6,857 research outputs found

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    International Academic Symposium of Social Science 2022

    Get PDF
    This conference proceedings gathers work and research presented at the International Academic Symposium of Social Science 2022 (IASSC2022) held on July 3, 2022, in Kota Bharu, Kelantan, Malaysia. The conference was jointly organized by the Faculty of Information Management of Universiti Teknologi MARA Kelantan Branch, Malaysia; University of Malaya, Malaysia; Universitas Pembangunan Nasional Veteran Jakarta, Indonesia; Universitas Ngudi Waluyo, Indonesia; Camarines Sur Polytechnic Colleges, Philippines; and UCSI University, Malaysia. Featuring experienced keynote speakers from Malaysia, Australia, and England, this proceeding provides an opportunity for researchers, postgraduate students, and industry practitioners to gain knowledge and understanding of advanced topics concerning digital transformations in the perspective of the social sciences and information systems, focusing on issues, challenges, impacts, and theoretical foundations. This conference proceedings will assist in shaping the future of the academy and industry by compiling state-of-the-art works and future trends in the digital transformation of the social sciences and the field of information systems. It is also considered an interactive platform that enables academicians, practitioners and students from various institutions and industries to collaborate

    The European AI Liability Directives -- Critique of a Half-Hearted Approach and Lessons for the Future

    Full text link
    As ChatGPT et al. conquer the world, the optimal liability framework for AI systems remains an unsolved problem across the globe. In a much-anticipated move, the European Commission advanced two proposals outlining the European approach to AI liability in September 2022: a novel AI Liability Directive and a revision of the Product Liability Directive. They constitute the final cornerstone of EU AI regulation. Crucially, the liability proposals and the EU AI Act are inherently intertwined: the latter does not contain any individual rights of affected persons, and the former lack specific, substantive rules on AI development and deployment. Taken together, these acts may well trigger a Brussels Effect in AI regulation, with significant consequences for the US and beyond. This paper makes three novel contributions. First, it examines in detail the Commission proposals and shows that, while making steps in the right direction, they ultimately represent a half-hearted approach: if enacted as foreseen, AI liability in the EU will primarily rest on disclosure of evidence mechanisms and a set of narrowly defined presumptions concerning fault, defectiveness and causality. Hence, second, the article suggests amendments, which are collected in an Annex at the end of the paper. Third, based on an analysis of the key risks AI poses, the final part of the paper maps out a road for the future of AI liability and regulation, in the EU and beyond. This includes: a comprehensive framework for AI liability; provisions to support innovation; an extension to non-discrimination/algorithmic fairness, as well as explainable AI; and sustainability. I propose to jump-start sustainable AI regulation via sustainability impact assessments in the AI Act and sustainable design defects in the liability regime. In this way, the law may help spur not only fair AI and XAI, but potentially also sustainable AI (SAI).Comment: under peer-review; contains 3 Table

    Comparing Recent Advances in Estimating and Measuring Oil Slick Thickness: An MPRI Technical Report

    Get PDF
    Characterization of the degree and extent of surface oil during and after an oil spill is a critical part of emergency response and Natural Resource Damage Assessment (NRDA) activities. More specifically, understanding floating oil thickness in real-time can guide response efforts by directing limited assets to priority cleanup areas; aid in ‘volume released’ estimates; enhance fate, transport and effects modeling capabilities; and support natural resource injury determinations. An international workshop brought researchers from agencies, academia and industry who were advancing in situ and remote oil characterization tools and methods together with stake holders and end users who rely on information about floating oil thickness for mission critical assignments (e.g., regulatory, assessment, cleanup, research). In total, over a dozen researchers presented and discussed their findings from tests using various different sensors and sensor platforms. The workshop resulted in discussions and recommendations for better ways to leverage limited resources and opportunities for advancing research and developing tools and methods for oil spill thickness measurements and estimates that could be applied during spill responses. One of the primary research gaps identified by the workshop participants was the need for side-by-side testing and validation of these different methods, to better understand their respective strengths, weaknesses and technical readiness levels, so that responders would be better able to make decisions about what methods are appropriate to use under what conditions, and to answer the various questions associated with response actions. Approach: 1) Convene a more in-depth multi day researcher workshop to discuss and develop specific workplan to conduct side-by-side validation and verification experiments for testing oil thickness measurements. 2) Conduct the validation and verification experiments in controlled environments: the Coastal Response Research Center (CRRC) highbay at the University of New Hampshire (UNH); and the Ohmsett National Oil Spill Response Research & Renewable Energy Test Facility

    Multi-Character Motion Retargeting for Large Scale Changes

    Get PDF
    • …
    corecore