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Abstract

In this work, we present Nyx, a system for mitigating Distributed Denial of Service (DDoS)

attacks by routing critical traffic from known benign networks around links under attack

from a massively distributed botnet. Nyx alters how Autonomous Systems (ASes) handle

route selection and advertisement in the Border Gateway Protocol (BGP) in order to achieve

isolation of critical traffic away from congested links onto alternative, less congested paths.

Our system controls outbound paths through the normal process of BGP path selection,

while return paths from critical ASes are controlled through the use of existing traffic

engineering techniques. To prevent alternative paths from including attacked network links,

Nyx employs strategic lying in a manner that is functional in the presence of RPKI. Our

system only exposes the alternate path to the networks needed for forwarding and those

networks’ customer cones, thus strategically reducing the number of ASes outside of the

critical AS that receive the alternative path. By leaving the path taken by malicious traffic

unchanged and limiting the amount of added traffic load placed on the alternate path, our

system causes less than 10 ASes on average to be disturbed by our inbound traffic migration.

Nyx is the first system that scalably and effectively mitigates transit-link DDoS attacks

that cannot be handled by existing and costly traffic filtering or prioritization techniques.

Unlike the prior state of the art, Nyx is highly deployable, requiring only minor changes to

router policies at the deployer, and requires no assistance from external networks. Using

our own Internet-scale simulator, we find that in more than 98% of cases our system can

successfully migrate critical traffic off of the network segments under transit-link DDoS. In

over 98% of cases, the alternate path provides some degree of relief over the original path.

Finally, in over 70% of cases where Nyx can migrate critical traffic off attacked segments,

the new path has sufficient capacity to handle the entire traffic load without congestion.
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Chapter 1

Introduction

Do to their high level of impact, combined with low degree of technical complexity,

Distributed Denial of Service, or DDoS, attacks continue to represent one of the largest

unsolved persistent threats on the Internet. Recent successful DDoS attacks by the Mirai

botnet against root DNS providers [39] and core transit links [3] highlight both the lack of

an effective deployed solution to DDoS attacks and the impact such attacks have on critical

network infrastructure. To make matters worse, increased botnet bandwidth has allowed

adversaries to launch attacks against shared transit links located outside of the intended

victim, rather than directly against the victim’s end hosts, an attack methodology proposed

in academic research by Kang [18] and Studer [38], which we call transit-link DDoS.

While DDoS represents one of the oldest and most well known security problems facing the

Internet, research has yet to propose a solution that both provides effective mitigation against

transit-link DDoS attacks and has a realistic deployment scenario. For example, filtering

and prioritization techniques [36, 8, 44, 26, 23, 43] require costly per-stream calculations,

presenting scalability concerns with modern DDoS attacks. Load balancing and CDN backed

solutions [11] become a test of who possesses more bandwidth, the defender or the adversary,

a tenuous proposition in an era of multi-Tbps attack flows, something the Mirai botnet and

it’s variants have repeatedly achieved. More importantly, none of these defenses are capable

to mitigate DDoS attacks launched against the Internet’s transit infrastructure. Attacks such

as Kang’s Crossfire are outside of the threat model considered by current DDoS defenses,

which focused on protecting the last-mile links and provide no protection for transit links.

1



Systems such as SCION and SIBRA [46, 6], which integrate DDoS defense into the transit

fabric of the Internet, present promise but require a complete redesign of the Internet, raising

doubt about their deployability in the foreseeable future.

In this work, rather than considering DDoS mitigation as a filtering or prioritization

problem, we approach DDoS mitigation as a routing problem. In our system, called

Nyx, the defending or deploying network, specifically a multi-homed Autonomous System

(AS), isolates critical traffic from attack traffic at a path level, preventing the critical traffic

from competing against malicious traffic for limited resources. An AS deploying our system,

which we term the Deployer AS, when negatively impacted by a DDoS attack will adjust

the routes of outgoing and incoming traffic from a single remote Critical AS, known a priori,

around links degraded by the DDoS attack. The inbound critical traffic will be routed

to non-attacked paths with sufficient capacity using currently deployed routing protocols,

specifically the Border Gateway Protocol (BGP). This approach to DDoS mitigation has

several advantages over existing approaches. Instead of filtering, Nyx instead operates

at the route selection level, avoiding costly per-stream decisions. Our system functions

independently of the location of the link actually being attacked, even if that link is outside

of the deployer’s directly connected links, allowing our system to mitigate the impact of DDoS

attacks against transit providers the deployer depends on that would normally be outside of

the deployer’s control. Since our system prevents malicious traffic from DDoS attacks and

benign traffic from Critical ASes from being co-located, our capacity to successfully mitigate

a DDoS attack in not dependent on the volume of malicious traffic, allowing our system to

succeed against today’s large-scale DDoS attacks, often reaching sustained traffic levels of

1 Tbps or more, which no known filtering mechanisms can handle. Lastly, our system

functions using existing routing protocols and protects traffic to and from the

deployer without outside assistance, allowing for a realistic deployment scenario of our

system, unlike prior work presented to combat the problem of transit-link DDoS.

In order to realize Nyx, we address three key challenges. First, we address how the AS

deploying Nyx, which we also call the reactor or deployer AS, can successfully maneuver both

outgoing and incoming traffic off of attacked links. While altering outgoing paths is trivial,

BGP provides the destination no direct way to control incoming paths. We overcoming
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this limitation through the use of currently existing traffic engineering mechanisms, while

controlling path propagation via strategic lying about the networks on a path in an effort

to trigger loop-detection. Our traffic engineering technique, which we call Fradulent Route

Reverse Poisoning, works in the presence of deployed RPKI and is discussed later in Section 3.

Our solution causes more preferable paths, with respect to packet forwarding, to propagate

around, but never actually reaching, the links under a DDoS attack, which we can detect via

observing loss of quality service on the links connected to the deployer when the deployer

does not actually observe attack traffic directly.

Second, our deployer must limit the number of non-critical networks which also change

their best path as a result of adjusting paths used by critical networks or ASes; a property

we term disturbance. Disturbance can result in two undesired scenarios. First, disturbance

can result in malicious traffic also flowing along the alternate path, resulting in the alternate

path itself suffering a DDoS attack. Second, even if the disturbed networks are not sources of

attack traffic, too much traffic from ASes other than the chosen critical ASes might congest

the alternative path, as it is likely not provisioned to handle a large amount of traffic beyond

normal loads. In order to mitigate disturbance, we expand our path propagation control

techniques, preventing propagation of the path to all networks outside of the critical network

and the networks appearing along the alternative path.

(a) Traditional DDoS: The victim AS is
directly targeted

(b) Transit-Link DDoS: Transit ASes up-
stream of the victim is targeted without sending
traffic to the victim, thus nullify the effects of
filtering and throttling techniques employed by
the victim

Figure 1.1: Traditional and Transit-Link DDoS
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Lastly, our system needs to ensure that the resulting alternative path has sufficient spare

capacity to handle traffic from the critical network, along with traffic from any disturbed

networks. If our system detects that the path is struggling to handle the added load, it will

attempt to search for a different alternative path. It accomplishes this by withdrawing the

alternative path and attempting to re-propagate it, avoiding propagating the route to both

links under DDoS attack and the bottleneck links in the previous alternative path. Nyx

does not require knowledge of either the malicious traffic sources (i.e. the ASes containing

malicious bots) or the actual capacity of upstream links to find alternate paths not under

attack.

We demonstrate the ability of Nyx to accomplish all three of these tasks using Internet

scale simulations in which our system attempts to mitigate a variety of DDoS attack

scenarios. We find that it is possible to move critical traffic off attacked links and onto

functional paths in 78% of cases where the primary link connecting the deploying AS to

the Internet is attacked, which we call Traditional DDoS and greater than 98% of all other

cases where the attacked link is upstream of the deployer, which we call Transit-Link

DDoS as illustrated by Kang and Studher with Crossfire and Coremelt [18, 38]. We see

that implementing techniques to limit changes in the best path to the deployer of non-critical

networks reduces unintended path changes to 10 networks on average, as opposed to between

1000 and 5000 networks prior to employing reduction strategies. In addition we find that

our system results in little to no added costs with respect to path length, and does not result

in best paths switching to less economically advantageous routes. Lastly, we demonstrate

that out of the our alternative paths provide some degree of relief from the DDoS

attack in 98% of cases, and we find that we can move the critical traffic impacted by

DDoS attacks onto completely uncongested paths with in at least 70% of the time.

