1,074 research outputs found

    Quantitative analysis of several random lasers

    Get PDF
    We prescribe the minimal set of experimental data and parameters that should be reported for random-laser experiments and models. This prescript allows for a quantitative comparison between different experiments, and for a criterion whether a model predicts the outcome of an experiment correctly. In none of more than 150 papers on random lasers that we found these requirements were fulfilled. We have nevertheless been able to analyze a number of published experimental results and recent experiments of our own. Using our method we determined that the most intriguing property of the random laser (spikes) is in fact remarkably similar for different random lasers.Comment: 3 pages, 1 figur

    Glassy behavior of light

    Full text link
    We study the nonlinear dynamics of a multi-mode random laser using the methods of statistical physics of disordered systems. A replica-symmetry breaking phase transition is predicted as a function of the pump intensity. We thus show that light propagating in a random non-linear medium displays glassy behavior, i.e. the photon gas has a multitude of metastable states and a non vanishing complexity, corresponding to mode-locking processes in random lasers. The present work reveals the existence of new physical phenomena, and demonstrates how nonlinear optics and random lasers can be a benchmark for the modern theory of complex systems and glasses.Comment: 5 pages, 1 figur

    Glassy behavior of light in random lasers

    Full text link
    A theoretical analysis [Angelani et al., Phys. Rev. Lett. 96, 065702 (2006)] predicts glassy behaviour of light in a nonlinear random medium. This implies slow dynamics related to the presence of many metastable states. We consider very general equations (that also apply to other systems, like Bose-Condensed gases) describing light in a disordered non-linear medium and through some approximations we relate them to a mean-field spin-glass-like model. The model is solved by the replica method, and replica-symmetry breaking phase transition is predicted. The transition describes a mode-locking process in which the phases of the modes are locked to random (history and sample-dependent) values. The results are based on very general theory, and embrace a variety of physical phenomena.Comment: 21 pages, 3 figures. Revised and enlarged version. To be published in Physical Review
    • …
    corecore