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ABSTRACT This article consolidates analysis of established (NSL-KDD) and new intrusion detection
datasets (ISCXIDS2012, CICIDS2017, CICIDS2018) through the use of supervised machine learning (ML)
algorithms. The uniformity in analysis procedure opens up the option to compare the obtained results. It also
provides a stronger foundation for the conclusions about the efficacy of supervised learners on the main
classification task in network security. This research is motivated in part to address the lack of adoption of
these modern datasets. Starting with a broad scope that includes classification by algorithms from different
families on both established and new datasets has been done to expand the existing foundation and reveal
the most opportune avenues for further inquiry. After obtaining baseline results, the classification task was
increased in difficulty, by reducing the available data to learn from, both horizontally and vertically. The
data reduction has been included as a stress-test to verify if the very high baseline results hold up under
increasingly harsh constraints. Ultimately, this work contains the most comprehensive set of results on
the topic of intrusion detection through supervised machine learning. Researchers working on algorithmic
improvements can compare their results to this collection, knowing that all results reported here were
gathered through a uniform framework. This work’s main contributions are the outstanding classification
results on the current state of the art datasets for intrusion detection and the conclusion that these methods
show remarkable resilience in classification performance even when aggressively reducing the amount of
data to learn from.

INDEX TERMS CICIDS2017, CICIDS2018, cyber security, intrusion detection, ISCXIDS2012, network
security, network traffic classification, NSL-KDD, ML, supervised machine learning.

I. INTRODUCTION
The second layer of protection in computer networks, behind
a well-configured firewall, is an intrusion detection sys-
tem (IDS). This technology has been a mainstay in network
security research for more than 30 years with documentation
outlining the requirements and potential designs of such sys-
tems [1]. Throughout the years many strategies have been
developed, both in academic and commercial settings. This
work and all its referenced work will refer to network-based
intrusion detection (NIDS) as opposed to host-based intrusion
detection. Network-based intrusion detection systems only
have access to information that can be obtained on the net-
work. In practice this means that the evaluation is done on
the features that can be derived from packets and network
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flows or on the corresponding raw data. Host-based intrusion
detection systems reduce their vision of the network to the
incoming and outgoing traffic of that host, but they have
access to information of the live operating system such as
file access, user sessions, running software, etc. The most
popular implementations of network intrusion detection sys-
tems are tools like Snort [2] and Bro [3]. These are so-called
rule-based systems. The evaluation of traffic happens at the
packet level and is essentially a comparison to a database of
signatures of known, malicious traffic. This approach proved
to be very successful in recognizing known patterns, but
breaks down when tasked with the classification of perturbed
known or unknown patterns. While these methods are still
in use today, they are only part of the picture of available
strategies in intrusion detection. Taxonomies have identified
two other popular approaches. The first of which is stateful
protocol analysis in which attempts are made to model valid
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interactions at the network protocol level. Since some attacks
deviate from the expected interaction pattern, these can be
identified [4]. A related field is focused on uncovering flaws
in networks that employ new protocols. The vulnerabilities
are often associated with the protocol itself, its implementa-
tion or the available interactions with other devices and / or
actors in experimental setups. Research in this field ( [5], [6])
tries to get ahead of problems with new technologies before
they reach widespread adoption. The third strategy can be
put under the umbrella of statistical anomaly detection. Early
implementations in this category relied on static metrics of
a network, with later implementations introducing dynamic
metrics to avoid a rigid system that reports lots of false
positives. The expansion of processing power and memory
has allowed more expensive techniques to be used that have
the ability to cope with large amounts of data and learn
from them. These methods, classified under the umbrella
term machine learning, have proven to be very successful
on the benchmark datasets that are available in the research
community. Within the set of ML methods several broad
paradigms exist. Four distinctions exist: supervisedMLmod-
els a domain through experiencing labeled samples from
it. Unsupervised ML has data without labels from which it
tries to learn useful lower-dimensional representations, find
relevant clusters or estimate the distribution(s) whence the
samples come from [7]. Semi-supervised learning combines
both methods, starting out with an often small set of labeled
samples and a larger corpus of unlabeled samples [8]. The
final paradigm that has enough distinction to be its own
category is reinforcement learning in which an agent per-
forms actions towards a goal, being rewarded for actions that
lead to achieving the goal and punished for poor actions.
The combination of exploration and feedback lets the agent
develop good strategies and techniques to tackle the issue
it was given [9]. Most of the current research effort into
intrusion detection is focused on improving within the super-
vised learning paradigm [10], [11]. This article contributes
an in-depth evaluation of several families of supervised ML
techniques when placed under increasingly severe restrictions
with regard to the available data to learn from. The evaluation
is done on four datasets that contain data from 20 years of
intrusion detection data generation. The key research finding
is the robustness of the classifiers on all datasets against
aggressive forms of both sample and feature reduction.

II. RELATED WORK
An extensive body of research on the topic of intrusion detec-
tion through machine learning exists. Because this analysis is
wide rather than focused on a single technique, it fits more
closely among review papers and other comparative analyses.
Some of the key conclusions related to machine learning for
IDSs are summarized hereafter.

Mishra et al. [12] provide a very extensive review, focus-
ing on the KDD98/99, NSL-KDD family. The main part
of the article is a four-part overview of the application of
ML in intrusion detection. The authors decided to group the

reviewed articles based on whether they use a single or mul-
tiple classifiers for detection and whether all features were
available for the classifiers to learn from. The article covers
a large, representative sample of published material from
2002 to 2017. Reducing features for single classifiers did not
improve detection rate, but when using multiple classifiers
this works well. Another interesting conclusion is that the
state of the art methods differ significantly for the various
classes of cyber attacks.

Wu et al. [13] surveyed computational intelligence (CI)
methods over the KDD-collection and constrained their
review to five classes of algorithms, most of which are
biologically-inspired models. This set of algorithms includes
artificial neural networks (ANN), evolutionary computa-
tion (EC), fuzzy sets, artificial immune systems and swarm
intelligence. During their survey the authors note that these
techniques are not always standalone, but can be used as
optimizing or explaining components for the other classes.
The review ends its main part with soft computing, really
zooming in on the synergy between earlier methods to arrive
at techniques like neuro- and genetic-fuzzy systems. The dis-
cussion contains the numerical results from articles published
between 1997 (and earlier) and 2007. From the review it
would seem that CI methods built up to a peak at 2005 and
then declined. This would be consistent with the increased
attention for other machine learning methods that has been
going on for several years now. Perhaps a rediscovery of the
methods described in this article, could be of great benefit.

Thaseen and Kumar [14] explored the use of many
tree-based classifiers for intrusion detection systems. Their
evaluation happens on NSL-KDD and features eight decision
tree (DT) learners: alternating DTs (ADT), C4.5, J.48, ADTs
with logistical boosting, naive-bayes trees, random tree,
random forest and reduced-error pruning trees (REPTree).
It should be noted that two feature selection strategies were
used, reducing the number of features to learn from to eight
and ten respectively. Their results show that methods that
incorporate boosting are computationally an order of mag-
nitude more expensive, without achieving superior perfor-
mance. Random forests reach the highest scores of 0.975 on
both precision and recall on the test dataset, while being one
of the most inexpensive methods.

