454 research outputs found

    Tensor-based trapdoors for CVP and their application to public key cryptography

    Get PDF
    We propose two trapdoors for the Closest-Vector-Problem in lattices (CVP) related to the lattice tensor product. Using these trapdoors we set up a lattice-based cryptosystem which resembles to the McEliece scheme

    Mathematical open problems in Projected Entangled Pair States

    Get PDF
    Projected Entangled Pair States (PEPS) are used in practice as an efficient parametrization of the set of ground states of quantum many body systems. The aim of this paper is to present, for a broad mathematical audience, some mathematical questions about PEPS.Comment: Notes associated to the Santal\'o Lecture 2017, Universidad Complutense de Madrid (UCM), minor typos correcte

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    Approximations in Learning & Program Analysis

    Get PDF
    In this work we compare and contrast the approximations made in the problems of Data Compression, Program Analysis and Supervised Machine Learning. G\uf6del\u2019s Incompleteness Theorem mandates that any formal system rich enough to include integers will have unprovable truths. Thus non computable problems abound, including, but not limited to, Program Analysis, Data Compression and Machine Learning. Indeed, it can be shown that there are more non-computable functions than computable. Due to non- computability, precise solutions for these problems are not feasible, and only approximate solutions may be computed. Presently, each of these problems of Data Compression, Machine Learning and Program Analysis is studied independently. Each problem has it\u2019s own multitude of abstractions, algorithms and notions of tradeoffs among the various parameters. It would be interesting to have a unified framework, across disciplines, that makes explicit the abstraction specifications and ensuing tradeoffs. Such a framework would promote inter-disciplinary research and develop a unified body of knowledge to tackle non-computable problems. As a small step to that larger goal, we propose an Information Oriented Model of Computation that allows comparing the approximations used in Data Compression, Program Analysis and Machine Learning. To the best of our knowledge, this is the first work to propose a method for systematic comparison of approximations across disciplines. The model describes computation as set reconstruction. Non-computability is then presented as inability to perfectly reconstruct sets. In an effort to compare and contrast the approximations, select algorithms for Data Compression, Machine Learning and Program Analysis are analyzed using our model. We were able to relate the problems of Data Compression, Machine Learning and Program Analysis as specific instances of the general problem of approximate set reconstruction. We demonstrate the use of abstract interpreters in compression schemes. We then compare and contrast the approximations in Program Analysis and Supervised Machine Learning. We demonstrate the use of ordered structures, fixpoint equations and least fixpoint approximation computations, all characteristic of Abstract Interpretation (Program Analysis) in Machine Learning algorithms. We also present the idea that widening, like regression, is an inductive learner. Regression generalizes known states to a hypothesis. Widening generalizes abstract states on a iteration chain to a fixpoint. While Regression usually aims to minimize the total error (sum of false positives and false negatives), Widening aims for soundness and hence errs on the side of false positives to have zero false negatives. We use this duality to derive a generic widening operator from regression on the set of abstract states. The results of the dissertation are the first steps towards a unified approach to approximate computation. Consequently, our preliminary results lead to a lot more interesting questions, some of which we have tried to discuss in the concluding chapter
    • …
    corecore