle in [16] .

Is ultrareliable software possible? Given double the budget and
schedule (to test the sincerity of a requirement for ultrareliability) do not
spend the extra on testing, spend it in design and inspection. Start with
a design competition and plan to keep the simplest one. Continually re
compete subdesigns at major stages of stepwise refinement . Seed "secret
errors" into the design to exercise and calibrate the inspection process.
Create the "need to read" where possible, say, by requiring independent
documentation and user guides out of the inspection process. Software
systems with error-free operation are coming into existence today, and will
be more common tomorrow.

Software Development Methodology

The Problem of Scaling Up

Logically, there seems little difference between a small program and a large
one. They both use the same instruction sets, the same compilers. So with
ten times the effort, why cannot a program of ten times the size be built?
The difficulty is that scaling up goes faster than linearly in effort, as a
little thought substantiates. The number of possible connections among n
items is n(n - 1) /2, and it seems reasonable to expect program interac-,

244 SOFTWARE PRODUCTIVITY

tions to tend to such an n2 law. So there is more logical designing and
checking to do per unit of program developed. Further, as this work goes
up, more people are required to do it; and to coordinate their efforts,
they must communicate with one another. This means the n2 law again.
So, as more people are added, each spends more time communicating and
less time producing.

In these problems of scaling up, the difficulties show up at system
integration time. There is seldom difficulty in providing a suitable design
of noteworthy promise, and there is seldom difficulty in programming the
pieces, the modules; the main difficulty is that the modules seldom all run
together as designed. An additional difficulty (as if integration were not
enough!) is often that when the system does finally run all together as
designed, it does not do what the users had imagined it would . So an
additional problem of specifications and requirements analysis that should
have been handled at the outset, but was not, shows up.

Top Down Development

The necessity of top down development in large software systems is born
out of bitter experience with top down design and bottom up development.
In top down development, the control programs that integrate functional
modules are written and tested first, and the functional modules are added
progressively. In fact, the development proceeds on an incremental basis,
level by level, with testing and integration accomplished during the pro
gramming process, during stepwise refinement, rather than afterwards, as
discussed by Baker [2] and Basili and Turner [3].

In a software system, top down development typically starts with
a logical design for the harmonious cooperation of several programs
through access to several shared data sets. For example, a financial infor
mation system may include a file maintenance program, several data entry
programs, which produce transaction files for the file maintenance pro
gram, and several data retrieval/report programs which access the main
file. Although each such program can be developed top down indepen
dently, top down system testing requires coordination between them, e.g.,
data entry programs providing input for the file maintenance program,
which in turn creates files for data retrieval programs, etc.

In top down development, design performance is crucial. It repre
sents thinking and problem solving before integration, rather than after
wards. Conversely, top down development forces design evaluation by the
ongoing integration process. In bottom up development, poor design is
often hidden until late in integration, after much functional code has been
written and tested, only to be discarded.

Software Development 245

In retrospect it is easy to see that the advantage of top down de
velopment over bottom up development is the advantage of a closed-loop
management feedback process over an open-loop process. In a bottom up
development, the modules are not tested as part of the final system until
the end of the development; in top down development, they are tested in
their system environment the next day. If there are program errors of
system-wide effect, top down development discovers them early, when
freshly programmed (and the original programmer is on hand). If there
are design errors, top down development forces their discovery and cor
rection during stepwise refinement, whereas bottom up development often
leaves them undiscovered until integration time, when original program
mers have often departed.

Top down development is more difficult to design for than bottom
up development, but the extra effort in design is made up in integration
and testing. The problem of design in top down development is not only
how the final system will look, but also how the system under develop
ment will look at every stage of its construction. Building a bridge illus
trates this idea. In drawing a bridge on paper, a spanning girder can be
drawn first, to hang in midair until other members are drawn later to
support it. But to actu ally construct that same bridge, a construction plan
is needed, which allows girders to be placed and pinned one by one, in
support of one another, until the bridge is completed.

Building a software system bottom up is like building a paper
bridge: no construction plan is needed, only the final design, and everyone
hopes it all goes together as planned. If people were infallible, especially
designers, no construction plans would be needed, but people are fallible.

Building a software system top down is like building a real bridge.
Finding a proper top is a significant technical task. A proper top is one
that executes as a partial system early in the development, and which
provides the basis for adding intermediate and final modules in a con
tinuous code/ integrate/ test iteration process.

Development Tools

At first glance one would wish for the most powerful set of development
tools possible. T hat is true. but it is not the whole truth. It is even more
important for developmen tools to be dependable. A simple language with
a good compiler is better than a powerful one with a poor compiler. A
dependable two-hour turnaround is better than an average one-hour turn
around with high variabili _·. Good work habits can accommodate depend
able tools at whatever le ·el a\-ailable. But undependable tools promote
helter-skelter work habits.

246 SOFTWARE PRODUCTIVITY

One form of dependability in tools is the rigor of their specifica
tions and implementations. A programming language cooked up haphaz
ardly as a collection of brilliant ideas is a menace to good programming
methodology. It is also more difficult to implement, so the odds favor an
unreliable compiler, whose unreliable parts programmers learn to avoid
through bitter experience, and then, of course, some of those brilliant ideas
are effectively excised. Almost all of the programming languages devised
in this first 25 years fall into this category; very few have benefited from
a rigorous syntactic and semantic analysis at their inception. Pascal is such
an exception, as axiomatized by Hoare and Wirth [1 0]. A programming
language designer faces a terrible temptation in all the seemingly good
ideas around. In this case, Wirth's advice is especially valuable about the
need for rigor and simplicity, namely [17, p. 29], "The [programming]
language must rest on a foundation of simple, flexible, and neatly axioma
tized features, comprising the basic structuring techniques of data and
program." Gannon and Horning [8] also discuss the need for good lan
guage constructs in terms of human factors.

A good number of debugging tools have been devised to take the
place of good programming, but they cannot. Programs should be written
correctly to begin with. Debugging poorly designed and coded software
systems is veterinary medicine for dinosaurs. The real solution is to get
rid of the dinosaurs, even though they pose interesting questions indeed
for veterinarians. The best debugging tool, given a properly specified and
implemented programming language, is the human mind. Forgiving com
pilers aid and abet sloppy programmers. If programmers can be precise
and demanding, so should compilers.

Library systems may seem mundane as tools, compared with com
pilers, analyzers, etc., but they are critical and important as discussed by
Baker [2]. Library systems should first of all be tools of project manage
ment; as a by-product they will be tools for programmers. But if they start
out as tools for programmers, it is much more difficult to ensure that they
meet the needs for project management. Library systems should record
and archive the entire software development process, from the coding pad,
or keystroke, on.

The Error Day

Theoretically, a software system exists at any moment, independent of its
historical development, and any other history arriving at the same system
will produce the same subsequent usage history. But the,practical chance
of two different development histories producing an identical software
system is near zero. The systems may well look alike to the user, each

Software Development 247

have "no known errors," etc., but their internals will be different, and
their design integrity and future error properties will be different. A well
designed system of deep simplicities has a development history which is
sharply distinguished from a brute force bowl of spaghetti. The most no
ticeable difference is the debugging history. A well-designed system can
be put together with few errors during its implementation . A bowl of
spaghetti will have a history of much error discovery and fixup. So, one
difference is the number of errors found and fixed, all errors from the
coding pad or keystroke on. (It is usual today to track errors from module
release on, but unusual to track errors from lines of code on.) Another
difference is in the age of the errors found. In a well-designed top down
development, testing under actual system conditions begins early, with
system errors found in typically a day or so . In the brute force approach,
code is frequently unit tested with drivers , and system errors are often
found later in integration, weeks, months , or years later.