Liao et al. [15] included research from the other paradigms
in intrusion detection, namely signature-based IDS and state-
ful protocol analysis. The compiled research is distinguished
further by including the level at which the intrusion detection
was being done (host, network or protocol) and whether it
could pick up on known and unknown attacks. By casting
a much wider net than just focusing on machine-learning
IDSs, more generalist claims could be substantiated. This
article provided a stronger foundation for the claim that
signature-based intrusion detection systems really do not gen-
eralize well, making maintenance of the rule database very
costly. Anomaly-based methods fare better on the generaliza-
tion front, but are often held back by performance constraints
with regard to time. Classification performance is given only
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in a tiered notation (Low, Medium, High). The authors also
devote a section to intrusion detection in virtualized environ-
ments noting that performance degradation was an avenue
that needed more research.

The work detailed in this article vastly expands on
an earlier publication [16] which applied a smaller ver-
sion of the comparative strategy to produce a baseline for
CICIDS2017 that was not yet available. The work concludes
by identifying tree-based learners as the best choice, with
meta-estimators based on decision trees being optimal. Other
methods can be as performant, but often on a smaller set
of attack classes or at a higher computational cost. The
only class for which a tree-based meta-estimator did not
achieve great performance was infiltration. This shortcoming
was attributed to the lack of training samples in the data
(CICIDS2017 only contains 36 positive infiltration samples).
Recognition of all other classes went consistently higher
than 99% on multiple metrics, including both precision and
recall.

III. METHODOLOGY
This section describes the experiment, starting with the
choices in framework design, followed by a description of
the datasets, the included algorithms and adaptations to test
the robustness of classification when faced with reduced
learning data.

A. FRAMEWORK DESIGN
As mentioned earlier, all datasets have been processed with
the same lightweight framework. Some key principles are
embedded in the design and implementation of the frame-
work. The corresponding code is publicly available.1 This is a
deliberate move towards more transparency in the experiment
design.

1) STANDARDIZED PIPELINE
The paths through which the data moves reflect the standard
that has emerged in the industry. The data gets loaded and pre-
processed after which the hyperparameters of the algorithms
are optimized. These optimized parameters are then used in
a final training of the model that can be deployed. Code
is maximally shared between the two pipelines. The pre-
processing is the only section that contains dataset-specific
modifications. For the hyperparameter search 33 or 50% of
the data is split off first in a stratified manner after which it is
broken down further into 5 train-validation folds. The second
split is repeated five times, resulting in a total of 25 train-
validation folds that are used to select the optimal hyper-
parameter values. The remaining 67 or 50% of the original
data is not used during the hyperparameter optimization. Only
the optimal sets of parameters are stored. These values are
retrieved and set for the algorithms in the single execution
part of the pipeline. The single execution part is disjoint
from the hyperparameter optimization to be able to set fresh

1Base framework code: https://gitlab.ilabt.imec.be/lpdhooge/clean-ml

train-test splits with rate couples that vary between 0.1-99.9%
and 33-67% or 50-50%. Five metrics were taken into con-
sideration to rank the models with the tested hyperparame-
ter combinations. These metrics are: balanced accuracy (the
average of the per-class accuracy, implicitly incorporating
class imbalance), precision (the proportion of truly positive
items in the data to the amount of items deemed by the model
as positives), recall (the number of samples classified as
positive divided by the total amount of positive samples in the
data), F1-score (the harmonic mean of recall and precision)
and the receiver-operator characteristic area under the curve
(ROC-AUC) (a visual metric summarized as class separa-
bility with 1 being perfect separation and 0.5 meaning total
overlap). The hyperparameter set that was deemed optimal
was the set that ranked highest most consistently in the five
available rankings. The results of this process: mean fold
validation scores for each of the metrics, optimal hyperpa-
rameters, as well as the search time are stored in Javascript
Object Notation (JSON) files.

2) MODEL PERSISTENCE FOR FUTURE RESEARCH
After evaluation the trained models are not thrown away, but
saved to disk in a serialized format. The naming scheme
used to store the cross-validation results was extended so
that settings with which the models were trained are easily
recognizable. This is a preparatory step for future research
investigating the generalization strength of machine learning
models for intrusion detection.

3) EXTENSIBILITY
Due to the dynamic nature of the demands being placed on the
framework, it is crucial that the system is extensible without
breaking earlier results. The insistence on this principle is the
reason why adding new datasets could be done with solely
modifications to the preprocessing.

4) PORTABILITY
The set of dependencies is deliberately minimal and their
capabilities maximally used so that an external party can get
the entire system working with these commands (example for
Ubuntu Linux distributions).

apt-get update
apt-get install -y python3 python3-pip
pip3 install sklearn numpy xgboost
ln -s -f /usr/bin/python3 /usr/bin/python

Paths might differ and the symlinking might not be required
if the distribution uses python3 as the standard python
executable.

Because of the amount of variable parameters to the anal-
ysis, two scripts have been written to produce files with
the proper invocations. A side-effect of this is that upon
reading these files an understanding of the input and out-
put of the system is obtained without doing source code
inspection.
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TABLE 1. Per dataset normal / malicious sample composition.

B. INCLUDED DATASETS
This section contains short introductions to the four data
sets that are included in this analysis. More details about
the specifics of this data that impacts the results, is dis-
cussed alongside the results. Table 1 lists the sample com-
positions (benign / malign) for each dataset and each attack
class.

1) NSL-KDD
Published in 2009, but still only containing traffic generated
in 1998, NSL-KDD [17], [18] is the most well-studied dataset
in intrusion detection to date. Improving on structural flaws
present in KDD99, this reinvigoration of the data has been
successful as a baseline against which all researchers compare
their results. It is for that reason that it is included here
alongside the much newer datasets.

2) ISCXIDS2012
The need formoremodern, realistic data to test network intru-
sion detection systems was apparent after the republishing
of data from 1998. That is why the same research institute
that created the updated version of KDD99 set up a new
experiment for data generation. That experiment culminated
in a first public data set labelled ISCXIDS2012 [19], [20].
The generation process happened in a separate network
with real machines operating under automated scenarios
to generate both baseline and attack traffic. It contains a
mere 15 features including 4 that are derivatives of packet
payload.

3) CICIDS2017
Five years after publishing ISCXIDS2012 a new version
CICIDS2017 ( [21], [22]) was released that expanded the
scale of the experiment, the available dynamic baseline and
attack scenarios. It also vastly improved the capture file
processing to result in 7 days (7 files) of 80-feature, labeled
flows. The separation into several days, each containing a
specific class of cyber attacks is useful to differentiate the
results.

4) CICIDS2018
The most recent iteration from 2018 [23] moved the
infrastructure for the experiment to the cloud. Besides an
increase in the amount of simulated clients in subnetworks,
no real changes in methodology were included. The data for
researchers to work with consists of 10 days of 80-feature,
labeled comma separated values (CSV) files containing
benign and malicious network flows.

C. INCLUDED ALGORITHMS
A total of twelve supervised classifiers were included,
two of which were left out of hyperparameter optimiza-
tion, due to computational infeasibility or limitations in the
algorithm’s implementation. (i.e. radial-basis-function kernel
support vector machine (RBF-SVM) and nearest centroid)
The algorithms are divisible into three classes. All tree-based
methods used gini-impurity to make splitting decisions.
The abbreviations next to the methods will be used through-
out the rest of the text and in the figures. Important innova-
tions in the field are captured in the set of decision tree based
classifiers. The methods from other families were added for
comparative purposes. Detailed information on every individ-
ual algorithm can be obtained in these references [24]–[26].

