8,765 research outputs found

    (D+1)(D+1)-Colored Graphs - a Review of Sundry Properties

    Get PDF
    We review the combinatorial, topological, algebraic and metric properties supported by (D+1)(D+1)-colored graphs, with a focus on those that are pertinent to the study of tensor model theories. We show how to extract a limiting continuum metric space from this set of graphs and detail properties of this limit through the calculation of exponents at criticality

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    Toric algebra of hypergraphs

    Full text link
    The edges of any hypergraph parametrize a monomial algebra called the edge subring of the hypergraph. We study presentation ideals of these edge subrings, and describe their generators in terms of balanced walks on hypergraphs. Our results generalize those for the defining ideals of edge subrings of graphs, which are well-known in the commutative algebra community, and popular in the algebraic statistics community. One of the motivations for studying toric ideals of hypergraphs comes from algebraic statistics, where generators of the toric ideal give a basis for random walks on fibers of the statistical model specified by the hypergraph. Further, understanding the structure of the generators gives insight into the model geometry.Comment: Section 3 is new: it explains connections to log-linear models in algebraic statistics and to combinatorial discrepancy. Section 6 (open problems) has been moderately revise

    Quantum walks with infinite hitting times

    Get PDF
    Hitting times are the average time it takes a walk to reach a given final vertex from a given starting vertex. The hitting time for a classical random walk on a connected graph will always be finite. We show that, by contrast, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition, which for discrete time quantum walks is that the degeneracy of the evolution operator be greater than the degree of the graph. The set of initial states which give an infinite hitting time form a subspace. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. In the case of the discrete walk, if this condition is satisfied the walk will have infinite hitting times for any choice of a coin operator, and we give a class of graphs with infinite hitting times for any choice of coin. Hitting times are not very well-defined for continuous time quantum walks, but we show that the idea of infinite hitting-time walks naturally extends to the continuous time case as well.Comment: 28 pages, 3 figures in EPS forma

    On percolation and the bunkbed conjecture

    Full text link
    We study a problem on edge percolation on product graphs G×K2G\times K_2. Here GG is any finite graph and K2K_2 consists of two vertices {0,1}\{0,1\} connected by an edge. Every edge in G×K2G\times K_2 is present with probability pp independent of other edges. The Bunkbed conjecture states that for all GG and pp the probability that (u,0)(u,0) is in the same component as (v,0)(v,0) is greater than or equal to the probability that (u,0)(u,0) is in the same component as (v,1)(v,1) for every pair of vertices u,vGu,v\in G. We generalize this conjecture and formulate and prove similar statements for randomly directed graphs. The methods lead to a proof of the original conjecture for special classes of graphs GG, in particular outerplanar graphs.Comment: 13 pages, improved exposition thanks to anonymous referee. To appear in CP
    corecore