The number and age of errors lead to the error day (i.e., for each
error removed, the sum of the days from its creation to its detection) for
estimating the quality of an otherwise acceptable system. It indicates prob
able future error incidents, but also indirectly indicates the effectiveness
of the design and testing process. High error days indicate either many
errors (probably due to poor design) or long-lived errors (probably due
to poor development) .

In illustration, im agine that two such systems, called A and B,
developed to the same specifications and acceptance conditions, produced
the statistics in Table 18-1. After acceptance, each system has "no known
errors ." But system B was harder to put together, with more subtle inter
face errors that took considerable time to find, and thus there is a strong

TABL E 18-1. Same Specifications, Same Acceptance Testing

During Development A B

Lines of code 50,000 Error 50,000 Error
errors fixed Days Days

day old 100 100 500 500
week old 10 50 50 250
month old 5 100 50 1000
year old 5 1250 20 5000

Known errors 0 0
error days 1500 6750

During Acceptance
Errors fixed 10 50
Known errors 0 0

248 SOFTWARE PRODUCTIVITY

likelihood of more such errors not yet turned up. The statistics in Table
18-1 are not kept, of course, in the typical software development process,
under the notion that it is a private matter how a system gets to a state of
"no known errors." But it does, indeed, matter how a system gets to such a
state because it foretells how the system will fare in the future. From a
practical standpoint, these are not the same systems, even though each
has no known errors at the moment. The error day gives a way to dis
tinguish them by how they got here.

Design-to-Cost Programming

One of the most vexing problems of software development is meeting cost
and schedule commitments. Overruns in time and money are usual. In
fact, underruns are highly unusual. On the surface, those problems arise
from the problems of specification and estimation. Loose and unstable
specifications certainly prevent timely development. But the programming
estimation problem is difficult, even with good specifications for a new
capability or a new development environment.

One way to get around this programming specification and esti
mation problem is to reinterpret cost estimates desired as design-to-cost
requirements and to apply a design-to-cost methodology in software devel
opment. If cost is to be fixed, a new look at specifications is required.
Software, for practically any function needed, can be defined over a wide
variety of costs. The basic functions of an item of software are usually a
small fraction of the total software finally built. The remainder of the
software deals with being friendly to users, handling errors automatically,
etc., all of which are important things to do, but all of which can be
prioritized with respect to the funds and time available to do them. A
typical split of basic to exception code in software is 20-80, e.g., 20 per
cent of the code handles 80 percent of the functions required. If the basic
code is misestimated even by 100 percent, that 20 percent becomes 40
percent, and a 40-60 split results. It is probably a tolerable split (at least
temporarily) because it still deals with 75 percent (60/80) of the excep
tions required. But the critical programming management job is to make
sure that the basic 20 percent (or 40 percent) is up and running within
schedule and cost, at the expense, if necessary, of the 80 percent (or
60 percent).

Design-to-cost is not a new idea. Society practices it in industry
and government in many ways. A basic methodology comes from simple
multilevel budgeting. For example, a city government begins with a budget
of a certain size and allocates that budget into several parts; one for
overall executive control, the remainder into such functions as police, fire,

Software Development 249

sanitation, etc. Each function is, in turn, rebudgeted similarly: the police
department will allocate one part to its overall control, the remainder to
subfunctions, such as precinct operations, patrol car operations, special
investigations, etc. This budgeting process finally reaches individual per
formance where no further subunits are created.

As simple and old as this kind of design-to-cost methodology
seems, we can apply it in practically full effect to the software develop
ment problem. Top down development can proceed like a budgeting exer
cise in a design-to-cost activity. Given a budget for an item of software,
an appropriate fraction can be allocated to its overall design. A critical
part of this overall design is the allocation of the remaining funds to the
software yet to be done. Another critical part is the construction of the
control program which will execute and control the software yet to be
developed. Thus, the design-to-cost methodology forces the actual costs
of construction of the control program at the top of the software to be
taken out of the funds before the remainder is allocated to the rest of the
software; i.e., the problem of the system designers and architects includes
the problem of allocation between control and subsequent function.

The incorporation of a design-to-cost methodology into the plan
ning and budgeting operations of a using organization can also bring
important benefits in converting software development for termination
oriented projects to more normal ongoing activities of the organization.
The evolution of large systems in small stages, with user feedback and
participation in goal refinements at each step is a way of going from
grandiose to grand software system development. There is much yet to
learn on how to accomplish such design-to-cost programming in a larger
setting of incremental software development. But we are 25 years wiser
and closer to realizing the dream of even more remarkable benefits of
automatic data processing to society.

References

1. Alexander, C. Notes on the Synthesis of Form. Cambridge, Mass.:
Harvard University Press, 1970.

2. Baker, F. T. "Structured Programming in a Production Program
ming Environment." In Proc. Int. Conf. Reliable Software, Los An
geles, Apr. 1975, ACM SJGPLAN Notices 10 (June 1975): 172-
185.

3. Basili, V. R., and Turner, A. J. "Iterative Enhancement: A Practical
Technique for Software Development." IEEE Trans. Software Eng.
1 (Dec. 1975): 390-396.

•

250 SOFTWARE PRODUCTIVITY

4. Brooks, F. P. The Mythical Man-Month: Essays on Software Engi
neering. Reading, Mass.: Addison-Wesley, 1975.

5. Dahl, 0. J., Dijkstra, E. W., and Hoare, C. A. R. Structured Pro
gramming. New York: Academic, 1972.

6. Dijkstra, E. W. A Discipline of Programming. Englewood Cliffs,
N. J.: Prentice-Hall, 1976.

7. Dijkstra, E. W. "GOTO Statements Considered Harmful." Comm.
ACM 11 (Mar. 1968): 147-148.

8. Gannon, J. D., and Horning, J. J. "The Impact of Language Design
on the Production of Reliable Software." In Proc. Int. Conf. Reliable
Software, Los Angeles, Apr. 1975, ACM SIGPLAN Notices 10
(June 1975): 10-22.

9. Hoare, C. A. R. "An Axiomatic Basis for Computer Programming."
Comm. ACM 12 (Oct. 1970): 576- 583.

10. Hoare, C. A. R., and Wirth, N. "An Axiomatic Definition of the Pro
gramming Language PASCAL." Acta Informatica 2 (1973): 335-
355.

11. Jackson, M.A. Principles of Program Design. New York: Academic,
1975.

12. Liskov, B., and Zilles, S. "Specification Techniques for Data Abstrac
tions." In Proc. Int. Conf. Reliable Software, Los Angeles, Apr. 1975,
ACM SIGPLAN Notices 10 (June 1975) .: 72- 87.

13. Mills, H . D. "How to Write Correct Programs and Know It." In Proc.
Int. Conf. Reliable Software, Los Angeles, Apr. 1975, ACM SIC
PLAN Notices 10 (June 1975): 363- 370.