1) Tree-based methods
• Decision tree (dtree)
• Decision trees with bagging (bag)
• Adaboost (ada)
• Gradient-boosted trees (gradboost)
• Regularized gradient boosting (xgboost)
• Random forest (rforest)
• Randomized decision trees (extratree)

2) Neighbor methods
• K-nearest-neighbours (knn)
• Nearest-centroid (ncentroid)

3) Other methods
• Linear kernel SVM (linsvc)
• RBF-kernel SVM (rbfsvc)
• Logistic regression (binlr)

D. INCREASING THE LEARNING DIFFICULTY
The results obtained with the earlier implementation of this
framework on CICIDS2017, documented in [16], showed
great classification results. Through inspection of the inter-
mediate results of the cross-validation process, the sin-
gle execution results could not be written off as flukes.
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This prompted new work to improve the results further.
Efforts to try to increase the learning difficulty included
aggressively reducing the amount of samples to learn from
(vertical reduction) and iteratively removing the features
with the highest discriminating power (horizontal reduc-
tion). The objective was to break classification up to the
point where the methods could no longer be considered
usable.

1) VERTICAL DATA REDUCTION
The data was sampled in a stratified way in a train-testing
splitter. On NSL-KDD, ISCXIDS2012 and CICIDS2018 a
linear space with 11 increments between 0.01 and 0.50 was
chosen. For CICIDS2017 a finer-grained space from 0.01 to
0.33 with single percent increases was used. Intermediate
visualization of the results did not yet show a clear breaking
point in many cases. Therefore additional results were col-
lected with only 0.001 and 0.005 percent of data available
for training. Because it is a train-test split, one percent used
for training, means that testing gets done on 99% of the data.
It follows that good results after training on little data are extra
impressive.

2) HORIZONTAL DATA REDUCTION
Work that includes feature selection and / or -reduction often
does so to reduce computational workload or to stabilize
results by removing redundant (e.g. heavily correlated) fea-
tures. This work has opted to do the opposite to increase the
classification difficulty.

From each dataset certain features are removed,
either because they would obviously contaminate the
results, are redundant or are otherwise problematic. For
NSL-KDD the labels_numeric feature has been removed.
For ISCXIDS2012 the features generated, sourcePayloadAs-
Base64, sourcePayloadAsUTF, destinationPayloadAsBase64
and destinationPayloadAsUTF have been removed. For
CICIDS2017/8 Flow ID, Source IP, Source Port,Destination
IP and Destination Port have been removed.
To find out which of the remaining features are most

consequential, decision trees trained on 33 or 50% of the
data for each available day were kept. Subsequently these
trees were parsed, collecting which feature was used to
split at each node. The top features were removed in
proportional blocks to the number of available features,
until around ~25% of the most successful features were
removed.

As noted earlier, features that could be considered artifacts
of the data creation process had already been removed. The
procedure resulted in the additional removal of the features in
table 2.

One finding immediately stands out. A strong argument
can bemade against including simple time features in the data
as these will not be representative in real-world scenarios.
Unfortunately, they are the top feature(s) for several datasets
and will probably still be included in analysis by researchers
who use the full feature set.

TABLE 2. Most discriminative features to remove from each dataset.

IV. RESULTS
A very large volume of results has been collected, due to the
expansiveness of the experiment. This section will therefore
be divided into multiple parts. The results for every data set
will be reported individually at first. Per dataset the break-
down will be according to the algorithm classes described
in section III-C. The last subsection V aims to merge the
individual conclusions to create a well-founded total picture.
Textual information is always given in amanner that contrasts
the results so that the (dis)advantages ofmethods compared to
each other are more pronounced. All mentions of percentual
increases or reductions in classification performance are to be
interpreted as absolute values.

A. NOTE ON GRAPHICS
In total, 76468 result points with six metrics each have been
collected. Tooling has been created to get visual insight in
these results. This tooling consists of 48 interactive plots
in which the metric scores are set against the volume of
data used for training. Parameters such as attack class (if the
dataset has multiple days), the type of scaling and the number
of removed features can be altered. This approach yields
contained units for every algorithm (and every dataset) in
which all relevant parameters of the analysis can be tweaked
with immediately updated visualizations. A sample graphic
of the visualization is shown in figure IV-A. All results and
corresponding code of both the analysis and the visualizations
are at the following locations:
• https://gitlab.ilabt.imec.be/lpdhooge/nslkdd
• https://gitlab.ilabt.imec.be/lpdhooge/iscxids2012
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FIGURE 1. Example of the available interactive plots.

TABLE 3. NSL-KDD: number of files with results collected per algorithm.

• https://gitlab.ilabt.imec.be/lpdhooge/CICIDS2017
• https://gitlab.ilabt.imec.be/lpdhooge/cicids2018
It is highly recommended to use the interactive plots when

reading the article. Information on how to run the visualiza-
tion is included on the homepages of the repositories.

B. NSL-KDD
The most heavily studied dataset NSL-KDD has been
included to establish a clear first reference point. Table 3
shows the number of collected files for each of the algo-
rithms. NSL-KDD has been evaluated as 1 day, with 3 types
of scaling (2 for linsvc, rbfsvc and binlr), 13 vertical
reduction test points and 5 horizontal reduction test points.

Multiplication yields the single execution results indicated in
the table without exception.

1) TREE-BASED METHODS
Starting off with a single decision tree, the results already
reveal several things. All metrics plateau high (~99%) fairly
early (between 10% & 20% of data used for training).
The choice of how to scale features in preprocessing has a
clear, visible impact. No feature scaling squeezes all metrics
together tightly, standardization introduces a minor spread
(< 1%), but MinMax scaling results show less stability and
a spread of up to 3% within the same metric. Adding in
training percentages of 1- and 5 thousands of the data was
a great idea, because the reliability of the classifier drasti-
cally (~10%) drops in this region, compared to the plateau.
Removing the most discriminative features in a step-wise
manner increases the spread between the metrics. This is true
regardless of scaling, but more pronounced for MinMax scal-
ing, because it was less stable to begin with. The metric that
suffers most from this horizontal reduction is recall. Precision
stays relatively high, but as it is now measured on a smaller
pool of recognized samples, an observer should look at the
F1-score to keep the overview. The total impact of horizontal
reduction on classification performance was noticeable, but
less severe than expected with a maximal reduction of around
5% (plateau region). The metrics break away most from each
other when going from the removal of the best 9 to the 12 best
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features. When using 40% to 50% of the dataset to train,
slight signs of overfitting could show up, with a decline on
all metrics.

Introducing the first meta-estimator, the bagging classifier
applied on decision trees had few interesting outcomes. Nei-
ther the absolute performance, nor the spread of the metrics
when faced with either type of reduction moved much. The
required amount of training data to make the classifier plateau
remains between 10 and 20 percent. The most interesting
conclusion is the new irrelevance of scaling method. MinMax
scaling is as stable as the other two forms and even groups
tighter than using No scaling with a bare decision tree.

When using adaboost as a classifier, the absolute per-
formance moves up slightly towards perfect classification,
but not quite reaching it. Vertical reduction has very similar
impact, severely degrading performance to under 90%. The
method still plateaus in the same region, but the individual
metrics fluctuatemore in unpredictablewayswhen increasing
the training size. This is not surprising and indicates testing
points where the boosting was either more or less successful.
Amoderately interesting note on the impact of feature scaling
is the greater instability when normalizing the features. This
could be an issue related to the numerical precision of the fea-
tures. Standardization pushes the features into the narrowest
range and double precision floating point numbersmight have
caused the algorithm to optimize on tiny range differences,
ultimately settling on a value that is too precise.

