7 research outputs found

    Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs

    Full text link
    P\'osa's theorem states that any graph GG whose degree sequence d1dnd_1 \le \ldots \le d_n satisfies dii+1d_i \ge i+1 for all i<n/2i < n/2 has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs GG of random graphs, i.e. we prove a `resilience version' of P\'osa's theorem: if pnClognpn \ge C \log n and the ii-th vertex degree (ordered increasingly) of GGn,pG \subseteq G_{n,p} is at least (i+o(n))p(i+o(n))p for all i<n/2i<n/2, then GG has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac's theorem obtained by Lee and Sudakov. Chv\'atal's theorem generalises P\'osa's theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chv\'atal's theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of Gn,pG_{n,p} which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.Comment: To appear in the Electronic Journal of Combinatorics. This version corrects a couple of typo

    Dirac's theorem for random regular graphs

    Get PDF
    We prove a `resilience' version of Dirac's theorem in the setting of random regular graphs. More precisely, we show that, whenever dd is sufficiently large compared to ε>0\varepsilon>0, a.a.s. the following holds: let GG' be any subgraph of the random nn-vertex dd-regular graph Gn,dG_{n,d} with minimum degree at least (1/2+ε)d(1/2+\varepsilon)d. Then GG' is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly, the condition that dd is large cannot be omitted, and secondly, the minimum degree bound cannot be improved.Comment: Final accepted version, to appear in Combinatorics, Probability & Computin

    Packing, counting and covering Hamilton cycles in random directed graphs

    Get PDF
    A Hamilton cycle in a digraph is a cycle that passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this is that there is no general tool for finding Hamilton cycles in directed graphs comparable to the so-called Posá ‘rotation-extension’ technique for the undirected analogue. Let D(n, p) denote the random digraph on vertex set [n], obtained by adding each directed edge independently with probability p. Here we present a general and a very simple method, using known results, to attack problems of packing and counting Hamilton cycles in random directed graphs, for every edge-probability p &gt; logC(n)/n. Our results are asymptotically optimal with respect to all parameters and apply equally well to the undirected case
    corecore