14. Mills, H. D. "The New Math of Computer Programming." Comm.
ACM 18 (Jan. 1975): 43-48.

15. Noonan, R. E. "Structured Programming and Formal Specification."
IEEE Trans. Software Eng. 1 (Dec. 1975) : 421-425.

16. Parnas, D. L. "The Influence of Software Structure on Reliabiiity."
In Proc. Int. Conf. Reliable Software, Los Angeles, Apr. 1975, ACM
SIGPLAN Notices 10 (June 1975): 358-362.

17. Wirth, N. "An Assessment of the Programming Language PASCAL."
In Proc. Int. Conf. Reliable Software, Los Angeles, Apr. 1975, ACM
SIGPLAN Notices 10 (June 1975): 23-30.

18. Wirth, N. Algorithms + Data Structures = Programs. Englewood
Cliffs, N. J.: Prentice-Hall, 197 6.

ARTICLE

19

Software
Engineering Education

(1980)

Abstract

In a field as rapidly growing as software engineering, the education
problem splits into two major parts-university education and indus
trial education (some of which is given at university locations, as
short courses, but considered industrial education here). Both parts
draw on the same underlying disciplines and methodologies. But the
people involved-both teachers and students-have different objec
tives and characteristics. At the university level students are young,
inexperienced, and relatively homogeneous in background and abilities.
At the industrial level, students are older, more experienced, and vary
considerably in background and abilities.

In this paper, we discuss the underlying commonalities and the
overlaid differences of university and industrial education in software
engineering. The commonalities in disciplines and methodologies involve
the study and understanding of the software process, as discussed in
Section 2 of this special issue, and of the "tools" and "know-how" dis
cussed in Section 3. The differences are due to the characteristics and
objectives of students, and show up on curricula content and structure
and in course definition.

© 1980 IEEE. Reprinted, with permission, from Proceedings of the IEEE, Vol. 68,
No. 9, September 1980.

251

252 SOFTWARE PRODUCTIVITY

Software Engineering Education in Flux

University Education and Industrial Education

In a field as rapidly growing as software engineering, the education prob
lem splits into two major parts-university education and industrial
education . (Short courses given at university locations without degree
credits are considered industrial education here.) Both parts draw on the
same underlying disciplines and methodologies. But the people involved
-both teachers and students- have different objectives and characteristics.

University students are young, inexperienced, and relatively homo
geneous in background and abilities. Industrial students are older, more
experienced, and vary considerably in background and abilities. University
teachers are oriented toward a transient student population (in 2-4 years
they are gone) and to their own publications. Industrial teachers are
oriented to a more stable student population and to improved industrial
performance of students due to their education. In brief, university students
are "supposed to be learning," while industrial students are "supposed to
be working."

In a field more stable than software engineering, university educa
tion plays a dominant role in shaping the principles and values of the
field, while industrial education consists of refresher and updating courses
in fringe and frontier areas. But university education in software engineer
ing was not available to the majority of people who practice and manage
it today. Therefore the principles and values of software engineering are
being shaped jointly by university and industrial influences.

A Serious Problem

The United States finds itself far ahead in computer hardware but also
heading for a serious problem in software. In a recent object lesson, our
electronics industry was strengthened significantly by the shortfall of our
missile boosters compared to those of the Soviet Union 20 years ago. As
a partial result of the severe discipline of power, space, and weight limi
tations in our boosters, our electronics was miniaturized and improved in
dramatic ways. And we lead in electronics today because of this history.

In reverse, we have seen an astonishing growth in computer power
and availability. And our software industry has suffered from the lack of
enforced discipline thereby, even while developing the largest software
systems known today. Simply put, we are used to squandering computer
power. This bad habit pervades industry, government, and the very

Software Engineering Education 253

sociology and psychology of the bulk of the computer programming today.
Since information processing has become an essential part of the way
society manages its industries and thereby a key to industrial power, the
inertia of several hundred thousand undisciplined programmers in the
United States is real reason for future concern.

We can also be sure that this causality will work in reverse. The
lack of computing scarcity provides temptations every day in every way
to excuse and condone poor performance in the software sector. Indeed,
the software industry has already bungled its way into a predominate share
of the costs of data processing.

Unless we address this problem with exceptional measures, we are
on the way to a "software gap" much more serious and persistent than
the famous "missile gap" which helped fuel the very growth of our elec
tronics industry.

The Problem Perpetuated

As a result of this history, the educational background and discipline of
the vast majority of computer programmers is seriously low. But, as a
natural human trait, most of these programmers would rather be com
fo rted than educated. "After all, if I'm as good as the next person, I'm
good enough."

Fortunately for these programmers, there are any number of in
dustrial short courses which will comfort, rather than educate. They are
"practical," "easy to understand," "the latest techniques." On attendance,
programmers discover various new names for common sense, superficial
ideas, and thereby conclude, with much comfort and relief, that they have
been up to date all the time. But unfortunately for the country, these
programmers have not only learned very little, but have been reinforced
in the very attitude that they have little to learn!

To make matters worse, many of these comfortable and comforting
short courses make liberal use of the term "software engineering" as a
buzzword. Such a typical "education" in software engineering consists of
three days of listening, no exams, but a considerable feeling of euphoria.

This accident of history poses critical problems for universities,
as well. The great demand for software engineering provides many tempta
tions for lowered academic standards. The solid mathematical bases for
software analysis and design are just emerging and are not easy to pack
age for classroom use at this stage. But since software t.:>uches so many
broad issues, there is no problem in filling a semester course, or even a
curriculum, with all the latest buzzwords and proposals of the field.

254 SOFTWARE PRODUCTIVITY

What Is Software Engineering?

Computer Science, Computer Programming , and
Software Engineering

It is fashionable to relabel all computer programming as software engineer
ing today, but we will not do that here. Our definition of software engi
neering requires both software and engineering as essential components.
By software we mean not only computer programs, but all other related
documentation including user procedures, requirements, specifications, and
software design. And by engineering we mean a body of knowledge and
discipline comparable to other engineering curricula at universities today,
for example, electrical engineering or chemical engineering.

We distinguish software engineering from computer science by the
different goals of engineering and science in any field- practical construc
tion and discovery. We distinguish software engineering from computer
programming by a presence or not of engineering-level discipline. Software
engineering is based on computer science and computer programming, but
is different from either of them.

The full discipline of software engineering is not economically vi
able in every situation. Writing high-level programs in large, well-structured
application systems is such an example. Such programming may well ben
efit from software engineering principles, but its challenges are more ad
ministrative than technical, more in the subject matter than in the software.

However, when a software package can be written for $50,000,
but costs five million to fix a single error because of a necessary recall of
a dangerous consumer product, the product may well require a serious
software engineering job, rather than a simple programming job of unpre
dictable quality.

Mathematical Foundations of Software Engineering

It is characteristic of an engineering discipline to have explicit technical
foundations, and software engineering is no exception. Since the content
of software is essentially logical, the foundations of software engineering
are primarily mathematical-not the continuum mathematics underlying
physics or chemistry, of course, but finite mathematics more discrete and
algebraic than analytic in character. It has been remarked1 that "algebra
is the natural tool to study things made by man, and analysis the tool to

1 By Professor W. Huggins, The Johns Hopkins University.

Software Engineering Education 255

study things made by God." Software is made by man, and algebra is in
deed the natural mathematical tool for its study, although algebra appears
in many forms and disguises in computer science topics. For example,
automata theory, theories of syntax and semantics of formal languages,
data structuring and abstractions, and program correctness are all algebraic
in character, in spite of widely differing notations due to their historical
origins.