A second type of boosted trees, the gradient-boosted trees
show the steepest performance increase on the low-end of the
amount of data used to train, never dropping below 91% on
a single metric, with most of the evaluated metrics between
92 and 95 percent depending on the scaling being applied.
The method increases its classification performance faster
than any other algorithm, including adaboost. The topping off
already occurs around a 5-10% use of training data. Scaling
does not affect result stability much when including both hor-
izontal and vertical data reduction. Where gradient-boosted
trees beat adaboost on the low-end, they suffer from stability
issues on the high-end of used training data. Metric results
obtained with adaboost stay consistent longer when gradually
removing the top-features and under those conditions also
plateau around 1% higher than gradient-boosted trees.

Finishing off the list of boosted trees, xgboost reached
the highest absolute numbers with metrics closely clustered
around 99.5%. Because it is basically gradient-boosted trees
with regularization, it is not surprising that it has the same
steep increase in classification performance for very low
amounts of training data. As with the other methods, a fall
in all metrics is observed when going from removing the
9 best features to the 12 best. The other steps in between no
reduction and ~25% reduction of features are limited.

Moving towards trees with more built-in randomization
shows the strength of these methods. Random forests, essen-
tially a bagging classifier with random feature subsets to
build individual trees also get consistent metrics above 99%
in the stable zone, reaching stability with just 5-10% of the

data available for training, regardless of the scaling applied.
This strength carries on when removing features, but ulti-
mately breaks down sooner than the boosted trees. Regardless
of scaling, this method averages 98% when removing the
most discriminative 9/41 features, falling further to around
96-96.5% when removing the 12 best. These results are
very similar to the regular bagging classifier, but the random
forests have less per metric spread for the tested data points.
Boosted methods reach somewhat higher scores and show
much less variance in the metrics when including the best
features, but this situation reverses when the best features are
removed.

Increasing the influence of randomness further with extra-
trees shows a couple of things. It does not reach the best
results of boosted trees, but it comes ever so close. What’s
more interesting is the consistency of this method. Random
forests get somewhat better metric scores, but extratrees
reduce the variance between metrics further than any method.
Mixing this with the fact that they are computationally very
cheap, makes them stand out.

2) NEIGHBOR METHODS
Arguably one of the simplest classifiers, k-nearest neighbors
levels around 99% on all metrics in the plateau zone with-
out reducing features. This plateau is reached when using
approximately 20% of the data available for training. For
this method training is nothing more than adding the data
points to a data structure that is more suited for neighbor
search than the brute-force way. So when only part of the
data is considered for training this directly translates into a
sampling. What is interesting about this is the performance.
Knn is an expensive algorithm, but only taking around 8%
of the data and testing on the 92% unseen data points gives
classification metrics stably upwards of 98%. There is one
caveat to this method and that’s the instability when taking
out the best features. Scaling the features exacerbates this
issue, with wild (~10%) drops and surges in metric scores.
Not applying scaling suffers considerably less from this issue.
When exposed to high amounts of training data, the run time
of this method rises much faster than that of the tree-based
methods. These shortcomings should alert users that this
classifier can be used as the first in a chain, but only if given
a small sample to compare new data points.

The nearest centroid classifier proves too simple to be
practically useful. The recall tends to be very low at around
70% in the stable zone. Stability is already reached after
using five or more percent of the data to train on. Of those
70% recognized as malicious in 99% of the cases this was
an accurate statement (MinMax and Z scaling). Interestingly,
not scaling the features swaps these conclusions, with recall
around 95% and precision now at only 73%. Even taking the
top-3 features out deteriorates the recall to less than 60%. Not
scaling the features keeps the same scores until removing the
best 9 or more features. At that point recall and precision
act like they did with standardization or minmax scaling.
Something that can be observed regardless of scaling and
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reduction is the stability of the metrics. They are closer to a
flat line than any other classifier.Without scaling, this method
is stable even with a mere 1% of the data used to train. The
word training should again be viewed very lightly, calculating
the center of each class in the training set can hardly be seen
as real training. This simplicity has a major upside and that’s
the computational efficiency. Testing is done in O(1), making
this blaze through the data. Combining this classifier to select
the samples for further testing, with a more potent classifier
would give great results.

3) OTHER METHODS
An SVM with a linear kernel is not a very suitable
method. While it does reach stability, recall sits around 92%,
which is much lower than previous methods. Taking the
best-performing features out only reduces this to 90-91%, but
introduces more instability in the results. Stability is reached
with 1-5% of data used for training which is good and the
inter-metric spread is less than for that for the ncentroid
classifier, but worse than of knn and the tree-based methods.

An SVM with a radial basis function in the kernel gets
better results, clustering metrics around 97%, but only when
using standardization as scaling method. This clustering gets
wider as soon as the best features start to get removed. Both
types of scaling yield results pretty much invariant to the
amount of training data after using 10+% when not reduc-
ing features aggressively and around 20+% with horizontal
reduction. Absolute numbers drop when removing the best
features, but not by much (1-2% drop). This method does
not scale well into large sample sizes, which is an additional
factor holding it back.

The final classifier, a logistic regression suffers similarly.
Recall does not get higher than 92% even without feature
removal. Removing features does not affect themetrics much,
but it does introduce some instability. This happens regard-
less of scaling. Like the linear support vector machine, this
method would seem to be too simple, because the data is not
well-separable in the ways that these classifiers try to find.
A noise issue probably also hurts these classifiers. Feature
reduction in the conventional direction would benefit these
methods.

4) INTERMEDIATE CONCLUSIONS
Tree-based methods take the cake when it comes to raw
performance metrics, with boosted trees scoring best overall,
but methods that include (extreme) randomization come close
at lower computational costs. Neighbor-basedmethodswould
not be recommended as standalone classifiers, but under the
right circumstances they can be used as effective steps in
a pipeline or ensemble. The scaling choice during prepro-
cessing can make a difference, sometimes in unexpected
directions so it should not be overlooked. The results of some
methods converge with very little data (e.g. 1%), while the
majority did need between 5 and 15 percent of the data to
reach stability. This is an interesting finding for researchers
who want to improve the time requirements for intrusion

detection systems. Given the splitting method a more pre-
cipitous drop in classification performance was expected.
This is true when using less than one percent of the data to
train (and the other 99+% to test), but it is not true when
using even slightly more. Removing the features that could
be considered most discriminative according to the method
described in paragraph III-D2, did reduce metric scores as
expected, but infrequently by more than 10% even with the
25% best features removed. It does increase the inter-metric
spread and sometimes affects the stability of the classifiers.
Overall the effect is less catastrophic than expected, leading to
the conclusion that there is real structural difference between
benign and malign traffic embedded in the dataset which the
methods are able to learn.