The rest of this paper is laid out as follows. Section 2 will provide relevant background

on DDoS, our threat model, and BGP. Section 3 will present details of our system design,

including design constraints, our approach to DDoS mitigation, and the mechanisms by which

we realize our mitigation strategy. Section 4 will cover details of our simulation methodology

and the results of simulations testing the viability of our system. Lastly, in Section 5 we will

compare our system to other DDoS mitigation systems.
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Chapter 2

Background

2.1 DDoS and Botnets

Volumetric Distributed Denial of Service attacks degrade the availability of a victim host by

saturating links the host utilizes to send and receive network traffic. DDoS attack traffic

is commonly generated by botnets, collections of compromised end hosts scattered across

the Internet. To carry out such attacks in practice, botnets of unforeseen scales need to

be available to adversaries. Previously, worms such as Conficker [35] spread via malware.

However, recent attacks have leveraged the Mirai botnet [39], which largely consists of IoT-

based devices.

DDoS attacks provide a high level of impact, combined with a low degree of technical

complexity, which has resulted in an increased number of occurrences of attacks. Monitoring

organizations have reported an increase in overall DDoS incidents of 83% from 2015 to

2016 [19]. More troubling, the bandwidth adversaries can harness to conduct DDoS attacks

has been steadily increasing annually. Researchers have observed a more than 140% increase

in attacks of greater than 100Gbps [19] from 2015 to 2016, with Mirai generating over 1

Tbps of malicious traffic on multiple occasions. Historically, traditional DDoS attacks are

where the adversary directs bot traffic directly at the victim network, forcing traffic at the

edge of the victim’s network to be dropped and significantly degrade quality of service and

is illustrated in Figure 1.1a.
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Transit-Link DDoS: Recently, a new DDoS attack strategy has emerged, targeting

core transit links that serve the victim host’s entire network, which we call Transit-Link

DDoS, and is shown in detail in Figure 1.1b. In the wild, transit-link DDoS has been seen in

recent attacks on the major DNS provider Dyn [1], the prominent security journalist Bryan

Krebs with KrebsOnSecurity [2], and the country of Liberia [3]. With transit-link DDoS,

the adversary directs bot traffic upstream of the network that is the ultimate target, which

causes traffic to be dropped far ahead of reaching it’s final destination. In this case, the bots

address their traffic to networks other than the victim, which ensures that the victim cannot

filter the traffic or blackhole it in any way. Examples of these attacks in literature include

the Coremelt attack [38] and the Crossfire attack [18]. The Coremelt attack is a transit-link

DDoS attack that takes any number of N bots participating in the attack and sets up N2

connections between them, inflicting significant damage to the transit core of the Internet.

At the time of Coremelt’s introduction, no other transit-link DDoS attacks existed, but since

then, others have emerged, such as the Crossfire attack. Crossfire, in a method similar to

Coremelt, directs traffic to ”wanted” locations expecting the attack traffic, such that attack

traffic can never be dropped or filtered by targeted ASes along the chosen attack paths,

and in doing so can bring down connections to selected critical servers in the transit-core

simply by congesting their available capacity. Our system, Nyx, addresses transit-link DDoS

directly, alleviating congestion from attacks for a single critical AS in the majority of cases,

and will be discussed in depth in the next section, Section 3 with evaluation in Section 4.

2.2 Inter-Autonomous System Routing via BGP

Before we discuss how Nyx operates, we must review the Internet routing infrastructure,

which despite holding up well for decades, is showing flaws not seen or mitigated when first

designed.Today, the Internet is composed of many autonomous systems (or ASes), sets of

routers and IP addresses each under singular administrative control [17]. Between ASes on

the Internet, the Border Gateway Protocol [30] (BGP) is the de facto routing protocol. It

allows the exchange of information between ASes about routes to blocks of IP addresses,

allowing each AS to have knowledge of how to forward packets toward their destinations.
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BGP is a path-vector routing protocol with policies. This means that routes contain the

path they traverse along with other qualities, and individual routers can define their own

policies for which routes are considered best and used to forward packets. These policies

frequently extend beyond simply choosing the fastest or shortest routes: they allow complex

and flexible decisions based on the relationships between ASes. The decision process tells

the router where to send traffic on a per-AS basis, and at each successive hop, the BGP

routers along the way pick up the traffic and forward it to the destination through other

ASes chosen based on their own policies.

A BGP traffic engineering technique that will be highly relevant to this work is “hole-

punching” [30, 13]. In hole punching, a router advertises both a block of IP addresses and

a de-aggregation of that block, each with different path properties. Since these IP blocks

are technically different, BGP will treat them as routes to different destinations, allowing

for more specific policies for certain blocks of IP addresses. These more specific routes will

automatically be used, as routers always forward on the most specific matching IP block.

Additionally, there is no currently deployed mechanism to prevent a router from falsifying

route properties, and we discuss getting around deployed RPKI in Section 3.2.

7



Chapter 3

System Design

3.1 Routing Around DDoS

To combat the unmitigated threat posed by transit-link DDoS, we have designed Nyx, a

system that mitigates DDoS attacks by routing traffic between a Nyx deployer and chosen

critical AS known ahead of time, around links degraded by a DDoS attack or other adverse

network conditions. By operating on a per-route basis, rather than a costly per-stream

basis, Nyx utilizes BGP at the deployer to route around DDoS without adversely affecting the

routing information of other ASes and by moving traffic inbound for the critical AS onto new

paths with sufficient capacity to handle the added load. At a high level, Nyx makes attack

traffic from botnets irrelevant achieving the property of botnet-level independence. The

ability of Nyx to route around DDoS and make attack flows irrelevant is illustrated in

Figure 3.1 for Traditional DDoS and Figure 3.2 for Transit-Link DDoS.

Recall that traffic filtering and prioritization are ineffective against modern

DDoS with multi-Tbs traffic flows. Furthermore, the transit-link DDoS attacks proposed

in literature, Crossfire and Coremelt [18, 38], as well as real-world attacks seen against

Liberia [3], do not send their attack traffic directly to the targeted AS, thus eliminating

the possibility of applying any filtering or prioritization technique to incoming traffic since

critical traffic is dropped upstream and typically outside the control of the victim AS. Nyx

approaches the problem differently, by focusing on the problem of route selection, utilizing

normal BGP and traffic manipulation techniques to route around DDoS. By continually

8



(a) Nyx NOT Deployed (b) Nyx IS Deployed

Figure 3.1: Nyx Deployment Against Traditional DDoS

(a) Nyx NOT Deployed (b) Nyx IS Deployed

Figure 3.2: Nyx Deployment Against Transit-Link DDoS
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selecting alternate paths with the ability to handle traffic otherwise due to be dropped on

congested links, Nyx does not rely on existing filtering or prioritization techniques.

3.1.1 Realistic Deployment

Unlike prior systems which mitigate transit-link DDoS via bandwidth contracts [6], Nyx

requires no outside cooperation from other ASes, including the critical AS. Furthermore,

Nyx does not have any knowledge of where attackers originate. Nyx only assumes it knows

the AS relationships via open-source data from CAIDA [4]. In Tables 3.1 and 3.2 we show

the information required and not required by Nyx. In detail, Nyx does not need information

about the bandwidth or capacity of links on the Internet. The simulator which this work

uses to validate Nyx utilizes a bandwidth model for the capacity of links in the topology, but

this information is not known to the deployer AS or Nyx. Our system also does not have

knowledge about the location of bots, which ASes have bots, and where in the internet bots

live; instead, Nyx continues to use packet flow performance as an indicator that the current

path between the critical AS and the deployer AS is congested. When Nyx discovers the

current path is congested, we use our strategies to route around DDoS and attempt to find

via an evolutionary algorithm an alternate path with sufficient capacity, as we will discuss

later in Section 3.4. Finally, Nyx does not need to know what traffic is malicious or benign,

since our system knows the critical AS a priori and treats all traffic from that AS as ”benign”.

By forcing traffic from the critical AS onto a path outside of the sphere of influence of a

DDoS event or other adverse network conditions, malicious traffic is completely irrelevant

due to Nyx’s ability to route around links impacted by malicious botnet traffic, which gives

Nyx the property of botnet-size independence when mitigating DDoS.