In contrast, electrical engineering combines physical and logical
design and therefore draws on both continuum and discrete mathematics.
Software engineering uses continuum mathematics only for convenient
approximation, e.g., in probability or optimization theory. The difference
between the logical design of electrical engineering and the logical design
of software engineering is one of scale. The logical complexity of a large
software system is orders of magnitude above the logical complexity of a
physically realizable processor. In fact, this ability to realize and imple
ment logical complexity of high order is the reason for software.

Note that discrete mathematics does not necessarily imply finite
mathematics. The analysis of algorithms, for example, leads to deep logi
cal questions as to whether a computational process is finite or not, even
though all operations are discrete. The theory of Turing machines provides
another such example [8].

Structure and Organization in Software Engineering

The primary difficulty in software engineering is logical complexity [4].
And the primary technique for dealing with complexity is structure. Be
cause of the sheer volume of work to be done, software development re
quires two kinds of structuring, algebraic and organizational. Algebraic
structuring, applied in different ways, allows mental techniques of divide
and conquer, with the same underlying principles, in the various phases
of specification, design, implementation, operation, and evolution of soft
ware. The result of proper structuring is intellectual control, namely, the
ability to maintain perspective while dealing with detail and to zoom in
and out in software analysis and design.

The principal organizational technique is work structuring-be
tween workers and machines and, further, between workers. Software tools,
in the form of language compilers, operating systems, data entry and li
brary facilities, etc., represent techniques of structuring work between
workers and machines. One major dimension of work structuring among
people is along the conceptual-clerical axis, which permits effective isola
tion and delegation of clerical work. Other dimensions are based on sub
ject matter in software and applications. A surgical team represents a good

256 SOFTWARE PRODUCTIVITY

example of work structuring, with different roles predefined by the pro
fession and previous education. Surgery, anesthesiology, radiology, nursing,
etc., are dimensions of work structuring in a surgical team. The commu
nication between these roles is crisp and clean-with a low bandwidth at
their interface, e.g., at the "sponge and scalpel" level, not the whole band
width of medical knowledge. A grammar school soccer team represents a
poor example of work structuring-the first kid who reaches the ball gets
to kick it. But the first person reaching the patient does not get to oper
ate, and hospital orderlies do not become surgeons through on-the-job
training.

Career Structures in Software Engineering

In addition to degree-level engineering skills in software, we identify the
need for various grades of technician skills, and for degree-level science
and administration skills as well. Within the engineering skills, we can
differentiate by subject matter and further by skill level through graduate
degree levels.

Just as in any other profession such as law, medicine, etc., many
skill categories and skill levels go into a well-formed software engineer
ing team. In software development, the sheer weight of precise logic domi
nates, and the need for precision procedures for design and control is
critical. For example, in law, three judges may subdivide an opinion for
a joint writing project and meet the requirements for legal precision with
small variations in their individual vocabularies. But a joint software
development by three programmers will not tolerate the slightest variation
in vocabulary because of the literal treatment of the design text by a
computer.

The software engineer is at the center of software development
and computer operations in which basic algorithms and data processing
may require other advanced skills for their definition, analysis, and vali
dation. Because of this, graduate science and administrative skills are fre
quent partners in software development, and the software engineer needs
to be at home with an interdisciplinary approach.

Within software engineering, we can identify several areas of con
centration which have the depth and substance that can occupy a person
through a life-long career. Those areas include such topics as compilers,
operating systems, data-base systems, real-time control systems, and dis
tributed processing systems. These specialties in software engineering usu
ally require graduate-level education for effective team leadership and
advanced technical contributions.

Software Engineering Education 257

Software Engineering Practices

Elements of Software Engineering

The effective practice of software engineering must be based on its tech
nical foundations just as any other engineering activity, in combining real
world needs and technical possibilities into practical designs and systems.
For our purposes it is convenient to classify the disciplines and procedures
of software engineering into three categories.

1. Design (after Plato, Phaedrus). "First, the taking in of scat
tered particulars under one Idea, so that everyone understands what is
being talked about ... Second, the separation of the Idea into parts, by
dividing it at the joints, as nature directs, not breaking any limb in half
as a bad carver might."

2. Development. The organization of design activities into sus
tained software development, including the selection and use of tools and
operational procedures for work structuring among different categories of
personnel.

3. Management. Requirements analysis, project definition, iden
tifying the right personnel, and the estimation, scheduling, measurement,
and control of software design and development.

Software Engineering Design

The availability of useful, tested, and well-documented principles of soft
ware specification and design has exploded in the past decade, in three
distinct areas, namely,

1. Sequential process control: characterized by structured programming
and program correctness ideas of Dijkstra [7], Hoare [14], Linger,
Mills, and Witt [17], and Wirth [26, 27].

2. System and data structuring : characterized by modular decomposi
tion ideas of Dijkstra [9], Dahl [7], Ferrentino and Mills [II, 19],
and Parnas [22].

3. Real-time and multidistributed processing control : characterized by
concurrent processing and process synchronization ideas of Brinch
Hansen [5], Dijkstra [10], Hoare [15], and Wirth [28].

The value of these design principles is in the increased discipline
and repeatability they provide for the design process. Designers can un
derstand, evaluate, and criticize each other's work in a common objective

258 SOFTWARE PRODUCTIVITY

framework. In a phrase of Weinberg [25], people can better practice "ego
less software design" by focusing criticisms on the design and not the au
thor. Such design principles also provide direct criteria for more formal
design inspection procedures so that designers, inspectors, and manage
ment can better prepare for, conduct, and interpret the results of periodic
orderly design inspections.

Software Engineering Development

Even though the primary conceptual work of software engineering is em
bodied in design, the organization and support of design activities into
sustained software development is a significant activity in itself, as dis
cussed in [3] and [20]. The selection and definition of design and pro
gramming support languages and tools, the use of library support systems
to maintain the state of a design under development, the test and integra
tion strategy, all impact the design process in major ways. So the disci
plines, tools, and procedures used to sustain software development need
to be scrutinized, structured, and chosen as carefully as the design prin
ciples themselves.

The principal need for development discipline is in the intellectual
control and management of design abstractions and details on a large
scale. Brooks [6] states that "conceptual integrity is the most important
consideration in systems design." Design and programming languages are
required which deal with procedure abstractions and data abstractions,
with system structure, and with the harmonious cooperation of multidis
tributed processes. Design library support systems are needed for the con
venient creation, storage, retrieval, and modification of design units, and
for the overall assessment of design status and progress against objectives.

The isolation and delegation of work between conceptual and cler
ical activities, and between various subactivities in both categories is of
critical importance to a sustained and manageable development effort.
Chief Programmer Teams [3] embody such work structuring for small and
medium-size projects. In larger projects, an organization of Chief Pro
grammer Teams and other functional units is required.

Software Engineering Management

The management of software engineering is primarily the management of
a design process, and represents a most difficult intellectual activity. Even
though the process is highly creative, it must be estimated and scheduled
so that various parts of the design activity can be coordinated and inte-

Software Engineering Education 259

grated into a harmonious result, and so that users can plan on results as
well. The intellectual control that comes from well-conceived design and
development disciplines and procedures is invaluable in achieving this re
sult. Without that intellectual control, even the best managers face hope
less odds in trying to see the work through.

