7,400 research outputs found

    ENSEMBLE MACHINE LEARNING APPROACH FOR IOT INTRUSION DETECTION SYSTEMS

    Get PDF
    The rapid growth and development of the Internet of Things (IoT) have had an important impact on various industries, including smart cities, the medical profession, autos, and logistics tracking. However, with the benefits of the IoT come security concerns that are becoming increasingly prevalent. This issue is being addressed by developing intelligent network intrusion detection systems (NIDS) using machine learning (ML) techniques to detect constantly changing network threats and patterns. Ensemble ML represents the recent direction in the ML field. This research proposes a new anomaly-based solution for IoT networks utilizing ensemble ML algorithms, including logistic regression, naive Bayes, decision trees, extra trees, random forests, and gradient boosting. The algorithms were tested on three different intrusion detection datasets. The ensemble ML method achieved an accuracy of 98.52% when applied to the UNSW-NB15 dataset, 88.41% on the IoTID20 dataset, and 91.03% on the BoTNeTIoT-L01-v2 dataset

    Walling up Backdoors in Intrusion Detection Systems

    Full text link
    Interest in poisoning attacks and backdoors recently resurfaced for Deep Learning (DL) applications. Several successful defense mechanisms have been recently proposed for Convolutional Neural Networks (CNNs), for example in the context of autonomous driving. We show that visualization approaches can aid in identifying a backdoor independent of the used classifier. Surprisingly, we find that common defense mechanisms fail utterly to remove backdoors in DL for Intrusion Detection Systems (IDSs). Finally, we devise pruning-based approaches to remove backdoors for Decision Trees (DTs) and Random Forests (RFs) and demonstrate their effectiveness for two different network security datasets

    Classification hardness for supervised learners on 20 years of intrusion detection data

    Get PDF
    This article consolidates analysis of established (NSL-KDD) and new intrusion detection datasets (ISCXIDS2012, CICIDS2017, CICIDS2018) through the use of supervised machine learning (ML) algorithms. The uniformity in analysis procedure opens up the option to compare the obtained results. It also provides a stronger foundation for the conclusions about the efficacy of supervised learners on the main classification task in network security. This research is motivated in part to address the lack of adoption of these modern datasets. Starting with a broad scope that includes classification by algorithms from different families on both established and new datasets has been done to expand the existing foundation and reveal the most opportune avenues for further inquiry. After obtaining baseline results, the classification task was increased in difficulty, by reducing the available data to learn from, both horizontally and vertically. The data reduction has been included as a stress-test to verify if the very high baseline results hold up under increasingly harsh constraints. Ultimately, this work contains the most comprehensive set of results on the topic of intrusion detection through supervised machine learning. Researchers working on algorithmic improvements can compare their results to this collection, knowing that all results reported here were gathered through a uniform framework. This work's main contributions are the outstanding classification results on the current state of the art datasets for intrusion detection and the conclusion that these methods show remarkable resilience in classification performance even when aggressively reducing the amount of data to learn from
    • …
    corecore