630 research outputs found

    On modeling and mitigating new breed of dos attacks

    Get PDF
    Denial of Service (DoS) attacks pose serious threats to the Internet, exerting in tremendous impact on our daily lives that are heavily dependent on the good health of the Internet. This dissertation aims to achieve two objectives:1) to model new possibilities of the low rate DoS attacks; 2) to develop effective mitigation mechanisms to counter the threat from low rate DoS attacks. A new stealthy DDoS attack model referred to as the quiet attack is proposed in this dissertation. The attack traffic consists of TCP traffic only. Widely used botnets in today\u27s various attacks and newly introduced network feedback control are integral part of the quiet attack model. The quiet attack shows that short-lived TCP flows used as attack flows can be intentionally misused. This dissertation proposes another attack model referred to as the perfect storm which uses a combination of UDP and TCP. Better CAPTCHAs are highlighted as current defense against botnets to mitigate the quiet attack and the perfect storm. A novel time domain technique is proposed that relies on the time difference between subsequent packets of each flow to detect periodicity of the low rate DoS attack flow. An attacker can easily use different IP address spoofing techniques or botnets to launch a low rate DoS attack and fool the detection system. To mitigate such a threat, this dissertation proposes a second detection algorithm that detects the sudden increase in the traffic load of all the expired flows within a short period. In a network rate DoS attacks, it is shown that the traffic load of all the expired flows is less than certain thresholds, which are derived from real Internet traffic analysis. A novel filtering scheme is proposed to drop the low rate DoS attack packets. The simulation results confirm attack mitigation by using proposed technique. Future research directions will be briefly discussed

    Resilience Strategies for Network Challenge Detection, Identification and Remediation

    Get PDF
    The enormous growth of the Internet and its use in everyday life make it an attractive target for malicious users. As the network becomes more complex and sophisticated it becomes more vulnerable to attack. There is a pressing need for the future internet to be resilient, manageable and secure. Our research is on distributed challenge detection and is part of the EU Resumenet Project (Resilience and Survivability for Future Networking: Framework, Mechanisms and Experimental Evaluation). It aims to make networks more resilient to a wide range of challenges including malicious attacks, misconfiguration, faults, and operational overloads. Resilience means the ability of the network to provide an acceptable level of service in the face of significant challenges; it is a superset of commonly used definitions for survivability, dependability, and fault tolerance. Our proposed resilience strategy could detect a challenge situation by identifying an occurrence and impact in real time, then initiating appropriate remedial action. Action is autonomously taken to continue operations as much as possible and to mitigate the damage, and allowing an acceptable level of service to be maintained. The contribution of our work is the ability to mitigate a challenge as early as possible and rapidly detect its root cause. Also our proposed multi-stage policy based challenge detection system identifies both the existing and unforeseen challenges. This has been studied and demonstrated with an unknown worm attack. Our multi stage approach reduces the computation complexity compared to the traditional single stage, where one particular managed object is responsible for all the functions. The approach we propose in this thesis has the flexibility, scalability, adaptability, reproducibility and extensibility needed to assist in the identification and remediation of many future network challenges

    ENTERPRISE SECURITY ANALYSIS INCLUDING DENIAL OF SERVICE COUNTERMEASURES

    Get PDF
    Computer networks are the nerve systems of modern enterprises. Unfortunately, these networks are subject to numerous attacks. Safeguarding these systems is challenging. In this thesis we describe current threats to enterprise security, before concentrating on the Distributed denial of Service (DDoS) problem. DDoS attacks on popular websites like Amazon, Yahoo, CNN, eBay, Buy, and the recent acts of war using DDoS attacks against NATO ally Estonia [1] graphically illustrate the seriousness of these attacks. Denial of Service (DoS) attacks are explicit attempts to block legitimate users\u27 system access by reducing system availability [2]. A DDoS attack deploys multiple attacking entities to attain this goal [3]. Unfortunately, DDoS attacks are difficult to prevent and the solutions proposed to date are insufficient. This thesis uses combinatorial game theory to analyze the dynamics of DDoS attacks on an enterprise and find traffic adaptations that counter the attack. This work builds on the DDoS analysis in [4]. The approach we present designs networks with a structure that either resists DDoS attacks, or adapts around them. The attacker (Red) launches a DDoS on the distributed application (Blue). Both Red and Blue play an abstract board game defined on a capacitated graph, where nodes have limited CPU capacities and edges have bandwidth constraints. Our technique provides two important results that aid in designing DDoS resistant systems: 1.It quantifies the resources an attacker needs to disable a distributed application. The design alternative that maximizes this value will be the least vulnerable to DDoS attacks. 2.When the attacker does not have enough resources to satisfy the limit in 1, we provide near optimal strategies for reconfiguring the distributed application in response to attempted DDoS attacks. Our analysis starts by finding the feasible network configurations for Blue that satisfy its computation and communications requirements. The min-cut sets [5] of these configurations are the locations most vulnerable to packet flooding DDoS attacks. Red places \u27zombie\u27 processes on the graph that consume network bandwidth. Red attempts to break Blue communications links. Blue reconfigures its network to re-establish communications. We analyze this board game using the theory of surreal numbers [6]. If Blue can make the game \u27loopy\u27 (i.e. move to one of its previous configurations), it wins [7]. If Red creates a situation where Blue can not successfully reconfigure the network, it wins. In practice, each enterprise relies on multiple distributed processes. Similarly, an attacker can not expect to destroy all of the processes used by the enterprise at any point in time. The attacker will try to maximize the number of processes it can disable at any point in time. This situation describes a \u27sum of games\u27 problem [6], where Blue and Red alternate moves. We adapt Berlekamp\u27s strategies for Go endgames, to tractably find near optimal reconfiguration regimes for this P-Space complete problem [6], [7]

    Taking Back the Internet: Defeating DDoS and Adverse Network Conditions via Reactive BGP Routing

    Get PDF
    In this work, we present Nyx, a system for mitigating Distributed Denial of Service (DDoS) attacks by routing critical traffic from known benign networks around links under attack from a massively distributed botnet. Nyx alters how Autonomous Systems (ASes) handle route selection and advertisement in the Border Gateway Protocol (BGP) in order to achieve isolation of critical traffic away from congested links onto alternative, less congested paths. Our system controls outbound paths through the normal process of BGP path selection, while return paths from critical ASes are controlled through the use of existing traffic engineering techniques. To prevent alternative paths from including attacked network links, Nyx employs strategic lying in a manner that is functional in the presence of RPKI. Our system only exposes the alternate path to the networks needed for forwarding and those networks\u27 customer cones, thus strategically reducing the number of ASes outside of the critical AS that receive the alternative path. By leaving the path taken by malicious traffic unchanged and limiting the amount of added traffic load placed on the alternate path, our system causes less than 10 ASes on average to be disturbed by our inbound traffic migration.Nyx is the first system that scalably and effectively mitigates transit-link DDoS attacks that cannot be handled by existing and costly traffic filtering or prioritization techniques. Unlike the prior state of the art, Nyx is highly deployable, requiring only minor changes to router policies at the deployer, and requires no assistance from external networks. Using our own Internet-scale simulator, we find that in more than 98% of cases our system can successfully migrate critical traffic off of the network segments under transit-link DDoS. In over 98% of cases, the alternate path provides some degree of relief over the original path. Finally, in over 70% of cases where Nyx can migrate critical traffic off attacked segments, the new path has sufficient capacity to handle the entire traffic load without congestion

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies
    • …
    corecore