Beyond the information Nyx does and does not know, we make the following assumptions

about the deployment of Nyx in practice:

• Nyx should only require the defending AS to deploy Nyx. This means we do not rely

on a full deployment of our system across the Internet to work. This means that our

critical AS will not provide our defender any assistance, nor will any other ASes on the
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Internet, which is a key feature of Nyx that distinguishes our system from any prior

work proposing to mitigate transit-link DDoS.

• Nyx should not negatively impact other ASes. Nyx should not alter any paths outside

of routes to and from the defender.

• Nyx should not significantly impact other ASes normal activities. In order to utilize our

techniques, the AS operator solely needs to be able to control the BGP advertisements

on the routers that are BGP speakers for the deployer AS.

• Nyx should function without any changes to BGP, since the technique we have devised

to manipulate inbound traffic from known critical ASes can be performed only via

adjustment of routing policies at the deployer.

3.1.2 Adversarial Model

In accordance with how traditional DDoS and transit-link DDoS are typically controlled,

our adversary does not control the underlying network structure and is not routing-aware,

thus unable to make routing decisions. Instead, our threat model considers adversaries which

control massive distributed botnets or a subset of hosts with the ability to generate massive

attack flows. With this restriction, the adversary can control the selection of bots for a

particular attack, how much traffic the bots distributed across the Internet will send, and

where in the topology each bot should send its traffic. In our current adversarial model,

we did not consider a global adversary in the design of Nyx; however, we will discuss in

Section 6 future work to address this issue. As mentioned earlier and shown in Table 3.2,

Nyx does not know where the bot ASes live, how much traffic they are sending for a given

attack, or the quantity of malicious bots in a given attack.

In the rest of this section, we will explore how Nyx achieves its three core goals within

the design restrictions we have placed to ensure deployability and resistance to adversaries.

In Section 3.2 we will examine how Nyx adjusts incoming traffic to alternative paths,

which is a functionality not controllable directly within BGP. When Nyx successfully

migrates critical traffic off of links suffering DDoS we call this routing success, and will
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discuss our evaluation of routing success later in Section 4.5. Next, in Section 3.3 we look at

how Nyx reduces disturbance, where ASes outside the the critical AS and those along the

alternative path switch to the alternative path. Finally, in Section 3.4, we establish how Nyx

attempts to maximize the number of instances of where the new link has sufficient capacity

to handle the critical traffic.

3.2 Migrating Critical Traffic

Recall from earlier in Section 2.2 that outbound traffic from an AS is trivial to adjust via

local preferences at the external BGP router; however, manipulating the paths inbound traffic

takes to an AS would typically only be possible via coordination between the ASes on either

end, as existing systems such as SCION and SIBRA do to route around DDoS [46, 6]. Nyx,

however assumes no coordination between the deployer AS and any other AS, specifically

the critical AS. The deployer cannot directly adjust the local preferences of the critical AS to

traverse links which avoid DDoS attacks and other adverse network conditions. We address

this issue by giving the deployer AS the ability to restrict the AS-level paths the critical AS

can take to the deployer to only paths which do not traverse the congested or attacked links

within the topology, such as those affected by traditional or transit-link DDoS attacks. We do

this without restricting the critical ASes connectivity to any other ASes, and without causing

the critical AS to see any less BGP advertisements from ASes other than the deployer. At a

high level, Nyx strives to route around DDoS as illustrated in Figures 3.1 and 3.2, where we

show how Nyx makes attack events and congested links irrelevant, as critical traffic headed

to the deployer is forced onto uncongested, alternate paths.

To give the deployer this ability, we have developed a strategy used by Nyx called

Fraudulent Route Reverse Poisoning (FRRP). Nyx employs FRRP to ensure that any

BGP advertisements which propagate to the critical AS, originated by the deployer AS, are

guaranteed to not traverse links that are congested or under attack from DDoS or adverse

conditions such as broken links or surges in bandwidth usage creating congestion. FRRP

takes away the choice of the critical AS to route outbound traffic headed to the critical over
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the attacked links by ensuring advertisements which originate at the deployer do not reveal

the paths with attacked links.

(a) Critical links are congested (b) Lying about paths and ap-
pending ASes to avoid

(c) Loop detection (d) Critical AS now traverses alternate
path

Figure 3.3: Fraudulent Route Reverse Poisoning

In detail, FRRP is illustrated in Figure 3.3 and works as follows: the normal traffic from

the critical AS 3 to deployer AS 1 usually flows over AS 2 from 3, since the critical AS

prefers using AS 2 over AS 4 (shown by Part 3.3a). However, attack traffic has congested

the link from 3 to 2. In order to avoid this link and route the critical traffic over AS 4, the

deployer lies about the path by appending AS 2 to it’s BGP advertisements. The deployer

also appends it’s own AS number to the end of the path, which as we will discuss shortly,

allows FRRP to function under deployed RPKI. When AS 4 receives this path, it advertises

it to AS 3 (as shown in Part 3.3b). When AS 2 sees that itself is in the path advertised

from the deployer, BGP’s built-in loop detection causes AS 2 to not forward it’s route to

AS 1 (shown by Part 3.3c). Thus, the critical AS 3 will no longer see the path to 1 over

2, and it will use it’s only other available path, which is over AS 4 ( shown in Part 3.3d).
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Nyx utilizes FRRP at an Internet-scale to migrate incoming traffic from a chosen critical

AS onto alternate paths in situations where many alternate paths exist.

By using FRRP, we achieve over 98% success for the ability to move traffic off of links

under DDoS. Figure 3.1 shows Nyx both deployed and not deployed against a traditional

DDoS attack, and Figure 3.2 shows Nyx both deployed and not deployed against Transit-

Link DDoS. In both cases, Nyx utilizes FRRP to achieve reactive route selection and subvert

attacked links, rather than relying on filtering or prioritization of traffic from the critical AS.

FRRP under RPKI

When utilizing FRRP, properly deployed resource public key infrastructure (RPKI), also

known as Resource Certification, would typically prevent advertising false routes [21].

However, Nyx addresses RPKI’s effects on FRRP by ensuring that strategic lying in

order to trigger loop detection does not interfere with the route origination process. In

detail, given an originating autonomous system, ASorig and a set of ASes to blacklist,

BLAS = { ASBL1 , ASBL2 , . . . , ASBLN
} where ASorig /∈ BLAS, the deployer (the originator

in this case) advertises the following path when using FRRP:

{ ASorig, ASBL1 , ASBL2 , . . . , ASBLN
, ASorig︸ ︷︷ ︸
For RPKI

} (3.1)

The new path then propagates through the network along from AS1 to AS3, beginning

at the destination, ASorig, with the blacklisted ASes appended to the end followed by the

originating, or deployer, AS again:

{ AS3, AS2, AS1︸ ︷︷ ︸
Actual Path

,

Packet at Dest︷ ︸︸ ︷
ASorig , ASBL1 , . . . , ASBLN

, ASorig︸ ︷︷ ︸
Irrelevant for Forwarding

} (3.2)

This means that when routes are advertised by the originator in Equation 3.1, RPKI will

treat the route as valid since RPKI only checks to ensure the AS that who originated the

route is the last AS in the path. As the path propagates or grows throughout the network in

Equation 3.2, ASes along the path will continue to forward the route as long as the originator

remains in the path. The blacklisted ASes after the originator are irrelevant to forwarding
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since they lie after the destination AS, yet these additional ASes will not use the new path

when receiving the path due to the mechanics of BGP loop detection. Since an AS will

simply scan the entire path for it’s own AS number and upon finding itself in the path, it

will drop the path.

FRRP and Network Connectivity

In order to maintain network connectivity, the deployer still advertises it’s normal paths,

but the FRRP paths will be hole-punched prefixes as discussed earlier in Section 2.2. The

deployer will advertise normal aggregates to maintain connectivity to ASes other than

the critical, and will utilize de-aggregate advertisements for FRRP via hole punching.

FRRP coupled with hole-punching ensures that the deployer running Nyx can successfully

manipulate traffic inbound from the critical AS without losing any connectivity to other

ASes.