C. ISCXIDS2012
Originated at the same research institute as NSL-KDD and
aimed at improving on its shortcomings, ISCXIDS2012 tries
to set a standard for intrusion detection datasets with full,
labeled captures of diverse normal and malicious traffic.
As described in section III-B2 this dataset contains 6 days
of traffic with malicious activity. Similarly to NSL-KDD,
3 types of scaling (2 for linsvc, rbfsvc and binlr), 13 ver-
tical reduction test points and 5 horizontal reduction test
points were used. Multiplication yields the results indicated
the table, but exceptions exist. For some classifiers files are
missing due to errors in execution because at very low (per
class) sampling rates no instances of malicious flows could
be included. The sampling strategy was purposefully not
adapted so as to not skew the results. Whereas one would
expect all classifiers to fail during execution at such low
sampling rates, this is not the case. After investigating this
it was clear that whether they fail or not is dependent on
the implementation. E.g. gradient-boosting trees fail during
execution when starting the boosting procedure, but regular
decision trees complete normally because they deliver a tree
consisting only of a root node and do no further processing.
The separation of the data into different days containing
different types of attacks opens up the ability to assess how
the methods differ for the available types of malicious traffic.
This extra dimension will be covered when discussing the
results, but day 2 with only 11 malicious samples (as tallied
up in table 1) will not be considered. A second noteworthy
comment before the result presentation, is the reduced valid-
ity of plain accuracy as a metric. NSL-KDD is well-balanced
in terms of representation for attack and non-attack traffic.
ISCXIDS2012 and the other new datasets are not. They show
a heavy preponderance of non-attack traffic, much more akin
to a real network. Standard accuracy does not factor in this
class imbalance, therefore its values can be dismissed in
favor of balanced accuracy (which was also reported for
NSL-KDD).

1) TREE-BASED METHODS
A single regular decision tree almost reaches perfect classi-
fication (99+%), but for some classes this requires 30% or
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TABLE 4. ISCXIDS2012: number of files with results collected per
algorithm.

more of the data to train on. Moreover there are issues with
the stability of the metric spread. Scaling affects the spread
between the metrics. Standardizing the features provided the
tightest clustering of metrics north of 99.5% after plateauing.
Reducing the features, drastically reduces efficacy for some
classes when using minmax scaling, with standardization and
not scaling being far less affected. Reducing the amount of
features to learn by the maximum amount leaves only 11 fea-
tures. Still performance plateaus above 98% under almost
all conditions. Very rarely a spike in the metric scores was
observed.

The bagging classifier based on decision trees achieves its
theoretical goal of reducing the variance of decision trees.
Scaling becomes irrelevant and while the absolute perfor-
mance only receives a very slight bump upwards, the inter-
metric spread is visibly reduced. The metrics’ peak lies above
99.9%. For feature-reduced data, the performance often gains
half a percent compared to decision trees. Convergence to the
plateau typically happens when using 15% of the data or more
as training samples.

For attack classes where the curve of the classification
metrics isn’t too steep, adaboost steepens it. Even when given
only 5 thousandths of the samples to train, metric scores
above 95% are the norm. The faster convergence and clas-
sification improvement does come at a cost. Stability of the
results when exposed to higher levels of training data isn’t
always as good as the bagging classifier or plain decision
trees. The algorithm overshoots its target by tailoring too
much to the misclassified samples, repositioning the splitting
points and / or tree-layout to a point where they are less
globally optimal. For methods where there was still some
headroom after removing the features, adaboost takes some
of that. Adaboost’s most useful property is its resilience and
stability in the face of aggressive feature reduction. Regard-
less of scaling, the metrics cluster together more, at higher
scores and earlier than other methods.

Gradient-boosted trees, another boosting strategy has
worse results, especially when it comes to recall at low levels
of training data. It does not always lead to faster conver-
gence, nor are the levels at which it converges higher than
those of adaboost. What’s more disconcerting are the random

downward spikes on the precision metric. They are unpre-
dictable and quite severe (dipping as low as 65%). Reducing
features doesn’t reliably increase the number or the scale of
these dips. They occur at different points of volume of the
dataset used for training.

The undisputed winners in classification are extreme
gradient-boosted trees. They stably converge regardless of
scaling, typically with 10% of data used for training. They
show no sudden downward spikes and give consistent,
extremely high classificationmetric scores. The robustness of
xgboost against the feature reduction is remarkable, with all
metrics staying above 99.5% on all classes except infiltration
(where it stays above 97.5%).

Random forests show very similar performance to the
results obtained on NSL-KDD, reaching very high numbers
and level off after using only 5-10% of the data for training.
Weirdly enough the usable days containing brute force attacks
(day 3 & 4) are the easiest to classify for all methods, yet the
random forest classifier with standardization of the features
levels off early at 88% precision. This anomaly stays when
reducing features. Overall, removing the best features has
clear negative impact on the classification. It stays stable, but
metric scores easily drop 5% across the board.

Extratrees, like xgboost score incredibly well. Bruteforce
attacks are recognizedwith all metrics above 99.6% evenwith
just a thousandth of the samples to train from (Z-scaling).
In more general terms scaling can be disregarded, because
all scenarios reach metrics in the upper half between 99 and
100%. This plateau is reached with just one to five percent of
training data. Heavily reducing the features, breaks down per-
formance by maximally 2% invariant to scaling (with a single
exception for DDoS traffic (Day 1) with MinMax scaling).
Adding the favorable run time complexity of extratrees, this
classifier is a serious contender for best-overall choice.

2) NEIGHBOR METHODS
Despite its simplicity, nearest neighbor search continues to
perform very well, with metrics above and beyond 99% con-
sistently for all scenarios. As was the case with NSL-KDD,
not applying scaling clusters the metrics even more because
of the higher outlier impact in the calculation. This method
reaches stability quickly, most often with a mere 5% of data
available during training. Removing the best features has a
peculiar effect on the recognition of brute-force attacks, mak-
ing classification rates stably higher on all metrics, in many
cases moving to perfect classification. This is impressive,
given that at this point only 11 flow-features are available.
Recognizing the DDoS instances does worsen when reducing
features, but this effect is dependent on the type of scaling
used and not predictable. (e.g. MinMax scaling loses substan-
tially when removing the top 2 and 3 features, but jumps back
up when removing the top 4, no similar effect was found with
the other types of scaling.)

The nearest centroid classifier continues to be surprising in
that it obtains perfect recall on all classes (except infiltration
98%+) with very little training data, regardless of scaling.
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The corresponding precision rules it out in terms of having
predictive validity as a single classifier for attack traffic, but
it has ROC-AUC scores in the 90% range indicating that a
good separation between the classes exists. Paired with the
sub-second performance of this classifier even on files of
several hundred megabytes, it is hands-down the best quick-
and-dirty classifier. Adding to this success is the fact that
these rates are already observed with minimal training data
and that they stay stable when increasing the amount. This
conclusion holds even when reducing features.

3) OTHER METHODS
A linear-kernel SVM has a story akin to the nearest centroid
classifier. It performs really well in terms of recall on all
classes, but the precision is a mixed bag with only brute
force attacks being recognized at a practically applicable rate.
Whether standardization or minmax scaling is employed is
irrelevant. This method takes at least 5% of the data to train
to get useful results. Taking the best features out does reduce
performance slightly and introduces some instability, but
the effects don’t make classification all that worse. Overall
results of this classifier are underwhelming.

