37 research outputs found

    Element Distinctness, Frequency Moments, and Sliding Windows

    Full text link
    We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. We develop a randomized algorithm for the element distinctness problem whose time T and space S satisfy T in O (n^{3/2}/S^{1/2}), smaller than previous lower bounds for comparison-based algorithms, showing that element distinctness is strictly easier than sorting for randomized branching programs. This algorithm is based on a new time and space efficient algorithm for finding all collisions of a function f from a finite set to itself that are reachable by iterating f from a given set of starting points. We further show that our element distinctness algorithm can be extended at only a polylogarithmic factor cost to solve the element distinctness problem over sliding windows, where the task is to take an input of length 2n-1 and produce an output for each window of length n, giving n outputs in total. In contrast, we show a time-space tradeoff lower bound of T in Omega(n^2/S) for randomized branching programs to compute the number of distinct elements over sliding windows. The same lower bound holds for computing the low-order bit of F_0 and computing any frequency moment F_k, k neq 1. This shows that those frequency moments and the decision problem F_0 mod 2 are strictly harder than element distinctness. We complement this lower bound with a T in O(n^2/S) comparison-based deterministic RAM algorithm for exactly computing F_k over sliding windows, nearly matching both our lower bound for the sliding-window version and the comparison-based lower bounds for the single-window version. We further exhibit a quantum algorithm for F_0 over sliding windows with T in O(n^{3/2}/S^{1/2}). Finally, we consider the computations of order statistics over sliding windows.Comment: arXiv admin note: substantial text overlap with arXiv:1212.437

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs

    Quantum vs. Classical Read-once Branching Programs

    Full text link
    The paper presents the first nontrivial upper and lower bounds for (non-oblivious) quantum read-once branching programs. It is shown that the computational power of quantum and classical read-once branching programs is incomparable in the following sense: (i) A simple, explicit boolean function on 2n input bits is presented that is computable by error-free quantum read-once branching programs of size O(n^3), while each classical randomized read-once branching program and each quantum OBDD for this function with bounded two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs reading each input variable exactly once are shown to require size 2^{\Omega(n)} for computing the set-disjointness function DISJ_n from communication complexity theory with two-sided error bounded by a constant smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by deterministic OBDDs of linear size. The technically most involved part is the proof of the lower bound in (ii). For this, a new model of quantum multi-partition communication protocols is introduced and a suitable extension of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info theory corrected and regularity of quantum read-once BPs (each variable at least once) added as additional assumption of the theorem. Some more informal explanations adde

    Typically-Correct Derandomization for Small Time and Space

    Get PDF
    Suppose a language L can be decided by a bounded-error randomized algorithm that runs in space S and time n * poly(S). We give a randomized algorithm for L that still runs in space O(S) and time n * poly(S) that uses only O(S) random bits; our algorithm has a low failure probability on all but a negligible fraction of inputs of each length. As an immediate corollary, there is a deterministic algorithm for L that runs in space O(S) and succeeds on all but a negligible fraction of inputs of each length. We also give several other complexity-theoretic applications of our technique

    On Ajtai’s Lower Bound Technique for R-way Branching Programs and the Hamming Distance Problem

    Get PDF
    In this report we study the proof employed by Miklos Ajtai[Determinism versus Non-Determinism for Linear Time RAMswith Memory Restrictions, 31st Symposium on Theory of Computation (STOC), 1999] when proving a non-trivial lower boundin a general model of computation for the Hamming Distanceproblem: given n elements: decide whether any two of them have"small" Hamming distance. Specifically, Ajtai was able to showthat any R-way branching program deciding this problem usingtime O(n) must use space Omega(n lg n).We generalize Ajtai's original proof allowing us to prove atime-space trade-off for deciding the Hamming Distance problem in the R-way branching program model for time between nand alpha n lg n / lg lg n, for some suitable 0 < alpha < 1. In particular we provethat if space is O(n^(1−epsilon)), then time is Omega(n lg n / lg lg n)
    corecore