904 research outputs found

    Random triangle removal

    Full text link
    Starting from a complete graph on nn vertices, repeatedly delete the edges of a uniformly chosen triangle. This stochastic process terminates once it arrives at a triangle-free graph, and the fundamental question is to estimate the final number of edges (equivalently, the time it takes the process to finish, or how many edge-disjoint triangles are packed via the random greedy algorithm). Bollob\'as and Erd\H{o}s (1990) conjectured that the expected final number of edges has order n3/2n^{3/2}, motivated by the study of the Ramsey number R(3,t)R(3,t). An upper bound of o(n2)o(n^2) was shown by Spencer (1995) and independently by R\"odl and Thoma (1996). Several bounds were given for variants and generalizations (e.g., Alon, Kim and Spencer (1997) and Wormald (1999)), while the best known upper bound for the original question of Bollob\'as and Erd\H{o}s was n7/4+o(1)n^{7/4+o(1)} due to Grable (1997). No nontrivial lower bound was available. Here we prove that with high probability the final number of edges in random triangle removal is equal to n3/2+o(1)n^{3/2+o(1)}, thus confirming the 3/2 exponent conjectured by Bollob\'as and Erd\H{o}s and matching the predictions of Spencer et al. For the upper bound, for any fixed ϵ>0\epsilon>0 we construct a family of exp(O(1/ϵ))\exp(O(1/\epsilon)) graphs by gluing O(1/ϵ)O(1/\epsilon) triangles sequentially in a prescribed manner, and dynamically track all homomorphisms from them, rooted at any two vertices, up to the point where n3/2+ϵn^{3/2+\epsilon} edges remain. A system of martingales establishes concentration for these random variables around their analogous means in a random graph with corresponding edge density, and a key role is played by the self-correcting nature of the process. The lower bound builds on the estimates at that very point to show that the process will typically terminate with at least n3/2o(1)n^{3/2-o(1)} edges left.Comment: 42 pages, 4 figures. Supercedes arXiv:1108.178

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    Identifying "communities" within energy landscapes

    Full text link
    Potential energy landscapes can be represented as a network of minima linked by transition states. The community structure of such networks has been obtained for a series of small Lennard-Jones clusters. This community structure is compared to the concept of funnels in the potential energy landscape. Two existing algorithms have been used to find community structure, one involving removing edges with high betweenness, the other involving optimization of the modularity. The definition of the modularity has been refined, making it more appropriate for networks such as these where multiple edges and self-connections are not included. The optimization algorithm has also been improved, using Monte Carlo methods with simulated annealing and basin hopping, both often used successfully in other optimization problems. In addition to the small clusters, two examples with known heterogeneous landscapes, LJ_13 with one labelled atom and LJ_38, were studied with this approach. The network methods found communities that are comparable to those expected from landscape analyses. This is particularly interesting since the network model does not take any barrier heights or energies of minima into account. For comparison, the network associated with a two-dimensional hexagonal lattice is also studied and is found to have high modularity, thus raising some questions about the interpretation of the community structure associated with such partitions.Comment: 13 pages, 11 figure

    Efficient Classification for Metric Data

    Full text link
    Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as string edit and earthmover distance. A general framework developed for this purpose by von Luxburg and Bousquet [JMLR, 2004] left open the questions of computational efficiency and of providing direct bounds on generalization error. We design a new algorithm for classification in general metric spaces, whose runtime and accuracy depend on the doubling dimension of the data points, and can thus achieve superior classification performance in many common scenarios. The algorithmic core of our approach is an approximate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest Neighbor Search. The algorithm's generalization performance is guaranteed via the fat-shattering dimension of Lipschitz classifiers, and we present experimental evidence of its superiority to some common kernel methods. As a by-product, we offer a new perspective on the nearest neighbor classifier, which yields significantly sharper risk asymptotics than the classic analysis of Cover and Hart [IEEE Trans. Info. Theory, 1967].Comment: This is the full version of an extended abstract that appeared in Proceedings of the 23rd COLT, 201

    Majorizing measures for the optimizer

    Get PDF
    The theory of majorizing measures, extensively developed by Fernique, Talagrand and many others, provides one of the most general frameworks for controlling the behavior of stochastic processes. In particular, it can be applied to derive quantitative bounds on the expected suprema and the degree of continuity of sample paths for many processes. One of the crowning achievements of the theory is Talagrand’s tight alternative characterization of the suprema of Gaussian processes in terms of majorizing measures. The proof of this theorem was difficult, and thus considerable effort was put into the task of developing both shorter and easier to understand proofs. A major reason for this difficulty was considered to be theory of majorizing measures itself, which had the reputation of being opaque and mysterious. As a consequence, most recent treatments of the theory (including by Talagrand himself) have eschewed the use of majorizing measures in favor of a purely combinatorial approach (the generic chaining) where objects based on sequences of partitions provide roughly matching upper and lower bounds on the desired expected supremum. In this paper, we return to majorizing measures as a primary object of study, and give a viewpoint that we think is natural and clarifying from an optimization perspective. As our main contribution, we give an algorithmic proof of the majorizing measures theorem based on two parts: We make the simple (but apparently new) observation that finding the best majorizing measure can be cast as a convex program. This also allows for efficiently computing the measure using off-the-shelf methods from convex optimization. We obtain tree-based upper and lower bound certificates by rounding, in a series of steps, the primal and dual solutions to this convex program. While duality has conceptually been part of the theory since its beginnings, as far as we are aware no explicit link to convex optimization has been previously made

    A new lower bound for sphere packing

    Full text link
    We show there exists a packing of identical spheres in Rd\mathbb{R}^d with density at least (1o(1))dlogd2d+1, (1-o(1))\frac{d \log d}{2^{d+1}}\, , as dd\to\infty. This improves upon previous bounds for general dd by a factor of order logd\log d and is the first asymptotically growing improvement to Rogers' bound from 1947
    corecore