Changing the kernel to a radial basis function greatly
improves precision on the other classes with HTTP-DoS and
DDoS upwards of 85% and infiltration hovering around 98%.
It is certainly worth pointing out that these numbers only
occur if the features were standardized. Minmax scaling does
not always converge to these numbers and if it does needs
much more training data. Luckily with Z-scaling the numbers
are gotten with just 5+%of data used for training, which kept
execution time under a minute. Reducing features maximally
decreases performance by ~15%, on the classes for which
this classifier had gained performance compared to the linear
SVM. The drop in classification happens pretty fast (in terms
of training data used) and stays stable.

Finally, the logistic regression shows results very similar to
the linear SVM, with good results only in recognizing brute
force attacks. Similarly to the RBF-SVM, minmax scaling
will plateau but takes more data to get there compared to stan-
dardizing the features which will plateau much faster. Reduc-
ing the features, reduces the metric scores, often by 10%. The
only redeeming quality is the execution speed.

4) INTERMEDIATE CONCLUSIONS
Referring back to section IV-B4 is very appropriate because
the conclusions outlined there hold up for ISCXIDS2012.
Tree-based methods are clear winners when it comes to clas-
sification metrics, with meta-estimators improving stability
and (with very few exceptions) abstract over the scaling
choice. Extreme gradient-boosted trees have the overall high-
est scores, but are very closely followed by extratrees, that
put less computational demand on the system. A classic two
thirds one third train-test split is overkill, because stability
is reached most often with just 5-15% of the samples used
for training. The similarity between the intermediate conclu-
sions between NSL-KDD and ISCXIDS2012 is remarkable,

TABLE 5. CICIDS2017: number of files with results collected per
algorithm.

because the underlying experiments that collected the data
were conducted in different environments with more than a
decade between them.

D. CICIDS2017
ISCXIDS2012 was a stepping stone for a bigger experiment
with more diverse attack and baseline data as well as a new
flow reconstructing tool for the raw pcap files that calculates
more than 80 traffic features. The data consists of seven days,
each embedding a different class of attack traffic. Results on
the infiltration class (day 3 in my results) were collected,
but should be disregarded because a positive sample count of
only 36 is not substantial enough to draw conclusions from.
The granularity with which results have been collected on
CICIDS2017 is three times higher than that of the other data
sets, collecting at 35 data points between 0.1 and 33 percent
of samples used in training. A tiny amount of results could not
be collected, because the train-test splits at very low sampling
rates did not contain positive samples. Data was deliberately
collected at more points to get a higher resolution image of
the situation at sampling rates between 1 and 10 percent.

1) TREE-BASED METHODS
Increasing the tested points for training volume immediately
shows the expected results. If improvement in metric scores
happens, it does so when using training data between 1 and
10 percent of the full set and it happens in a step-wise
upward motion. Single decision trees have a mixed set of
results. Discovery of brute-force attacks has multiple, severe
downward spikes in classification performance, but only if
the features undergo a form of scaling. The other classes show
much cleaner results with steep rises up to 5% of data used for
training, levelling off afterwards. It should be mentioned that
the points at which this method levels off are not equal for
all classes. Recognition of web attacks, brute force attacks
and botnet traffic reach an F1-score around 0.9, but Dos,
DDoS and port scanning are pretty much perfectly classified
(F1 > 99.99%). Scaling choices can impact this: e.g. No scal-
ing diminishes the F1-score on DDoS traffic by 10% to 0.9.
Feature reduction trashes classification performance for the
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FTP-SSH brute force traffic with recall now consistently
at the low point of the aforementioned downward spikes
(0% recall). Curiously this effect only happens when the
features underwent a scaling operation. Removing the same
amount of features, on non-scaled data creates losses of up to
20% on a single metric, but still reaches an F1-score of 87%.
This peculiarity is highlighted to show the potentiallymassive
impact of preprocessing choices. Overall, the reduction of
features has a big impact on performance for botnet and web
attack traffic (~20%), a small impact for HTTP-DoS attacks
and no discernable impact for port scanning or DDoS traffic.

The first issue solved by the bagging classifier are the dips
when classifying ftp-ssh brute force traffic. Scaling becomes
irrelevant and reducing the features drops classification from
near perfect to 87% (F1). Web attacks and botnet traffic
are more stably recognized. Changes in classification per-
formance for DDoS and port scanning traffic happen at the
fourth decimal point between 99.8 and 1.00 on all metrics
(regardless of feature reduction). Feature reduction substan-
tially lowers classification rates on web attacks and http-DoS
attacks levelling off on a lower plateau and taking more
training data to reach that plateau.

As with previous datasets, adaboost pushes the metrics up
in the low training volume range, leading to faster conver-
gence with less data, but not necessarily as stable as other
methods. In terms of absolute classification performance it
does not score better than the bagging classifier. Adaboost
abstracts over the scaling choice. Taking the best 20 features
out, yields results indistinguishable from the bagging classi-
fier. It substantially lowers performance on the recognition of
web attacks and http-DoS traffic, while leaving recognition of
port scanning and DDoS traffic intact.

Gradient-boosted trees (scikit-learn implementation [27])
had very comparable results to the adaboost classifier, trading
back and forth when it came to classification metrics and
convergence. This comes with a major caveat and that’s
the reappearance of downward spikes on the classification
metrics. The occurrence of these spikes is not predictable and
can happen with any type of scaling. It can only be said that
removing features increases the likelihood. The inconsistent
behavior, paired with only similar classification scores dis-
qualifies this method as a usable classifier.

XGboost, employing the same boosting strategy as the
gradient boosting trees now showed the same defect. Harsh
downward spikes in classification performance can reduce
recall to 0 (most intensely when using Z-scaling on the web
attack traffic (day 2)). Curiously this doesn’t happen when
using no scaling, raising the possibility that squeezing the
feature values together tightly through standardization is not
appropriate for these boosting algorithms. The results aren’t
as stellar as they were on ISCXIDS2012, showing resistance
to feature reduction that is only as good as it is for adaboost or
gradient-boosted trees and reaching no higher classification
scores.

Random forests need more data to converge a plateau
than the methods that employ boosting. Similarly to

ISCXIDS2012, it has issues with the brute force traffic, lev-
elling off at just 80% precision (100% recall) whereas the
boosting methods reach perfect classification. Performance
on HTTP-DoS, DDoS and port scanning traffic is in line
with the boosting methods, reaching perfect classification.
F1-scores on web attacks and botnet traffic reach 95+% and
90+% respectively. Even just removing the top 5 features
totally trashes recognition of brute force attacks to a stable
0%, indicating that the variation in the data that allowed
classification only existed in the five best features. Perfor-
mance drops of 15-20% were observed on the classification
of web attack and botnet traffic. Similarly to previous meth-
ods HTTP-DoS, DDoS and port scanning are (almost) not
impacted even by the most aggressive feature and training
volume reduction.

Randomized decision trees take the crown for CICIDS2017,
reaching close to perfect scores on all metrics for all classes
(except botnet) and independently of scaling choice with
no random breakdowns. The curves all have a steep slope
often plateauing with as little as 3-5% of data used during
training. The computational efficiency of this method is an
extra plus. The only downside to this method is that its
performance takes a heavy hit when aggressively removing
the top performers from the available feature set. The DoS-
and port scanning attack types are not heavily impacted by
feature reduction, but all other classes are.