As discussed in this section, FRRP gives Nyx the ability to route around DDoS attacks

and adverse network conditions. Whether the alternate paths can handle the added load is

discussed later in Section 3.4. Before exploring this issue, we first examine the ability of Nyx

to reduce the side-effects of utilizing FRRP in the next section.

3.3 Reducing Disturbance

By utilizing FRRP, we may unintentionally alter the preferred paths to the deployer of ASes

other than the critical AS. In the worst case, we alter the path utilized by ASes containing

large numbers of bots, potentially causing DDoS traffic to now flow over the alternate

path. We term this effect disturbance. To address disturbance, we have implemented

two techniques that modify the process of FRRP:

• Selective Advertisement: We first advertise the FRRP path, observing what the most

preferable alternative path from critical AS to the deployer is. We then withdraw the

FRRP path and re-advertise it only to the AS directly connected to the deployer AS

on the preferred alternative path.
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• Path Lining: Using the preferred alternative path, we utilize FRRP to blacklist every

AS adjacent to the path and their customer cone, but not the ASes along the path.

When the blacklisted ASes see the FRRP-originated advertisement, they drop the new

path due to loop detection in the same way that FRRP was used to avoid the attacked

links due to DDoS. By halting the propagation of our alternate path, disturbance is

reduced. Keep in mind, path lining requires no outside cooperation or coordination

from ASes outside of the deployer, since the deployer simply includes the ASes it wishes

to blacklist in it’s fraudulent advertisements.

In our evaluation, to be discussed in Section 4, selective advertisement alone actually

increases the disturbance caused by FRRP, a byproduct of how the path propagates through

the topology. Path lining does, however prevent disturbance, since we are able to add ASes

which we do not want our FRRP-advertised routes to propagate beyond to our list of ASes

to blacklist via BGP loop detection. When employing path lining, we see on average less

than 10 ASes disturbed as a result of the deployer’s actions, which will be discussed further

in Section 4.6.

3.4 Finding Performant Paths

Even when our system finds paths around ASes we want to avoid, the new paths may not

be optimal with respect to available bandwidth along the new path’s links. When we move

traffic from one path to another path, we force the alternate path to carry its original traffic

in addition to traffic from the critical AS and any disturbed ASes. If the new links cannot

support the amount of added bandwidth we are placing on them, we will still experience

congestion, and can even end up in a worse situation than not using Nyx at all.

To counter the problem of moving traffic onto new links without enough bandwidth

capacity, we have developed a searching method to find the most performant paths when

alternate paths exist, which when deployed, will repeatedly use FRRP and path lining

to migrate critical traffic to an alternative path, and then evaluate if congestion is being

experienced. This searching is an evolutionary algorithm, where the fitness function is

packet flow performance over each alternate path. When searching, if the alternative path
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is experiencing congestion, Nyx withdraws the alternative route and repeats the FRRP and

path lining process, but additionally treats the hops along the former alternative path as if

they are experiencing DDoS as well, thus blacklisting them and causing the critical AS to

not route traffic ot the deployer AS over the insufficient alternate paths. In other words,

Nyx repeats the alternative path generating process, avoiding ASes experiencing DDoS and

those who have failed to provide a performant alternative path.
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Table 3.1: Information Needed by Nyx

Information
Needed

How Nyx Uses In-
formation

Information Source

Critical AS

Traffic from Critical
AS moved around
degraded or attacked
links

Chosen by Deployer
AS

Paths between
Deployer AS and

Critical AS

Alternate, non-
degraded paths
between Critical AS
and Deployer AS
chosen based on any
known paths

Deployer BGP
speaker’s Routing
Information Base

(RIB)

Packet flow
performance

Used to detect ser-
vice degradation due
to DDoS event or
adverse network con-
ditions over alternate
paths

OpenFlow 1

ASes bordering
alternate paths

between Deployer AS
and Critical AS

BGP loop detection is
used during FRRP to
reduce disturbance by
appending ASes bor-
dering alternate paths

Deployer BGP
speaker’s Routing
Information Base

(RIB) and Inferred
AS Relationships

Data from CAIDA [4]

Table 3.2: Information NOT Needed by Nyx

Information Not
Needed

How Nyx Works With-
out

Bandwidth/Capacity
of links in the

Internet

Packet flow performance
used as a proxy for conges-
tion

Location of malicious
bots and botnets in

the Internet

Nyx continually discovers
alternate paths until a path
with sufficient capacity is
found, without ever know-
ing the attack sources

Malicious and benign
traffic

Nyx considers traffic from
critical AS, known ahead of
time as, ”benign”, without
needing to know malicious
traffic
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Chapter 4

Evaluation

4.1 Simulation Methodology

To evaluate the effectiveness of our system, we built our own BGP simulator, which has

been used in prior work by Schuchard et. al 1 [33]. The simulator is essentially a collection

of software routers who speak BGP configured in a realistic topology. The topology used in

the simulation is from CAIDA’s AS relationships dataset taken from December of 2016 [4].

The BGP policies used by the simulated routes match the current best practices used by

operators. Additionally, we have used three bandwidth models, covered in Section 4.2, which

are used to calculate link capacities, and two botnet models, which are used to calculate

attack volumes available to each attacking AS throughout our simulation. We will show

later in Section 4.7.2 that our system is resilient to changes in these models.

Using our simulator, we can examine both the effectiveness and cost of a deployer using

Nyx, which we refer to as the deployer AS, to migrate critical traffic off of links suffering

from DDoS or adverse network conditions. Our experiment repeatedly picks two random

ASes from the Internet’s default-free zone, which are ASes that are not stub ASes, and fixes

one of the ASes as the deployer AS and the other as an AS generating critical traffic (i.e. the

critical AS mentioned earlier). We then simulate the deployer attempting to respond with

Nyx to a DDoS attack that is impacting links on the current best known path between the

deployer and critical AS.

1Source code at https://volsec.eecs.utk.edu/nyx
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When simulating a DDoS attack, we measure the used capacity of links on the best path

between the deployer and critical AS in two cases by simulating traffic flow through the

Internet: (1) we measure the used link capacity after the attacks effects have congested a

link but before we have used Nyx to migrate traffic off links, (2) we measure after we use

Nyx to migrate traffic onto an ideally more performant path. We call the used link capacity

for a given link the subscription factor of that link, and we calculate these values using a

combination of our bandwidth model, which we will discuss in the next section, Section 4.2,

two constant fixed values varied between simulations that we call the ”Bandwidth Tolerance”

and ”Congestion Factor”, and the number of IPs in bot ASes that are attacking the deployer

AS per run. The number of IPs per bot AS is determined via the earlier mentioned botnet

models we use, which we will discuss further in Section 4.3.

The aforementioned bandwidth tolerance and congestion factors for inform us of whether

our system can hold up under varying attack strengths. The bandwidth tolerance for

the link between any given AS pair is a constant value between 1 and 2 that describes how

much additional capacity the link has based on a normal capacity of 1.0. For example, if

the bandwidth tolerance is 1.5, then the AS can handle 50% more traffic than it’s normal

capacity of 1.0, where any higher than 1.0 means that link is congested and may drop traffic

flowing over it.

The congestion factor is a value that is specific to a simulation instance. The congestion

factor informs the simulator to send an amount of traffic to the current link we are simulating

an attack on that would put the traffic flowing over that link at such a congestion factor.

In our simulation, a value of 1.0 for the amount of traffic on a link is the max capacity, and

anything over 1.0 means it is congested. We vary our congestion factors between 2.0 and 5.0

over runs, in order to simulate a moderate amount of congestion and a significant amount

of congestion.

In order to calculate the pre- and post-traffic migration subscription factors, we need to

calculate normal traffic levels flowing over every link in the topology. Using our bandwidth

model, we get a predicted level of traffic that should flow over each link, which is then

multiplied by the bandwidth tolerance to give us the normal traffic values for that link.

Using our botnet model to determine the magnitude of bots per AS, which we will discuss
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in in Section 4.3, we then direct bot traffic at the links between the critical and deployer

AS in the case of transit-link DDoS, and at the deployer AS itself for traditional DDoS, by

allocating traffic first to the ASes with the most bots. With the combination of the normal

traffic over the deployer-critical links and the bot traffic from the DDoS attack impacting

them, we calculate our pre-subscription factor as a value above 0.0, where less than 1.0 means

the link is uncongested, and above 1.0 means the link is congested. After we utilize Nyx to

move traffic off the impacted links and ideally onto more performant paths, we flow traffic

again in our simulator and calculate the post-subscription factor, which we use to determine

our performance success metric.