In order to meet cost/schedule commitments in the face of imper
fect estimation techniques, a software engineering manager must practice
a manage-and-design-to-cost/schedule process. That process calls for a
continuous and relentless rectification of design objectives with the cost/
schedule required for achieving those objectives. Occasionally, this rectifi
cation can be simplified by a brilliant new approach or technique, which
increases productivity and shortens time in the development process. But
usually, just because the best possible approaches and techniques known
are already planned, a shortfall , or even a windfall in achievable software,
requires consultation with the user in order to make the best choices
among function, performance, cost, and schedule. It is especially impor
tant to take advantage of windfalls to counter other shortfalls; too often
windfalls are unrecognized and squandered. The intellectual control of
good software design not only allows better choice in a current develop
ment, but also permits subsequent improvements of function and perfor
mance in a well-designed baseline system.

In software engineering, there are two parts to an estimate-mak
ing a good estimate and making the estimate good. It is up to the soft
ware engineering manager to see that both parts are right, along with
the right functi?n and performance.

Principles of Education in Software Engineering

Degrees in Software Engineering

A degree in software engineering should first of all be an engineering de
gree, dealing with engineering design and construction. It should not simply
be a computer programming degree or a computer science degree. As al
ready noted, there is much programming to be done in society, and other
curricula in arts and science or business administration should be called
upon to provide properly focused education for more general program
ming in business and science applications. The UCLA masters program
in Computer Science [16] is a good model of such other curricula, which
has high technology content, yet does not pretend to be software engi
neering.

The usual principles of university education should apply to a cur-

260 SOFTWARE PRODUCTIVITY

riculum in software engineering, namely, that it be a preparation for a
career based on topics of reasonable half-life, while producing entry-level
job skills and the ability to learn later. These objectives are not incom
patible because the very topics required for dealing with technically chal
lenging software problems are generally basic topics of long life, and they
do indeed prepare people for more advanced education and continued
learning. It is well known that mathematics and science are more easily
learned when young and so, as a rule, soft topics should be deferred for
postgraduate experience and continued learning. There is real danger in
overusing soft topics and survey courses loaded with buzzwords to provide
near-term job entry salability. But without adequate technical foundations,
people will become dead-ended in mid-career, just when they are expected
to solve harder problems as individuals, as members or as managers, of
teams.

In the three categories of software engineering practices listed
above, studies in design practices are prime candidates for early university
education; development practices should be phased in later, and manage
ment practices deferred for continued postdegree learning, after consider
able experience in individual and team practice in software engineering.

Foundations and Problem Solving

This is a difficult dilemma in university curricula in balancing the needs
for solid technical foundations and to learn problem solving. Of course,
this dilemma is not unique to software engineering. Limiting topics to
techniques allows a more efficient education process in terms of quantity,
volume, and quality of techniques that are teachable. But it is frequently
difficult for students to apply such techniques in problem-solving contexts.
Problem solving is a great motivator and confidence builder. But too much
emphasis on problem solving cuts into the amount of technique prepara
tion possible, and produces students able to make a good first showing in
their career but who are likely to drop out early because of the lack of
deeper technical abilities.

It is characteristic in software engineering that the problems to be
solved by advanced practitioners require sustained efforts over months or
years from many people, often in the tens or hundreds. This kind of mass
problem-solving effort requires a radically different kind of precision and
scope in techniques than are required for individual problem solvers. If
the precision and scope are not gained in university education, it is difficult
to acquire them later, no matter how well motivated or adept a person
might be at individual, intuitive approaches to problem solving.

We all know of experiences in elementary mathematics courses of

Software Engineering Education 261

getting little or no credit for guessing correct answers without showing
the process for finding them. There was a good reason, because guessing
answers to small problems cannot be scaled up to larger problems, whereas
processes needed to solve smaller problems can be scaled up. That scaling
up problem is the principal difference between computer programming and
software engineering.

Curriculum Topics

ACM Curriculum '78 [2] is a well-accepted prescription for an undergrad
uate degree in computer science/programming. But there are those who
believe that Curriculum '78 does not present enough, and the right kind
of mathematics. In any case, this author believes that degrees in software
engineering should be considerably stronger in discrete mathematics than
suggested by Curriculum '78. In particular, a curriculum in software en
gineering should require a good working knowledge of the first-order
predicate calculus; the algebras of sets, functions, and relations; and a
deep enough understanding of mathematical reasoning to use it in a flex
ible way in large and complex problems. We are beginning to see evidence
of 'the practical power of mathematical reasoning in mastering software
complexity, for example in program verification [12], and in the develop
ment of entire software systems, such as the UCLA Unix Security Kernel
[24]. With such a foundation, the curriculum can provide an understand
ing of algorithms [1], computer programs [17, 26, 27], data structures
[13], data abstractions [18], and data bases [23] as mathematical objects.

Adult University Education

The rapid growth of software engineering means that there will be a con
siderable amount of adult education in university work (in contrast to
short courses which may be given in universities on a nondegree basis.)
Typically these will be advanced degrees for people with an already good
foundation in mathematics or engineering science. It is to be expected that
adult education will go on in parallel in arts and sciences, and in business
administration schools for much the same reason because the whole indus
try is growing rapidly. But as noted before, we distinguish between pro
gramming and software engineering and we mean to discuss here adult
university education in software engineering only.

Adult students in university curricula have advantages and dis
advantages over younger students coming directly out of previous educa
tion. Their advantages are in their motivation and in the fact that they

262 SOFTWARE PRODUCTIVITY

have a larger experience base in which to embed the ideas, techniques,
etc., they receive in the education process. Their disadvantages are in being
rusty in the learning process and possibly in having their education some
what outmoded through the passage of time. On balance, people who are
motivated enough to return for adult education at the university level are
usually superior students and get more out of their education than their
younger peers, but they should be expected to live up to the academic
standards of the institution.

Laboratory Courses in Software Engineering

We know from other science and engineering disciplines that laboratory
courses are usually more difficult to develop than lecture courses. In soft
ware, simply letting people learn by themselves in developing programs
and systems as projects can lead to two weeks of experience repeated
seven times rather than a fourteen-week laboratory course of cumulative
experience. The problem with such open-loop student projects is that
much of the time is spent on recovering from unwise decisions or poor
executions made earlier, with little real learning going on.

A degree program in software engineering should contain a mini
mum sequence of laboratory courses, which is based on understanding
and modifying existing programs and solving hardware/software integra
tion problems before proceeding to program design and development and
later into system specification and design. This laboratory sequence should
proceed from (1) a highly structured environment in which carefully con
ceived programs (with carefully conceived problems) are presented to stu
dents for testing and modification to (2) less structured situations where
students design and develop small, then large, software products from well
defined specifications, finally to (3) even less structured situations where
they deal with informal requirements from which specifications and de
signs are to be developed. In this sequence there is an opportunity to
identify problems, which all students encounter simultaneously, for which
instructors can help develop approaches and solutions. A hardware/soft
ware integration problem early in the laboratory sequence seems especially
important for software engineering students, because there are usually
important interfaces between hardware and software in the high-perfor
mance systems dealt with by software engineering.

References

1. Aho, A. V., Hopcroft, J . E., and Ullman, J.D. The Design and Analy
sis of Computer Algorithms. Reading, Mass.: Addison-Wesley, 1974.