2) NEIGHBOR METHODS
Nearest neighbor search can converge to the same levels
as some tree-bases methods, but to do that it takes more
data and the metrics are less well-clustered. All classes are
well-recognized except for botnet traffic. This conclusion
holds regardless of scaling, but breaks down severely when
facing aggressive removal of the best features. Classification
of FTP-SSH brute force attacks is worse by up to 15%.
Recognition of HTTP-DoS traffic shows multiple 10% loss
spikes. DDoS and port scanning (days 5 & 6) are almost unaf-
fected by feature removal. The overall variability between the
results should dissuade researchers from employing this as
a single method. Moreover, convergence is slower than for
tree-based methods, which is an extra complication because
knn scales poorly.

The nearest centroid classifier was characterized bywicked
fast convergence and no variation in metric score by increas-
ing the amount of data to train from. This claim is further
solidified by the results on CICIDS2017 with lines that are
often just horizontal. The downside is that the values where it
flatlines are most often useless, with two noteworthy excep-
tions: port scanning and botnet traffic (Z-scaling). Recall sits
at 100% after using 5% or less of the data as training samples.
When also taking feature reduction into account, it can be said
that this perfect recall stays as long as the features are stan-
dardized and more than 5% of the data is used to train. Port
scanning traffic is so resistant that neither feature reduction
(horizontal or vertical) nor scaling has any impact. The ease
of this classifier, both conceptually as computationally makes
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it a good candidate for a defensive measure in networks with
many connected devices. It can easily spot if machines are
being used as slaves in a botnet or as proxies to scan other
hosts.

3) OTHER METHODS
A linear kernel SVM has good overall performance for the
DoS and port scanning attack classes, but not quite as good as
earlier classifiers. It is unusable for any other class because it
has very high to perfect recall but very poor to fair precision.
The only upside is that the computational efficiency of this
method can be leveraged to get a rough first-pass over a large
set of flows,making a selection that will include themalicious
traffic. The high recall stays stable even at very low volumes
of data used for training and after removing the 20 best
features. Precision drops further under these conditions. The
choice of scaling is unimportant.

An RBF-kernel SVM reaches better overall metrics than
its linear kernel counterpart, but not to the degree that it
could be considered when comparing it to the tree-based
methods. It does not have the computational efficiency that
the linear SVM has so the improvements in metric scores are
less useful. The feature reduction hurts performance, but not
in an unpredictable manner. Recall stays close to perfection
while precision drops.

The results for the logistic regression look very akin to
those for the linear support vector machine. Both methods
do converge with particularly high recall but poor precision.
As a standalone classifier the results aren’t usable (except
for port scanning & DDoS). Heavy feature reduction creates
minor losses in terms of recall. The choice of scaling is again
unimportant.

4) INTERMEDIATE CONCLUSIONS
CICIDS2017 rests on a bigger experimental setup than
ISCXIDS2012, resulting in larger captures with more classes
of attack traffic and more diversified baseline traffic. The
analysis reveals that this dataset contains 3-5 easy classes
depending on the used classifier. The three easiest classes
for all methods were DDoS, port scanning and HTTP-DoS
traffic. On these, perfect classification even with serious
reductions in data available to learn from and removal of the
best features is a real outcome. The days containing FTP-SSH
brute force traffic, web attacks and botnet traffic prove to
be more difficult to recognize, especially when reducing the
set of features to learn from. The singular day containing
infiltration traffic is not usable, because it only has 36 positive
samples on a total 288602 that day. The most recommended
method is a randomized decision trees classifier. These obtain
classification results that would justify their use in real appli-
cations. Extreme gradient boosted trees and adaboost are
similarly potent classifiers, but they are more fragile, require
more tuning and quality control. Resistance against reduc-
tions in training volume was very impressive with the usable
methods reaching stability with just 3-10% of the data as
training samples. Horizontal data reduction has more impact,

TABLE 6. CICIDS2018: number of files with results collected per
algorithm.

reducing classification performance for the harder classes.
Increasing the granularity with which results have been col-
lected has shown that a smooth transition happens in the
1-10% range in terms of training data used. Additionally it
shows that the (sometimes perfect) classification scores are
no fluke.

E. CICIDS2018
CICIDS2018, the next iteration from the CIC moved the
infrastructure to Amazon Web Services, expanding the scale
of the experiment, with 5 user clusters of each 20-100 hosts
(Windows / Ubuntu mix), a server cluster with file-, email-
and appservers and domain controller and an external attacker
network with 50 machines. This scale increase ultimately
led to 10 days containing attack traffic, totalling 3.2 GB of
CSV-files (compared to 2.3 GB for CICIDS2017). The rest
of the experiment was unchanged. A very small proportion
of results could not be collected, because the amount of
available training samples was too low when paired with
sampling rates of 0.1% & 0.5%.

1) TREE-BASED METHODS
It is immediately apparent that certain classes are easier than
others. Brute force, Dos, DDoS and botnet traffic are very
well represented in the dataset, leading to extremely high
rates (99.5+% on all metrics) of classification even at a
stratified sampling rate of just 0.1% to train on. Once more
it should be restated that these results are extra impressive
because the remaining 99.9% of the data was used for testing.
Even at the most aggressive feature reduction settings the
classification scores don’t drop precipitously. The resistance
against feature reduction works best if the features were
not scaled beforehand. Results on the two remaining classes
tell a different story. Web attacks are underrepresented in
CICIDS2018 with just 362 out of 1048575 samples on day
5 and 566 out of 1048575 samples on day 6. Consequently
results aren’t as good as they are on classes with lots of
positive samples. Ultimately densely clustered scores around
an F1-score of 98.3% were observed, but this required a
sampling rate of 50%. Reducing the sample rate to 20%,
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reduces this score to around 90%, which can still be consid-
ered acceptable. The oddball in classification is infiltration
traffic (days 7 and 8). While it is very well represented with
positive sample counts well into the 5-digit range, classifica-
tion proved hard. Classification results for day 7 are worthless
with recall hovering around 0%. This is offset by the results
on day 8 where recall moves to 97.5%, but precision stays
relatively low around 80% irrespective of the amount of data
given to train on.

The bagging classifier built on decision trees smooths the
curves. These now resemble the expected upward trend more
clearly. Classification metrics now level out slightly higher
and more stably for the web and infiltration attack classes.
A side-effect of using multiple trees is the increased difficulty
in reaching perfect (1.0) classification scores. This trade-off
is worth it because the bottom gets lifted much higher than
the top gets lowered. Heavily reducing features only has a
distinct impact on the attack types that already proved hard
to classify.

Adaboost does what it did in all previous datasets. At very
small sampling rates it pushes the metrics higher to an
earlier point of stability. At larger sampling rates it still
tends to improve classification performance, but only slightly.
It abstracts over the scaling choice during preprocessing.
For the easy classes a reduction in the amount of features
available for use is barely noticeable, amounting to a max-
imum reduction of 1% in classification scores. Even more
importantly is that this reduction happens gradually in tandem
with the amount of features removed. The difficult classes
take amajor hit from even removing the 5most discriminative
features, reducing recall by up to 50%.

Gradient boosted trees perform similar to adaboost. It does
behave more erratically. This is very obvious when looking
at the web attack classification. The results fall in such wide
margins, untethered from the volume of data used during
training. In terms of stability at the high-end it goes back and
forth with adaboost. Stability is often found with just 5% of
the data used to train, keeping in line with adaboost’s results.