We use our congestion factor as a proxy for packet loss, and we use path length as a

proxy for latency. Modeling latency on the Internet itself is extremely difficult for massively

distributed systems; therefore, we adopt the common notion of using path length as a

proxy metric for latency, since we can measure path length easily within our simulator

since the simulator knows the current Internet topology. Nyx must also know the topology

to find alternate paths via our evolutionary algorithm for capacity alleviation, where an

individual AS can gather this data from known open source datasets updated frequently via

organizations such as CAIDA [4] or gather this on its own via targeted traceroutes. Table A.1

in the Appendix shows a summary the information visible to our Internet simulator, and

illustrates that Nyx and the deployer AS know very little in practice, which is shown in

Tables 3.1 and 3.2 earlier in Section 3.

4.2 Bandwidth Model

We recognize that establishing a complete and irrefutable bandwidth model for the modern

Internet is an unsolved problem without wielding large-scale collaboration from nearly all

existing ASes; therefore, we have developed what we believe to be an accurate and generalized

model that effectively allows us to assign bandwidth capacities to links on the Internet. In

addition to this model, we have tested our system with two simpler models, one based on

the degree of ASes and one on the total IPs associated with ASes, and we show that it works

effectively with simpler models later in Section 4.7.2.
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To achieve this, we need an Internet scale model of where traffic originates from, where its

destination is, and how much of it there is. We base our model on existing work, specifically

that of Gill et al. [12], supported by the measurements of Labovitz et al. [20], the World

Bank [42], PeeringDB [29], and Sandvine [32]. We call this model the Inferred Model, as we

have used known and reputable Internet-wide data to assign approximate traffic constraints

to links in the Internet known solely to the simulator, and not by the Nyx deployer.

In order to establish the relative values of traffic leaving and entering ASes three data

sets were combined. Sandvine provides the amount of bandwidth consumption from an

“average” user in various regions [32]. This information was combined with the World

Bank’s estimation of the number of Internet users in each country to get relative inbound

and outbound bandwidth on a per nation state basis [42]. In order to assign that bandwidth

to ASes, we first assigned each AS to the nation state it primarily resides in using IANA’s

assigned AS numbers [14]. We then consulted PeeringDB, which is a system that allows ASes

to advertise their willingness to peer with other ASes [29]. ASes which elect to participate

in PeeringDB have the ability to optionally disclose the average amount of inbound and

outbound bandwidth from their AS that peers should expect. Of the roughly 55,000

ASes which exist in our , where our topology is built based on CAIDA’s AS relationship

dataset [4], just over 8,000 report bandwidth estimates exist. In order to establish relative

bandwidth values between all ASes, a Decision Tree classifier was trained based on AS

features including AS degree, the AS customer cone size, the AS’s primary country of

operation, and the size of IP space advertised by the AS using Scikit-Learn, a popular

machine-learning framework [28]. The resulting classifier had a correlation coefficient of

0.89, indicating that the PeeringDB data combined with additional AS information models

bandwidth estimates with high accuracy.

Again, we recognize that our inferred bandwidth model is not perfect, but currently no

literature has established a model for bandwidth sufficient for approximating traffic levels

across the entire Internet.
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4.3 Botnet Model

For simulating attacks on links in our topology, we have three botnet datasets. The first

dataset comprises 2.9 million unique Mirai [39] hosts, observed between August 2016 and

June 2017, which we call our Mirai Botnet model. This model was gathered by a Chinese

CDN with a passive scanner setup to detect connections from IPs on known Mirai ports [27].

Given that the Mirai botnet caused massive failures of systems on the Internet in transit-link

attacks, as seen in the DynDNS attack and in Liberia being knocked offline [1, 3], we use

this botnet so that we can simulate Nyx standing up against a DDoS attack generated by

the same model in which nearly all modern DDoS defenses have recently failed to protect

against. For Mirai, the distribution of bots among ASes reveals that the majority of bots are

clustered in a relatively small number of ASes, as see in Figure A.1 as seen in the Appendix,

with less than 50 bots in over 97% of ASes with at least one bot. Note, that in Figure A.1,

the y-axis is trimmed to only show ASes with bot quantities of over 97% of the total botnet

size.

The second is a dataset of 23 botnet families collectively known as Conficker, which were

observed launching DDoS attacks between late August 2012 and March 2013 with a total

of 2.2 million unique hosts [40]. This data was gathered by enumerating all of the botnets

Command and Control domains in advance based on exposed code from the botnet variant,

and then track the hosts contacting the domains. The distribution of the host-based botnet

is nearly identical to Mirai as shown by Figure A.1 in the Appendix, with again less than 50

bots in over 97% of ASes.

The third and final botnet dataset is a fully distributed botnet where every AS in the

topology, except for the current deployer and critical AS, is a bot AS with the ability to

send malicious traffic. We use this final botnet model to prove that Nyx is able to mitigate

transit-link and traditional DDoS even when facing a fully distributed adversary.

In our simulator, when we iterate over each link of the original path between the deployer

and critical ASes, we direct the traffic of the bot ASes to the deployer side of the current

link if and only if the bot ASes best paths to every other AS in the Internet travels over the

current link, thus modeling the Crossfire attack by Kang et. al. [18] popularizing transit-link
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DDoS by setting up an NN amount of connections between bots, where N is the number

of bots in the current botnet model that can flow over the currently attacked link. This

ensures that out of all the bot ASes we have in each bot dataset, we only use the subset

of bots that can direct traffic either flowing over the attacked transit-link, in the case of

transit-link DDoS, or the deployer AS, in the case of traditional DDoS. In our evaluation,

we show graphs from both datasets, illustrating Nyx’s resiliency to choice of botnet model.

4.4 Attack Scenarios

In our simulation, we aim to mitigate attacks and protect the deployer AS in two distinct

DDoS attack scenarios:

• Transit-Link DDoS: In this scenario, the bots in our dataset target links upstream

of the deployer AS as described above. This is the primary scenario and most closely

represents transit-link DDoS, where attacking ASes do not directly address attack

traffic to the victim AS, and instead try to block up links outside of their direct sphere

of influence. Success in moving traffic to less congested links in this scenario means

that our system can effectively mitigate transit-link DDoS. Recall, the deploying AS

cannot filter or prioritize traffic when under transit-link DDoS, as shown earlier in

Figure 1.1b.

• Traditional DDoS: In this scenario the bots in our dataset directly target the deployer

AS using the bots that actually have paths to the deployer. This scenario is the more

difficult of the two scenarios, and success here is a major improvement to current DDoS

defenses. Here, instead of measuring our routing success in terms of distance to the

deployer, we are actually measuring the routing success against attacked segments

starting with the deployer AS. In this scenario, bots not only address their traffic to the

deployer AS directly, but to every segment of hops between the deployer and critical

AS; therefore, it is worth noting that less bot ASes have paths to long segments of

ASes within the default-free zone of the Internet, as opposed to a given transit core

AS.
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As we will show in the rest of this section, we are largely insensitive to the scenario

chosen, which illustrates that we are able to defend against the two major forms of DDoS

attacks seen today. Now, we will explore our ability to migrate incoming traffic off their

original paths, then show how we can migrate incoming traffic without disturbing significant

numbers of neighboring ASes along the deployer-critical AS path, and finally reveal that we

can migrate traffic off impacted links onto links that are less congested or totally uncongested

relative to the original best path.

4.5 Can Nyx Migrate Traffic Onto Links Not Impacted

by DDoS Attacks?

(a) Percentage routing success
for both attack scenarios for the
Mirai botnet.

(b) Percentage routing success
for both attack scenarios for the
Conficker botnet.

(c) Percentage routing success for
both attack scenarios for the Fully
Distributed botnet.

Figure 4.1: Routing Success for the Mirai, Conficker, and Fully Distributed Botnet models.

Nyx is able to find valid paths and move incoming traffic onto around impacted links with

a great degree of success, which is the first step in mitigating transit-link and traditional

DDoS of the volumes where current systems fail. We use our simulator to measure this result

for both types of DDoS scenarios, and we label this result as routing success.

