research

Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs

Abstract

P\'osa's theorem states that any graph GG whose degree sequence d1dnd_1 \le \ldots \le d_n satisfies dii+1d_i \ge i+1 for all i<n/2i < n/2 has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs GG of random graphs, i.e. we prove a `resilience version' of P\'osa's theorem: if pnClognpn \ge C \log n and the ii-th vertex degree (ordered increasingly) of GGn,pG \subseteq G_{n,p} is at least (i+o(n))p(i+o(n))p for all i<n/2i<n/2, then GG has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac's theorem obtained by Lee and Sudakov. Chv\'atal's theorem generalises P\'osa's theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chv\'atal's theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of Gn,pG_{n,p} which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.Comment: To appear in the Electronic Journal of Combinatorics. This version corrects a couple of typo

    Similar works