Software Engineering Education 263

2. Austing, R., et al. , eds., "Curriculum 78: Recommendations for the
Undergraduate Program in Computer Science-A Report of the
ACM Curriculum Committee on Computer Science," Comm. ACM
22, No. 3 (Mar. 1979).

3. Baker, F. T. "Chief Programmer Team Management of Production
Programming." IBM Syst. J. 2, No. 1 (1972).

4. Belady, L. A., and Lehman, M. M. "The Evolution Dynamics of
Large Programs." IBM, Yorktown Heights, NY, RC 5615 (#24294),
Sept. 1975.

5. Brinch Hansen, P. The Architecture of Concurrent Programs. Engle
wood Cliffs, N.J.: Prentice-Hall, 1977.

6. Brooks, F. P. The Mythical Man-Month: Essays on Software Engi
neering. Reading, Mass.: Addison-Wesley, 1975.

7. Dahl, 0. J ., Dijkstra, E. W., and Hoare, C. A. R. Structured Pro
gramming. New York : Academic Press, 1972.

8. Denning, P., and Dennis, J. Machines, Languages, and Computation.
Englewood Cliffs, N. J. : Prentice-Hall, 1978.

9. Dijkstra, E . W. "The Structure of 'THE' Multiprogramming System."
Comm. ACM 11, No . 5 (May 1968): 341-346.

10. Dijkstra, E. W. "Co-operating Sequential Processes." In Program
ming Languages, pp. 43-112. London: Academic Press, 1968.

11. Ferrentino, A. B. , and Mills, H. D. "State Machines and Their Se
mantics in Software Engineering." In Proc. IEEE Comsac '77, pp.
242-251 , 1977. (IEEE Catalog no. 77Ch1291-4C.)

12. Gerhart, S. L. "Program Verification in the 1980's: Problems, Per
spectives, and Opportunities." lSI Report ISI/RR-78-71. Aug. 1978.

13. Gotlieb, C. C. , and Gotlieb, L. R. Data Types and Data Structures.
Englewood Cliffs, . J. : Prentice-Hall, 1978.

14. Hoare, C. A. R. "An Axiomatic Basis for Computer Programming."
Comm. ACM 12 (1969) : 576-583 .

15. Hoare, C. A. R . 'Monitors : an Operating System Structuring Con
cept." Comm. ACM 18 (1 975) : 95.

16. Karplus, W. J. "The Coming Crisis in Graduate Computer Science
Education ." UCLA Comput. Sci. Dep . Quarterly (Jan. 1977): 1-5.

17. Linger, R. C., Mills, H. D., and Witt, B. I. Structured Programming:
Theory and Practice. Reading, Mass.: Addison-Wesley, 1979.

18. Liskov, B., Zilles S. 'An Introduction to Formal Specifications of
Data Abstractiol15.' In Current Trends in Programming Methodol
ogy. Vol. 1, edited by R . Yeh, pp. 1-32. Englewood Cliffs, N. J.:
Prentice-Hall , 19

19. Mills, H. D. "On the Development of Systems of People and Ma
chines." In Lecture .\ otes in Computer Science 23. New York :
Springer-Verlag 19 -

264 SOFTWARE PRODUCTIVITY

20. Mills, H. D. "Software Development." IEEE Trans. Software Eng.
SE-2 (1976): 265- 273.

21. Moriconi, M. A System for Incrementally Designing and Verifying
Programs. Ph.D. dissertation, University of Texas, Austin, Nov.
1977.

22. Parnas, D. L. "The Use of Precise Specifications in the Develop
ment of Software." In Information Processing. Edited by B. Gilchrist,
pp. 861-867. Amsterdam: North-Holland, 1977.

23. Ullman, J. Principles of Data Base Systems. Washington, D.C.: Com
puter Science Press, 1980.

24. Walker, B. J., Kemmerer, R. A., and Popek, G. J. "Specification
and Verification of the UCLA Unix Security Kernel." Comm. ACM
23, No.2 (Feb. 1980): 118-131.

25. Weinberg, G. M. The Psychology of Computer Programming. New
York: Van Nostrand Reinhold, 1971.

26. Wirth, N. Systematic Programming. Englewood Cliffs, N. J.: Pren
tice-Hall, 1973.

27. Wirth, N. Algorithms+ Data Structures= Programs. Englewood
Cliffs, N. J.: Prentice-Hall, 1976.

28. Wirth, N. "Toward a Discipline of Real-Time Programming." Comm.
ACM 20 (1977): 577- 583.

Software Productivity
in the Enterprise

(1981)

Productivity Differentials in Software

ART\ClE
20

There is a 10 to 1 difference in productivity among practicing program
mers today- that is, among programmers certified by their industrial
positions and pay. That differential is undisputed, and it is a sobering
commentary on our ability to measure and enforce productivity standards
in the industry.

There are two main reasons for this astonishing differential. First,
programming is a problem-solving activity, and there is a great differential
among people in their ability to solve problems of the kinds found in
programming. Second industry tolerates this much differential because
programming productivi · is extremely difficult to measure. Lines of pro
gram source code writte and debugged per day are easy to measure,
but they are only distantly related to real productivity. Sometimes the
highest real productivi _ is the result of finding how to reuse programs
already written-po 1 I, for a quite different looking purpose. Another
form of high produc · · occurs in finding how to solve problems with
past existing programs. revising them as subprograms. It is low produc
tivity to write large amo o program source code for the easy parts
of what needs to be do e hen it has been done already. And yet this

ming productivity ex
productivity of a sal

da} s work.
1_- no objective ways to measure program-

res any more than one can measure the
counting the amounts of words spoken per

265

266 SOFTWARE PRODUCTIVITY

day. And the results need to be measured in value to the enterprise, not
lines of code.

While this productivity differential among programmers is under
standable, there is also a 10 to I difference in productivity among soft
ware organizations. This difference needs a little more explanation. At first
glance it would appear that differences among programmers would tend
to average out in organizations. For example, the average heights of pro
grammers from organization to organization will differ much less than the
height from programmer to programmer. Why doesn't productivity aver
age out, too?

There are two main reasons why the differential in individual pro
ductivity does not average out in software organizations. First, individual
productivity is not simply additive in a software organization: I module
and I module can equal 0 system if the module interfaces and functions
do not match. Making individual productivity additive in software orga
nizations takes good technology and good management. Second, individual
programmers do not join software organizations at random. In each case
there is an offer and an acceptance. It turns out that those organizations
with good technology and good management can attract the best pro
grammers, and vice versa. So the better organizations have it best both
ways. They attract the highest individual productivity and make this pro
ductivity most additive.

But now we come to a curious paradox. The best performing soft
ware organizations-the 10 performers-are typically held in no higher
esteem by their own enterprises than the I performers. For how are their
own enterprises to know they are 1 's or 1 O's, when they are the only
software organization they know? In fact, there is a reverse affect. The 1
performers usually make software look hard; the 10 performers usually
make it look easy. How can people in an enterprise distinguish between
doing hard things and making things look hard in software? Every com
parison they can make is apples to oranges-different problems, different
enterprises, different situations. There is just no easy, objective way to
know.