As shown in Figure 4.1a, our system achieved nearly 100% routing success over all

simulation runs when using FRRP with selective advertisement and path lining to influence

the incoming traffic from ASes between 2 and 8 hops out from the deployer. This means

that when transit-links upstream of the deployer AS are being targeted, the deployer AS can
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(a) Path Length Increase for Transit-Link
Attack

(b) Path Length Increase for Traditional Attack

Figure 4.2: Path length increase for both attack scenarios for Mirai, Conficker, and Fully
Distributed botnets.

successfully cause incoming traffic from a chosen critical AS to move around the impacted

links.

Not only can we do so with very high success when transit-links are attacked, but when

we are under a traditional DDoS attack, our success in routing incoming traffic was above

78% at the extremely low end, and nearly 100% when migrating traffic off links 2 hops or

greater away from the deployer itself. This means that as an attacking botnet targets the two

links closest to the deployer AS on the path from the deployer to critical AS, the deployer

can migrate traffic from that critical AS around the two impacted links with nearly 100%

success.

In Figure 4.1b, we show that we can migrate incoming traffic off of nearly any arbitrary

link in the Conficker model, and not only when under attack from the Mirai botnet. In this

case, our success is also above 98% for hops between 2 and 8 out from the deployer, both

when upstream transit-links are under attack and when the deployer is directly under attack.

Finally, we see that Nyx can migrate incoming traffic from the critical AS nearly 100%

of the time when under attack from a globally distributed botnet, as shown by Figure 4.1c.
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4.5.1 Modeling Latency

Recall that we use the widely accepted notion of path length increase as a proxy for increased

latency while modeling our system. In practice, measuring the latency of chosen, alternate

paths on the Internet depends heavily on the layer 1 technologies uses, such as the physical

cables between ASes, as well as geographical distance between ASes, and the quality of the

hardware running the BGP daemons.

We see path length increases of greater than 5 hops in only 2% of runs, and for 94% of

runs, we see no path length increase, which is shown in Figure 4.2 regardless of the botnet

model used. This is significant as well, because now we additionally do not cause incoming

traffic to take longer paths to the deployer AS when traveling around impacted links due to

the influence of Nyx. Figure 4.2 also shows the path length increase when using the Conficker

and Fully Distributed botnet models, which is roughly equivalent and illustrates that Nyx

is resilient to changes in the botnet model with respect to path length increases, even for a

globally distributed botnet.

Routing success can be achieved independent of whether the new path is actually more

congested than the original path, and routing success where the network congestion is

alleviated on the new path is discussed later in Section 4.7. In the next section, we discuss

how we address the second challenge described earlier in Section 3, disturbance mitigation.

4.6 Can Nyx Migrate Traffic Without Disturbing Other

ASes?

Despite being able to migrate incoming traffic onto new paths outside of the influence of

a major DDoS attack, we discovered that the FRRP technique used by Nyx disturbed

significant numbers of ASes. To overcome the problem of disturbance, we introduced two

strategies in Section 3.3: selective advertisement and path lining. When utilizing those

strategies in unison, we significantly lessened the disturbance to the ASes close to the deployer

AS when Nyx was employed to migrate incoming traffic.
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(a) Disturbed ASes for Transit-
Link Attack for Mirai

(b) Disturbed ASes for Transit-
Link Attack for Conficker

(c) Disturbed ASes for Transit-
Link Attack for Fully Distributed
Botnet

(d) Disturbed ASes for Tradi-
tional Attack for Mirai

(e) Disturbed ASes for Tradi-
tional Attack for Conficker

(f) Disturbed ASes for Tra-
ditional Attack for Fully Dis-
tributed Botnet

Figure 4.3: Disturbed ASes with and without disturbance mitigation for all botnet models
for Traditional and Transit-Link DDoS
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As shown in Figure 4.3, before employing any strategies to mitigate disturbance, we

disturbed between 1,000 and 6,000 ASes nearly 90% of the time, which in the modern

Internet is roughly 10% of all existing ASes 2. This is true when under either attack scenario:

transit-link DDoS or traditional DDoS. When we implemented selective advertisement alone,

we did not see the disturbance drop, which indicated we needed to try another strategy.

Then, we implemented path lining as described in Section 4.6, and brought the number of

disturbed ASes to less than 10 disturbed ASes on average. Using path lining and selective

advertisement, we effectively mitigated the disturbance of ASes in the default-free zone, thus

reducing the deployment costs of Nyx when both upstream transit-links are attacked and

when the deployer AS is targeted directly. Furthermore, for each of those ASes, Nyx also

disturbed the IPs residing within them, as they may see new routes taken for traffic being

sent. This is shown in Figure A.2 in the Appendix, since the story is roughly the same as

the disturbance in ASes.

In summary, by employing our disturbance mitigation techniques, we are able bring the

costs of disturbance to virtually zero in nearly 90% of cases. In the next section, we will

discuss local preference disturbance.

4.6.1 Are There Any Local Preference Changes?

The cost of link usage from one provider to another provider in the actual Internet are closely

guarded secrets; therefore, we use the act of switching onto a peer- or provider-learned path

as a proxy for added monetary cost. In our simulations, the deployer AS using Nyx never

switches from a customer learned path to peer- or provider-learned path, or a peer-learned

path to a provider-learned path.

4.7 Do the Alternate Paths Have Enough Capacity?

Now that we have shown that Nyx can successfully migrate incoming traffic and do so with

little to no disturbance, we now show that Nyx can migrate traffic onto more performant

and uncongested paths in nearly all cases for transit-link DDoS and a majority of cases in

2As of October 2017, the number of ASes according to CAIDA’s Internet topology was roughly 58,000.
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(a) Weak Performance Success
with No Searching for the Mirai
Botnet and Normal Bandwidth
Model

(b) Strong Performance Success
with No Searching for the Mirai
Botnet and Normal Bandwidth
Model

(c) CDF of Post-Subscription
Factor with No Searching for
the Mirai Botnet and Normal
Bandwidth Model

(d) Weak Performance Success
with Searching for the Mirai
Botnet and Normal Bandwidth
Model

(e) Strong Performance Success
with Searching for the Mirai
Botnet and Normal Bandwidth
Model

(f) CDF of Post-Subscription
Factor with Searching for the
Mirai Botnet and Normal Band-
width Model

Figure 4.4: Performance success metrics for the transit-link attack scenario with and
without searching.
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traditional DDoS. In order to measure performant paths, we use several bandwidth tolerances

and congestion factors, as discussed in Section 4.1. We additionally show that our system

has the ability to search for performant paths as described in Section 3.4, which greatly

enhances the success of migrating onto uncongested paths after a DDoS attack.

Our system achieves performance success in two distinct ways: when the post-

subscription factor is less than the original subscription factor, and when the post-

subscription factor is less than 1.0 (indicating that we have completely alleviated congestion

from either an original subscription factor of 2.0 or 5.0 to less than 1.0). The bandwidth

tolerances are between the range of 1.0 and 2.0, which model links where the capacity might

actually have more room than our bandwidth model dictates, and this tolerance is applied

across all of our simulations.

As shown in Figure 4.4, when the deployer AS is under transit-link DDoS, we are able

to find paths more performant than the pre-attack path on average in over 90% of cases

without searching for the hardest setting of bandwidth tolerance and congestion factor, but

with searching as shown in Figure 4.4d, our performance success is essentially 100% for all

distances from the deployer AS. This means that no matter how far out a transit-link is

being attacked, we can alleviate some amount of congestion in nearly 100% of cases. But

what about alleviating all of the congestion?. We show this in Figure 4.4b without searching,

where we are still able to find performant paths that are completely uncongested as compared

to an original congestion of 5 times more than the capacity in over 89% of cases on average.

When we employ searching in Figure 4.4e, we bring that average up to over 95% on average

for the hardest setting of bandwidth tolerance at 1.1.

These results indicate that when transit-links are under a DDoS attack upstream of the

deployer AS, we can guarantee no traffic loss for a particular critical AS in over 95% of cases.

To state it in another way, we give the deployer the ability to operate under normal conditions

for traffic being delivered from some critical network despite the transit-links between the

deployer and critical network sustaining attack traffic loads of arbitrary amounts.

