137 research outputs found

    Time series classification with ensembles of elastic distance measures

    Get PDF
    Several alternative distance measures for comparing time series have recently been proposed and evaluated on time series classification (TSC) problems. These include variants of dynamic time warping (DTW), such as weighted and derivative DTW, and edit distance-based measures, including longest common subsequence, edit distance with real penalty, time warp with edit, and move–split–merge. These measures have the common characteristic that they operate in the time domain and compensate for potential localised misalignment through some elastic adjustment. Our aim is to experimentally test two hypotheses related to these distance measures. Firstly, we test whether there is any significant difference in accuracy for TSC problems between nearest neighbour classifiers using these distance measures. Secondly, we test whether combining these elastic distance measures through simple ensemble schemes gives significantly better accuracy. We test these hypotheses by carrying out one of the largest experimental studies ever conducted into time series classification. Our first key finding is that there is no significant difference between the elastic distance measures in terms of classification accuracy on our data sets. Our second finding, and the major contribution of this work, is to define an ensemble classifier that significantly outperforms the individual classifiers. We also demonstrate that the ensemble is more accurate than approaches not based in the time domain. Nearly all TSC papers in the data mining literature cite DTW (with warping window set through cross validation) as the benchmark for comparison. We believe that our ensemble is the first ever classifier to significantly outperform DTW and as such raises the bar for future work in this area

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover

    Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-based Ensembles

    Get PDF
    A recent experimental evaluation assessed 19 time series classification (TSC) algorithms and found that one was significantly more accurate than all others: the Flat Collective of Transformation-based Ensembles (Flat-COTE). Flat-COTE is an ensemble that combines 35 classifiers over four data representations. However, while comprehensive, the evaluation did not consider deep learning approaches. Convolutional neural networks (CNN) have seen a surge in popularity and are now state of the art in many fields and raises the question of whether CNNs could be equally transformative for TSC. We implement a benchmark CNN for TSC using a common structure and use results from a TSC-specific CNN from the literature. We compare both to Flat-COTE and find that the collective is significantly more accurate than both CNNs. These results are impressive, but Flat-COTE is not without deficiencies. We significantly improve the collective by proposing a new hierarchical structure with probabilistic voting, defining and including two novel ensemble classifiers built in existing feature spaces, and adding further modules to represent two additional transformation domains. The resulting classifier, the Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE), encapsulates classifiers built on five data representations. We demonstrate that HIVE-COTE is significantly more accurate than Flat-COTE (and all other TSC algorithms that we are aware of) over 100 resamples of 85 TSC problems and is the new state of the art for TSC. Further analysis is included through the introduction and evaluation of 3 new case studies and extensive experimentation on 1000 simulated datasets of 5 different types

    Transformation Based Ensembles for Time Series Classification

    Get PDF
    Until recently, the vast majority of data mining time series classification (TSC) research has focused on alternative distance measures for 1-Nearest Neighbour (1-NN) classifiers based on either the raw data, or on compressions or smoothing of the raw data. Despite the extensive evidence in favour of 1-NN classifiers with Euclidean or Dynamic Time Warping distance, there has also been a flurry of recent research publications proposing classification algorithms for TSC. Generally, these classifiers describe different ways of incorporating summary measures in the time domain into more complex classifiers. Our hypothesis is that the easiest way to gain improvement on TSC problems is simply to transform into an alternative data space where the discriminatory features are more easily detected. To test our hypothesis, we perform a range of benchmarking experiments in the time domain, before evaluating nearest neighbour classifiers on data transformed into the power spectrum, the autocorrelation function, and the principal component space. We demonstrate that on some problems there is dramatic improvement in the accuracy of classifiers built on the transformed data over classifiers built in the time domain, but that there is also a wide variance in accuracy for a particular classifier built on different data transforms. To overcome this variability, we propose a simple transformation based ensemble, then demonstrate that it improves performance and reduces the variability of classifiers built in the time domain only. Our advice to a practitioner with a real world TSC problem is to try transforms before developing a complex classifier; it is the easiest way to get a potentially large increase in accuracy, and may provide further insights into the underlying relationships that characterise the problem
    • …
    corecore