This difficulty of judging the productivity of one's own software
organization may seem frustrating. After all, how will the 1 0-performing
organizations get their just rewards? They will get their just rewards in a
simple way. Their enterprises will survive. Data processing, and the quality
of software, is more and more a matter of survival for enterprises. The
greater the dependence on data processing for survival, the greater the se
lectivity of productive performance in software . For example, there is not
a major airline company in the world without an automated airline reser
vations system. They cannot survive without one. So in the long run there
is no problem of identifying productive software organizations.

Software Productivity in the Enterprise 267

Seven Productivity Indicators in Software

Even though the long run mill of productivity grinds surely and finely,
the essence of management is to anticipate and improve the productivity
of its own enterprise in the short run, including that of its software orga
nization. In the realization that no simple measurements will suffice we
offer a set of productivity indicators in software. None of these indicators
are numerical or objective. Every one of them takes management assess
ment and judgment. Further, these indicators do not add up, nor do they
have a fixed role of importance. That takes management judgment as well.
There may seem little comfort in this, but promising anything more does
the reader a disservice. There is no question that management measure
ments of numerical and objective forms can be devised to reflect these
indicators. But such measurements should be devised by enterprise man
agement who then know their special circumstances and know by con
struction the limitations and fallibilities of their own measurements.

1. Good Schedule and Budget Control

Overrun schedules and budgets reflect a lack of intellectual and manage
ment control. Poor schedule and budget control denies management the
real ability to exercise choice in what role software will play in the enter
prise. If the programmers decide when projects will be completed after
they are well under way, rather than enterprise management deciding before
approving them, the programmers are making enterprise-level decisions,
like it or not.

Overrun budgets are usually small prices to pay compared to the
opportunity cost of the enterprise in not having the software service
planned. If there is not a large opportunity cost, the software should not
have been justified anyway.

2. Good Methodology

Software people should know what is going on in the university and the
profession. The methodology used should be based on choice of the latest
and best, and not based on ignorance. It should also be laced liberally
with the old and depe dable. The objective of good methodology is not
productivity or quality. bu management control. Once management con
trol is attained, one can c oose productivity, quality, or other objectives
to' meet the need of

268 SOFTWARE PRODUCTIVITY

3. Good People

Where do the software people come from? You should get your choice
of good people from mathematics and computer science university curricula.
Experience has shown that it takes more mathematical maturity to man
age software than to do software. You need good material to grow your
futures from. The industry is overrun with poorly educated programmers
who get programs to run only by trial and error. They are the equivalent
of hunt-and-peck typists, who are doing what comes naturally, while touch
typists have learned to do what comes unnaturally.

4. Making it Look Easy

Orderly, systematic processes make software look easy, particularly at
systems integration time. The integration crunch is not a sign of a hard
problem; it is a sign of poor technology and management. It is hard to
see people thinking, but easy to see them coding. The programmer whose
feet are on the desk may be your most productive asset. Thinking takes
time-more time than we realize.

5. Stable Population

You not only need to get good people and to educate them into your own
enterprise. You need to keep them. If your population is unstable, chances
are you are either 1) releasing poor people you should never have hired or
2) losing good people you cannot afford to lose. Getting higher tech
nology than you have by hiring senior professionals loses continuity with
your past and loses hope for your own people, so do it carefully. You
cannot spend enough on education, but make sure it is education at a
university level of methodology, with pass/fail criteria, not short course
entertainment.

6. People Flexibility

The requirements for high productivity of software are amazingly like
those of any other part of your enterprise-marketing, manufacturing,
administration, and so on. You need orderly minds and stout hearts. Con
structing a good sales presentation is surprisingly similar to writing a
good program: you write a program for a prospect to execute instead of
a computer. So ask yourself how your software people could help in the

Software Productivity in the Enterprise 269

rest of your enterprise. If their main claim to fame is knowing how com
puters work, rather than how your enterprise works, get some new peo
ple. They need to know how computers work, all right, but they need to
do that with less than half their effort.

7. Computer Infatuation

People who love to program computers and watch them run, who eat it
up, should not be allowed to program for pay. If they are very good,
there are a small number of such positions-in universities and major
industrial research centers. Otherwise, they should get a home computer.
Software is too serious a business to do for the fun of it. One should
program a computer only as a last resort-when it has not been pro
grammed before. Those problems are getting harder and harder to find
today- and there aren't too many easy things left to do.

Secrets of Exceptional Productivity

We can summarize the secrets of exceptional productivity in three steps.
First, minimizing reinvention ; second, minimizing rework; and third, work
ing smart when necessary, rather than working hard.

Exceptional performance begins , with minimizing reinvention and
developing new software only as a last resort; but when new software is
required, exceptional performance finds the simplest and most direct ways
of producing that software. Yfinimizing reinvention applies not only to
the final products but also to the tools used in the development of soft
ware.

The most cost effective way to get a new software system up and
running is to disco er that it already exists. It may take some effort, and
there is some risk of putting in the effort only to discover that no such
system exists ; but in exceptional performance, one minimizes reinven
tion. The next mos effective way to get a new software system up and
running is to disco ·er lar., e components that can be integrated with mini
mal effort into the required s~ em.

It may see · credi le at first, but exceptional performance re-
duces the work req "red oftware development by large factors. In
fact, entering ea h o hases of requirements, design, implementation,
and operation. ex e rformance can reduce the work required in the
subsequent phases r of tluee or more. That is, a good require-
ments analysis ~ e -· e design job by a factor of three, a good

270 SOFTWARE PRODUCTIVITY

design can reduce the implementation job by a factor of three, and a
good implementation can reduce the operations and maintenance job by
a factor of three.

In short, the opportunities for productivity decay exponentially
through the life of the system. These factors may seem incredible, but
experience shows otherwise. If you pick any $500,000 software job at
random, it is likely to be a $1,000,000 software job done well or a $200,000
software job done poorly. The fact is that the cost of the software often
reflects more directly the capability of the team than it does the size of
the real job to be done.

As was already mentioned, exceptional performance is possible
only through working smarter, not working harder. It requires more pow
erful techniques, both conceptual and organizational. The key to excep
tional performance is intellectual control, not only by individuals, but by
an entire organization. For that reason, organizational techniques of work
structuring are as important as conceptual techniques of program struc
turing.

In software the only way to do more work is by working smart.
When people work hard and long hours, they start making excuses for
themselves, make mistakes, and end up doing lots of rework. And when
they are doing rework because of mistakes that they excuse because they
were working hard, it becomes a vicious cycle. Program debugging is re
work, no matter what programmers want to think. I expect new programs
to work the first time tested and from then on. Debugging not only shows
a lack of concentration and design integrity, but is also a big drag on
productivity. If somebody writes a hundred lines of code in one day and
then takes two weeks to get it debugged, they have really only written
ten lines a day.

The ultimate limitations to exceptional productivity are not ability
or know-how; the limitations are found in the social and business institu
tions around us. These limitations begin in school, where it is not smart
to be too smart because that makes it hard on other students. They con
tinue into industry through all kinds of formal and informal arrangements,
with peer pressure not to show up one's associates. In software engineer
ing, where jobs are usually unique and no one knows their real size any
way, there is a definite motivation to inflate the size of jobs to make them
look more important. Managers are usually paid by how many people
they manage, rather than by how much they do with the people they have.
But that is another long story itself.