For transit-link DDoS with and without searching, we also show the post-attack

subscription factors in Figure 4.4c and 4.4f, which indicates that for over 95% of cases we
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can migrate traffic onto uncongested paths out of the way of any DDoS attacks on upstream

transit-links.

Not only can we protect the deployer AS when it is under transit-link DDoS, but we show

we can protect the deployer AS when it is targeted directly in a traditional DDoS scenario for

the hardest settings of bandwidth tolerance and congestion factor. As we show in Figure 4.5,

we are able to migrate traffic onto links that are more performant than the original paths in

on average 93% of cases, and for strong performance success we can migrate traffic onto paths

that are on average completely uncongested in 75% of cases. When employing searching,

though we see a higher weak performance success in Figure 4.5d, with an average of nearly

98% success in alleviating some amount of congestion, we do not see searching helping nearly

as much for strong performance success, as shown in Figure 4.5e.

Despite this, we demonstrate that using Nyx, even when under a traditional DDoS attack,

with little cost of deployment to an AS and no outside cooperation, we can migrate incoming

traffic onto links that are not impacted by the DDoS at the ASes doorstep, targeted directly

at the deployer, on average 75% of the time, as shown in the CDF of the post-subscription

factors in Figure 4.5f. Why is traditional DDoS the harder case to protect against? The

answer lies in how Nyx utilizes FRRP. When we advertise out our hole-punched paths from

the deployer AS while under traditional DDoS attacks, we can end up dragging along large

amounts of bot traffic that is being addressed directly to the deployer AS, whereas the

bot traffic in transit-link DDoS is never addressed to the deployer AS, and will the bot

traffic will not be dragged towards the deployer AS. Regardless of this side effect, we have

still demonstrated that our system can protect a significant amount of traffic from a chosen

critical AS known ahead of time, which often cannot be done in any capacity with traditional

DDoS defense methods that we will discuss in Section 5.

We show in Figure 4.6, that when our system utilizes searching, the depth to which we

search is small except in greater distances from the deployer. This means that the deployer

does not have to force the BGP speakers implementing Nyx to waste precious time finding

more performant paths around impacted links, and that it can be done in the case of transit-

link DDoS in nearly 0 iterations on average and 14 iterations on average in the worst case

for distances in excess of 8 hops from the deployer.
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(a) Weak Performance Success
with No Searching for the Mirai
Botnet and Normal Bandwidth
Model

(b) Strong Performance Success
with No Searching for the Mirai
Botnet and Normal Bandwidth
Model

(c) CDF of Post-Subscription
Factor with No Searching for
the Mirai Botnet and Normal
Bandwidth Model

(d) Weak Performance Success
with Searching for the Mirai
Botnet and Normal Bandwidth
Model

(e) Strong Performance Success
with Searching for the Mirai
Botnet and Normal Bandwidth
Model

(f) CDF of Post-Subscription
Factor with Searching for the
Mirai Botnet and Normal Band-
width Model

Figure 4.5: Performance success metrics for the traditional attack scenario with and
without searching.

Figure 4.6: Average depth of search for the hardest setting of bandwidth tolerance and
congestion factor.
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We have discussed our results for performance success in the case of bandwidth tolerances

and congestion factors, but how do we show that these values are not chosen simply to

guarantee the success of our system? We show in Figure 4.7, that for the Mirai botnet

model, once our bandwidth tolerance is at 1.1 or higher, the gains received by increasing the

tolerance stabilize and do not increase further. This indicates that regardless of how much

room you give the link capacities around a DDoS attack, the strong performance success does

not increase; therefore, our chosen values in the simulation are not in place to guarantee we

have greater success.

Figure 4.7: Strong performance success over varying bandwidth tolerances. Notice that
once the bandwidth tolerance is greater than 1.1, the overall strong performance success
stabilizes.

For congestion factors, we see only slightly higher performance success for smaller

congestion factors, such as our other tested factor of 2.0, but not by significant amounts.

As shown in Figure 4.8, the smaller congestion factor of 2.0 has little effect on the strong

performance success, where we must migrate traffic onto links that are uncongested. This is

the case when either transit-links are attacked or when the deployer is attacked directly.

Given these results, our simulation’s choice of congestion factor indicates that you can

continue to congest links on the normal path between the deployer and critical AS and

still be able to successfully migrate traffic around the impacted links, while still alleviating

congestion.
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(a) Strong Performance Success for
Transit-Link Attack for CF of 2.0

(b) Strong Performance Success for
Traditional Attack for CF of 2.0

Figure 4.8: Strong performance success with searching for both attack scenarios for
congestion factor of 2.0.

4.7.1 Is the Performance Success of Nyx Insensitive to the Botnet

Model?

In Section 4.3, we described three botnet models: Mirai, Conficker, and a fully distributed

botnet. In the previous section, we showed that Nyx significantly mitigates the effects of

Traditional DDoS and nearly defeats any congestion due to Transit-Link DDoS when the

adversary controls a botnet with the size and topology of Mirai. However, Nyx performs as

well with other models, including Conficker, which has a distribution and cardinality similar

to Mirai (see Figure A.1), and a fully distributed botnet. For Conficker, the results are similar

in success to Mirai and are shown in the Appendix in Figure B.1. For the fully distributed

botnet, Nyx achieves strong performance success in 99% of cases on average for Transit-

Link DDoS for the hardest settings of bandwidth tolerance and congestion factor, and 78%

strong performance success on average for Traditional DDoS as shown in the Appendix in

Figure B.2. This means that a globally distributed adversary, such that essentially every

AS in the modern Internet possesses bots that can send attack traffic upon command, can

be subverted by routing around the DDoS events with Nyx, deployed at a single AS and

without outside cooperation from other ASes.
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4.7.2 Is Nyx Insensitive to the Choice of Bandwidth Model?

In Section 4.2, we described the main bandwidth model used in our evaluation. This model

is fairly complex, but approximates the typical traffic levels on existing ASes through the

application of several well-known datasets of AS-level and geographic data, which is needed

because the real link capacities between major ASes are a in many cases a closely guarded

secret. To evaluate our system’s ability to still work with simpler models, we have built two

other bandwidth models that influence our system’s performance success (i.e. the ability to

reduce congestion on the new routes chosen after successfully migrating traffic):

1. AS Degree Model: This model chooses the degree of each AS as the traffic factor

value, or the approximation of the traffic sent by a given AS with arbitrary traffic

units, described in Section 4.1. The AS Degree for any given AS is defined as the

number of ASes where the given AS has a direct connection, as inferred from CAIDA’s

AS Relationship dataset [4].

2. AS IP Count Model: This model chooses the number of IPs associated with a given AS

as it’s traffic factor value. The number of IPs associated with a given AS is determined

by the RIPE NCC RouteViews dataset [31].

In Figure 4.9, we show that our system still achieves nearly identical strong performance

success for all tested bandwidth models, with our most complex and standard inferred model

performing the worst overall. For the transit-link DDoS scenario, our models all averaged

around 95% strong performance success, and for the traditional DDoS scenario, our models

averaged around 70% to 75% success. Therefore, by modeling the link capacities on the

Internet as a function of the AS Degree and AS Total IP count, we have achieved similar

results as when we model the link capacities with our more complex, inferred bandwidth

model that attempts to model the true link capacities in the Internet.
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(a) Strong Performance Success for
Transit-Link Attack Scenario for All
Bandwidth Models

(b) Strong Performance Success for
Traditional Attack Scenario for All
Bandwidth Models

Figure 4.9: Strong performance success for both attack scenarios over all bandwidth
models.
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Chapter 5

Related Work

Traditional and current defense systems attempt to mitigate the negative effects of DDoS

attacks through a variety of means; however, no systems we found defend against DDoS via

route-altering techniques such as ours. In this section, we will discuss several classes of DDoS

defense systems in recent literature, then we will discuss why these systems fail to protect

against recent transit-link DDoS attacks and massive traditional DDoS attacks leveraging

the Mirai botnet [1, 2, 3], then we will discuss why our system does not suffer from the same

flaws as these existing systems.

Traditional DDoS defense systems that attempt to alleviate DDoS attacks via packet

filtering [25] using techniques such as packet marking [36, 8, 44, 26, 23, 43] and push-back

techniques [45, 22, 24, 16, 5] filter traffic at ingress and egress points on the network, but

are incapable of withstanding DDoS attacks of the size of the Mirai botnet used to test Nyx.