XGboost includes web attack traffic in the list of malicious
classes that it recognizes well. This leaves only infiltration
as the hard class. The curves for the classification metrics
don’t contain anomalies. Convergence on the easy classes
happens with as little as 1% of data used during training
and the point to which it converges is indistinguishable from
perfect classification. Removing the 5 most discriminative
features kicks web attack traffic back into the hard to classify
category and demolishes performance on infiltration traffic.
Computationally it was faster than the other methods that
employ boosting.

Random forests improve on XGboost by converging as
fast, regardless of scaling to similarly high, stable levels on all
easy classes. Furthermore it was as proficient at recognizing
the web attack traffic as xgboost. On top of that it performed
well on one of the days (8) containing infiltration traffic with
recall up to 94.5% and precision up to 90%. This leaves day
7 as the singular scenario that has not had a sufficiently good

solution from any of the algorithms. Interestingly a downward
trend in the metrics on day 7 has been observed in all methods
that had smooth lines. This continues with the random forests.
The documentation of the dataset mentions that unrestricted
file upload is part of the infiltration scenario. When exposed
to higher levels of data to train on, it might include many
of these file upload samples. It is no stretch to imagine that
illegitimate file upload traffic is very hard to distinguish from
legitimate file upload at the network level. Removing the top
features has a bigger impact on random forests than it had
on the boosting classifiers with a larger inter-metric spread
and slightly lower plateau. Random forests should still be
seriously considered, because they are very parallelizable and
without feature reduction hold the record for highest amount
of attack classes properly identified.

Randomized decision trees don’t improve on any of the
best classifiers so far. They introduce slightly more variation
in the scores around which metrics converge. Random inter-
section points in the nodes prove inadequate compared to the
standard algorithm to keep classifying days 6& 8well. It does
have one thing that is absent from the other classifiers and that
is a remarkable resistance against removing the best features.
Whereas random forests suffered badly from this procedure
on the hard days it had gained control over (6 & 8), this is
not the case for the extratree classifier. As one of the most
inexpensive classifiers this method keeps proving its worth as
a classifier that is viable even as a single source of information
for the intrusion detection system.

2) NEIGHBOR METHODS
K-nearest neighbors holds its own often requiring more data
than tree-based classifiers but still getting to the same clas-
sification scores. It only leaves infiltration (day 7) as largely
misclassified, tying it to random forests in terms of number
of properly classified scenarios. Removing the most dis-
criminative features hurts this classifier more than it hurts
other methods because it lowers the variance in the distances
between samples. This shortcoming is most visible on the
easy classes where tree-based features often stay invariant to
feature reduction. These side marks and the computational
complexity of knn, rule it out as a viable method.

The nearest centroids classifier is only interesting in so far
that when no scaling is applied it has great recall on the DDoS
and botnet classes. It keeps these results independently of
the amount of data used to train or the amount of features
reduced. Layer-7 based DoS has more mixed results and the
classifier is not worth considering in all other scenarios.

3) OTHER METHODS
A linear kernel support vector machine has no issues on the
easy classes. These are well-recognized with little data to
learn from (5%). Aggressive feature reduction can reduce the
overall performance, but the recall stays intact. This very high
recall even under serious constraints is present on the harder
web traffic class. This method is too simple to divide the
samples of infiltration traffic.
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Changing the kernel to a radial basis function yields the
same results. This method could realistically be used to clas-
sify the easy classes. By far the most interesting finding is
the recall score on the toughest day (7) to classify. When
given 20% of that day’s data as training samples, recall
reaches 90%. Adding to this is that this metric only degrades
gradually when removing features, stranding at 70% when
reducing the top-20 features.

A logistic regression doesn’t add interesting conclusions.
It performs very well on the classes for which the other meth-
ods performed equally well. It is reasonably computationally
efficient, justifying keeping it around as a first pass classifier.

4) INTERMEDIATE CONCLUSIONS
CICIDS2018 increases the size of the experiment setup
while moving it to Amazon Web Services, resulting in even
larger capture files. Of the roughly six available classes of
attack traffic, four are easy to classify (FTP-SSH brute force,
HTTP-DoS, DDoS and botnet). By easy it is meant that even
at very low volumes of training data (1-5%), perfect classifi-
cation is achieved (99.995+%). Additionally the easy classes
remain very well-recognized even when removing the most
discriminative 25% of the available features. The tree-based
classifiers remain the most powerful with extreme gradient
boosted trees and random forests leading the pack. These two
move classification of web attack and a single day of intrusion
traffic into the realm of practically usable methods. Nearest
centroids, linear SVMs and logistic regressions are too simple
as a single classifier but they all share very high to perfect
recall. Combinedwith the computational efficiency (certainly
of nearest centroids) these methods can be so called first-pass
methods, making a relevant selection of the attack traffic.
CICIDS2018 addressed the serious shortage of intrusion traf-
fic samples in CICIDS2017. The quality of this improvement
is still up for debate because it included unrestricted file
upload as intrusion traffic while this might be indistinguish-
able at the network level from legitimate file upload. This
hypothesis is supported by the fact that for multiple methods
classification performance gradually worsens (with volume
provided for training) on one of the days containing intrusion
traffic. Conversely CICIDS2017 contained more than twice
the amount of web attack traffic samples. Given that for each
positive sample of this class well over 1500 other included
samples were baseline traffic, the results can still be good
(albeit for the best 2 classifiers without feature reduction).

V. CONCLUSION
This work details classification with supervised machine
learning methods on network intrusion detection data under
increasingly difficult conditions, through evaluation on
public data sets that cover 20 years of data generation
in the field. Based on the dataset-specific conclusions
in paragraphs IV-B4, IV-C4, IV-D4 and IV-E4, multiple
overarching conclusions can be formulated. Tree-based
meta-estimators win on absolute metrics for all datasets.
Perfect or borderline perfect classification (99+%) is no

exception for these methods. More impressively these fig-
ures are obtained with very limited access to training data.
Convergence almost invariably happens with between 5 and
15 percent of the dataset used to train. Some extreme cases
with lots of representation in the data converge with just 1%
or less. Resistance against removing the most discriminative
features from the data varies between attack classes. Classes
with clear network footprints DoS, DDoS, port scanning,
brute force, botnet are less (sometimes not at all) impacted,
because the remaining features still contain enough informa-
tion. Other classes such as infiltration or web attack traffic
are more heavily impacted by either form of data reduction.
Sometimes this is due to underrepresentation in the datasets,
leaving room for improvement in future iterations.

VI. FUTURE WORK AND HYPOTHESES
Two routes of further inquiry have been set up in this work.
First, the comparative nature of this work has revealed clear
winners and methods that can be useful under the right cir-
cumstances. An intrusion detection system that builds on this
knowledge that is capable of working in real-time would
be of obvious benefit. Second, the collection of exported
models will be used to test how well they generalize. As the
penultimate requirement of any AI system getting an answer
to the question whether meaningful patterns are uncovered
through supervised machine learning for intrusion detection
is vital.

APPENDIX
As mentioned in subsection IV-A, 48 interactive visualiza-
tions are available to be used alongside the article. To avoid
cluttering the text, a single still of one of the 48 visualizations
has been included in the text itself (figure IV-A). All result
data and the visualization code is available publicly per
dataset at the following locations:

• https://gitlab.ilabt.imec.be/lpdhooge/nslkdd
• https://gitlab.ilabt.imec.be/lpdhooge/iscxids2012
• https://gitlab.ilabt.imec.be/lpdhooge/CICIDS2017
• https://gitlab.ilabt.imec.be/lpdhooge/cicids2018
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