Index

A
Abnormal operation termination, 136
Abnormal storage termination, 136
ACM curriculum '78 [2], 261
AIT, 74- 77, 79
Aledort, Marvin M., 32
Alexander, C., 233
Algebra of functions, 217
ALGOL, 25, 27
Alternation equation, 226
Argument, 123, 175
Artificial intelligence, 174
Ashcroft, E., 220
Assert, insert, and test, 74
Atanasoff, 216

B
Backup programmer, 65-69, 110
Baker, E T., 211 , 244
Barzilay, Robert A., 32
Basili, V. R., 244
Bigelow, 216
Block structure, 27
Block -structured programming

languages, 120
BNF, 31
Bi:ihm, Corrado, 211, 218, 220
Bottom up, 111
Bottom up programming, 105
Brinch Hansen, P ., 257
Brooks, F . P. , 258
Brown, P. J ., 211
Burks, 216

c
Central Media Bureau. Inc.. 3_
Character-based program content,

59- 60
Chief programmer, 65- 0. • 110

113
Chief programmer team. 65-""0. l

258
COBOL, 27
Collecting node, 128, 1
Composition equation, _:6

Computation problem, 226
Computer program, 126
Computer programming, 254
Computer science, 254
Control flow, 127
Control graph, 127-128, 130, 136,

139, 143
Control language, 85
Control lines, 131
Control logic, 92-95, 99, 104-105,

108, 110, 146
Control logic statements, 97
Control logic structures, 108
Control node, 127
Control structures, 92- 93, 99
Cooper, D . C., 218, 220
Core, 30
Correct program, 194-195, 198
Correctness, 72
Correctness proofs, 122
Correctness theorem, 120, 121, 161,

167

D
Dahl, 0. J., 257
Data space, 126
Data states, 130
Decomposition, 125
Denning, P. J., 211
Design, 257
Design review team, 23
Design-to-cost, 231, 248- 249
Development, 257- 258
Development accounting, 187
Dijkstra, E. W., 210, 212,219, 223,

240-241, 257
DO-WHILE, 28
Documentation, 183-184
Domain, }_3

272 Index

Exception code, 112
Execution, 127, 132
Execution content, 61- 62
Execution trace analyzers, 62
Expansion, 135
Expansion theorem, 121, 168, 170
Expansion theorem (set theoretic

version) , I 70
Expansion theorem (verbal version),

169

F
Ferrentino, A. B., 257
Final data, 132
Final value, 127
Flowchart, 128, 130-132, 141, 143,

217-218, 220- 221
Floyd, R. W., 211
Formal grammar, 31
Formula, 138
FORTRAN, 15, 27
Function, 175
Function completion, 126
Function composition, 125
Functional programming, 120
Functional specification, 94, 98, 100
Functional subspecification, 92- 93

G
Gannon, J. D., 246
GO TO, 27-30
Goldstine, H. H., 216

H
Hardware, 58
Henrici, P., 216
Hoare, C. A. R., 211, 241, 246, 257
Horning, J. J., 246
Householder, A. S., 216
Houston RTCC, OS/360, 23
Huggins, W., 212

I
IBM, 13, 16
IBMer, 14
Identity mapping, 131
IF-THEN, 12
IF-THEN-ELSE, 11-12, 28-29
Indeterminate algorithms, 174
Indeterminate instructions, 175
Indeterminate program, 175

Indeterminate program execution, 175
Indeterminate program relation, 175
Individual programmer, 14, 16- 25
Information statistics analyzers, 62
Information theory, 58
Initial data, 132
Initial value, 127
Input lines, 127
Instructions, 126
Intermediate data, 132
Irons, Edgar, 25
Iteration equation, 227
Iterative IF (II F), II

J
Jackson, M. A., 240-242
Jacopini, G., 210,218,220
JCL (job control language), 83- 86,

88

K
Kelley, 1. R., 211
Kernel system, 23
Kernihan, B. W., 211
Knuth, D . E., 211
Kosaraju, S. R., 220

L
Language processor, 85
Large system, 91
LEL (linkage editing language), 83,

85
Librarian, 68
Linger, R. C., 257
Linkage editing, 85
Liskov, B., 212, 240
Load modules, 85
Loop qualification, 165, 167

M
Main-line programming, 112
Management, 257-258
Manna, Z., 220
Marshall, William F., 32
Mathematics proof, 196
Mauchly, 216
McCarthy, J., 211, 216
McGowan, C. L., 211
Mills, H. D., 211-212, 257
Minsky, Marvin, 216
Multil anguage processor, 83-84

N
Natural language, 8, 44-45, 51
Naur, P., 211
Newell, Allen, 216
Next instruction, 127
Node, 127
Noonan, R. E., 243
Normal termination, 136

0
Object modules, 85
Olsen, Robert S., 32
ON ENDFILE, 28
OS/360, 13-15, 83-85
Output lines, 127

p
Parnas, D . L., 243, 257
Partial rule, I 25
PERCENT (%) INCLUDE 30
Pinzow, Daniel, 32 '
Pinzow, Susan L., 32
PL/1, 14-15, 27- 30
PL/360, 25
Plouger, P. J. , 211
Pomerene, 216
PPL, 67- 69
Predicate function, 130
Predicate node, 128, 130
Primitive forms , 11
Process node , 127 , 130, 133 , 135, 138
Productivity , 265-270
Program content, 59, 62
Program correctness, 71, 160, 193,

200, 212
Program formula , 141
Program function, L . 1 1
Program schemas 1- 8-
Program segmen ts, 9 . LO
Program stubs, 92
Program tree, 159-161
Programming librarian. 6- -66. 68--69
Programming measurem
Programming pra ·ces. 9~

Programming pr le
Programming produ ·

(PPL), 66
Proper program. 1

R
Randell, B. , _J _
Range, 123

Relation, 174
Reliability, 72
RETURN, 30
Roget's, 33
Rothman, John, 32
Royston, R., 32

s
S-structured, 158
SAGE, 14
Segment, 93, 120
Simon, Herbert, 216

Index 273

Software, 58, 254-255
Software engineering, 251- 252,

254- 256, 258- 262
Software gap , 253
Software productivity, 265
Source program analyzers, 62
State space, 126
State vector, 131
Stepwise refinement, 223, 225
Structure theorem, 119- 120, 146-14 7,

158, 168
Structured program, 223
Structured programming, 91 , 99, 110,

115- 119, 121, 181, 193-194
200, 210-212, 215-2 17, 2~241

Structured programs, 122, 161, 211
Subprogram, 127
Subprogram execution, 127
Subprogram function, 127
Symbol-based program content, 59
Symbol-character-based program

content, 61
Syntactic-based program content, 60

T
Table lookup 125
The . ew York Times, 31
Topdov."D, 92- 93, 111, 231,244-245,

..;9
Top down corollary, 120
Top down programming, 3-4,

105-106. 110, 11 2, 121
To do structured programming,

1 ' · l 9
Tren Geor=e D., 32
-ru.-11er. A. J.. _44

274 Index

w
Weinberg, Gerald M., 258
Wilder, R. L., 212
Wilkinson, J. H., 216
Williams, 216
Wirth, N., 211, 223, 242, 246, 257
Witt, B. I., 257

y
Yohe, 1. M., 211

z
Zilles, S., 240
Zurcher, F., 212

	Software Productivity
	Recommended Citation

	tmp.1326395989.pdf.WOlbv