Additionally, transit-link DDoS typically does not send attack traffic directly to the reactor

AS, and instead to upstream links; therefore, filtering on attack traffic would not be feasible

since the victim would not see the traffic. Furthermore, our system can handle massive

inbound flows sent from distributed botnets because not only do we not physically have to

handle malicious traffic in the case of transit-link attacks, but we can arbitrarily manipulate

the paths that attack traffic takes, and by doing so spread the incoming attack traffic across

links upstream of the deployer AS such that no traffic from the critical AS is dropped along

the way.
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Other techniques that filter traffic targeted at specific services [10, 9, 41] are ineffective

against DDoS attacks that attack different services or even the underlying routing infrastruc-

ture. Because all internetwork traffic must be sent over paths determined by BGP speakers,

as simulated in this work, our system is able to reactively alter advertised paths such that

no matter the type of traffic being sent by the adversary, the victim AS will move traffic

from a chosen critical AS onto paths not impacted by the malicious traffic.

Strategies using game-theoretic approaches model the defender’s best case strategy to

maximize cost for an attacker [37, 7], but these approaches are ineffective when massive

DDoS attacks can be launched with the click of a button at little cost to the attacker.

Zhou et. al.’s work to protect the Internet’s backbone and highly connected ASes [48] fails

to defend against transit-link DDoS, since the proposed system only handles traffic once

it reaches the deployed system within the victim AS. Other recent works take this same

deployment approach, where an attempt to detect and model botnet traffic is done at the

victim AS using statistical methods [47, 34], which cannot be done in the case of transit-link

DDoS.
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Chapter 6

Conclusion

In this work we presented a system that can significantly reduce the impact of transit-link

(targeting links upstream of the victim) and traditional (targeting the victim directly) DDoS

when deployed only onto the deployer AS’s BGP speakers. First, we showed that we can

manipulate not only outbound traffic from an AS, but also the paths which inbound traffic

takes. This ability allows our system to intelligently migrate traffic, coming from chosen

critical ASes where we want traffic to always reach us, off links impacted by DDoS attacks

with nearly 100% success. Second, we demonstrated that we can migrate incoming traffic

off of impacted links without disturbing significant numbers of ASes in close proximity to

the AS utilizing our system, with less than 10 ASes on average disturbed by our path

manipulation techniques, as opposed to 1000 to 5000 disturbed ASes on average before

employing reduction methods. Third and most importantly, we demonstrated that we can

migrate traffic off impacted links onto links that are uncongested with over 98% success

for transit-link DDoS and on average 70% success for traditional DDoS, thus causing no

traffic from critical ASes to be dropped even while under a massive attack against the

Internet’s transit core. Ultimately, this work presents an alternative to ineffective filtering

and prioritization methods used against recent DDoS attacks [39, 3, 15], and finally presents

the first scalable and easily deployable solution to transit-link attacks such as Crossfire and

Coremelt [18, 38].
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6.1 Future Work

The system we have developed creates many interesting opportunities for future work.

First, our system has demonstrated success with the bandwidth models and botnet models

described earlier, though with our open source simulator, new bandwidth and botnet models

can be rapidly tested. Currently, our system works only for protecting traffic from a single

chosen critical AS, and protecting traffic originating in multiple critical ASes from network

congestion would often be necessary in some operational environments. Furthermore, our

system relies on searching for alternate paths until an uncongested or non-degraded path

is found; however, if the deployer AS had the ability to detect degraded quality of service

along upstream links, our system could make more informed decisions of where to migrate

critical traffic.

Finally, as mentioned in Section 2, our adversarial model does not consider a global

adversary that is routing-aware. This adversarial model becomes important when defenders

want to protect their networks an adversary controlling a significant amount of ASes.

In general, combating a global adversary would require our system to combine all prior-

mentioned future work: protecting multiple critical ASes, the ability to detect upstream

adverse network conditions and congestion without assistance, and utilizing bandwidth and

botnet models representative of routing-aware adversaries.
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A Additional Simulation Details

Figure A.1: Bot Count per AS in the Mirai Botnet and the Host-Based Botnet.

(a) Disturbed IPs for Transit-
Link Attack for Mirai

(b) Disturbed IPs for Transit-
Link Attack for Conficker

(c) Disturbed IPs for Transit-
Link Attack for Fully Dis-
tributed Botnet

(d) Disturbed IPs for Tradi-
tional Attack for Mirai

(e) Disturbed IPs for Tradi-
tional Attack for Conficker

(f) Disturbed IPs for Tradi-
tional Attack for Fully Dis-
tributed Botnet

Figure A.2: Disturbed IPs with and without disturbance mitigation for all botnet models
for Traditional and Transit-Link DDoS
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Table A.1: Information needed by the simulator

Information
Used by

Simulator
Use of Information

Revealed to
Nyx

Information Source

AS
Relationships

Simulator needs to model the
interaction of all known ASes,
and Nyx needs to know ASes
bordering the chosen alternate

paths during path lining

YES
CAIDA AS Relationships [4],

Route Views Project [31]

Inferred (with
machine
learning)

Bandwidth
Model

Simulator uses as the primary
bandwidth model to calculate

congestion factors for links in the
topology during simulation,
contains mapping of AS to a
”traffic factor” for how much

traffic that AS sends

NO

CAIDA AS Relationships [4],
PeeringDB [29], IANA [14],

World Bank [42], Sandvine [32],
Labovitz et al. [20], Gill et

al. [12]

AS Degree
Bandwidth

Model

Used as secondary bandwidth
model for validation, contains a
mapping between every AS to

it’s degree (number of connected
ASes)

NO CAIDA AS Relationships [4]

AS Total IP
Count

Bandwidth
Model

Used as secondary bandwidth
model for validation, contains a

mapping of every AS to the
number of total IPs known to
live inside that AS based on
traceroutes from RIPE Atlas

NO Route Views Project [31]

Mirai Botnet
Model

Botnet model used for attack
traffic origination based on the
Mirai botnet between August
2016 and June 2017, contains

ASes with the number of Mirai
infections within them

NO Netlab360 [27]

Conficker
Botnet Model

(Conficker)

Host-based botnet (Conficker)
model used for attack traffic

origination based on the
Conficker botnet as measured

between 2012 and 2013, contains
ASes with the number of

Conficker infections within them

NO Thomas et al. [40]

Malicious Traffic

Traffic from bot ASes is sent
from the originating bot ASes to
other ASes such that their traffic

flows over the simulator’s
currently attacked link

(upstream of the Deployer AS),
or in the traditional DDoS

scenario, targets the Deployer
AS directly

NO Botnet Models
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B Performance Success of Conficker and Fully

Distributed Botnets

(a) Weak Performance Success
for Transit-Link Attack with
Searching for the Conficker
Botnet

(b) Strong Performance Suc-
cess for Transit-Link Attack
with Searching for the Con-
ficker Botnet

(c) CDF of Post-Subscription
Factor for Transit-Link Attack
with Searching for the Con-
ficker Botnet

(d) Weak Performance Success
for Traditional Attack with
Searching for the Conficker
Botnet

(e) Strong Performance Suc-
cess for Traditional Attack with
Searching for the Conficker
Botnet

(f) CDF of Post-Subscription
Factor for Traditional Attack
with Searching for the Con-
ficker Botnet

Figure B.1: Performance success metrics for both Traditional and Transit-Link attack
scenario, normal bandwidth model, with searching for the Conficker botnet.
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(a) Weak Performance Success
for Transit-Link Attack with
Searching for the Fully Dis-
tributed Botnet

(b) Strong Performance Suc-
cess for Transit-Link Attack
with Searching for the Fully
Distributed Botnet

(c) CDF of Post-Subscription
Factor for Transit-Link Attack
with Searching for the Fully
Distributed Botnet

(d) Weak Performance Success
for Traditional Attack with
Searching for the Fully Dis-
tributed Botnet

(e) Strong Performance Suc-
cess for Traditional Attack with
Searching for the Fully Dis-
tributed Botnet

(f) CDF of Post-Subscription
Factor for Traditional Attack
with Searching for the Fully
Distributed Botnet

Figure B.2: Performance success metrics for both Traditional and Transit-Link attack
scenario, normal bandwidth model, with searching for the Fully Distributed botnet.
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