1,662 research outputs found

    Machine Learning in Aerodynamic Shape Optimization

    Get PDF
    Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, we comment on the practicality and effectiveness of the developed methods. We show how cutting-edge ML approaches can benefit ASO and address challenging demands, such as interactive design optimization. Practical large-scale design optimizations remain a challenge because of the high cost of ML training. Further research on coupling ML model construction with prior experience and knowledge, such as physics-informed ML, is recommended to solve large-scale ASO problems

    NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation

    Full text link
    Complex computational models are often designed to simulate real-world physical phenomena in many scientific disciplines. However, these simulation models tend to be computationally very expensive and involve a large number of simulation input parameters which need to be analyzed and properly calibrated before the models can be applied for real scientific studies. We propose a visual analysis system to facilitate interactive exploratory analysis of high-dimensional input parameter space for a complex yeast cell polarization simulation. The proposed system can assist the computational biologists, who designed the simulation model, to visually calibrate the input parameters by modifying the parameter values and immediately visualizing the predicted simulation outcome without having the need to run the original expensive simulation for every instance. Our proposed visual analysis system is driven by a trained neural network-based surrogate model as the backend analysis framework. Surrogate models are widely used in the field of simulation sciences to efficiently analyze computationally expensive simulation models. In this work, we demonstrate the advantage of using neural networks as surrogate models for visual analysis by incorporating some of the recent advances in the field of uncertainty quantification, interpretability and explainability of neural network-based models. We utilize the trained network to perform interactive parameter sensitivity analysis of the original simulation at multiple levels-of-detail as well as recommend optimal parameter configurations using the activation maximization framework of neural networks. We also facilitate detail analysis of the trained network to extract useful insights about the simulation model, learned by the network, during the training process.Comment: Published at IEEE Transactions on Visualization and Computer Graphic

    Active learning-driven uncertainty reduction for in-flight particle characteristics of atmospheric plasma spraying of silicon

    Full text link
    In this study, the first-of-its-kind use of active learning (AL) framework in thermal spray is adapted to improve the prediction accuracy of the in-flight particle characteristics and uses Gaussian Process (GP) ML model as a surrogate that generalises a global solution without necessarily involving physical mechanisms. The AL framework via the Bayesian Optimisation was utilised to: (a) reduce the maximum uncertainty in the given database and (b) reduce local uncertainty around a contrived test point. The initial dataset consists of 26 atmospheric plasma spray (APS) parameters of silicon, aimed at ceramic matrix composites (CMCs) for the next generation of aerospace applications. The maximum uncertainty in the initial dataset was reduced by AL-driven identification of search spaces and conducting six guided spray trails in the identified search spaces. On average, a 52.9% improvement (error reduction) of RMSE and an R2 increase of 8.5% were reported on the predicted in-flight particle velocities and temperatures after the AL-driven optimisation. Furthermore, the Bayesian Optimisation around a contrived test point to predict the best possible characteristics resulted in a three-fold increase in prediction accuracy as compared to the non-optimised prediction. These AL-guided experimental validations not only increase the informativeness of the limited dataset but is adaptable for other thermal spraying methods without necessarily involving physical mechanisms and underlying mechanisms. The use of AL-driven optimisation may drive the thermal spraying towards resource-efficiency and may serve as the first step towards fully digital thermal spraying environments

    EXPObench: Benchmarking Surrogate-based Optimisation Algorithms on Expensive Black-box Functions

    Get PDF
    Surrogate algorithms such as Bayesian optimisation are especially designed for black-box optimisation problems with expensive objectives, such as hyperparameter tuning or simulation-based optimisation. In the literature, these algorithms are usually evaluated with synthetic benchmarks which are well established but have no expensive objective, and only on one or two real-life applications which vary wildly between papers. There is a clear lack of standardisation when it comes to benchmarking surrogate algorithms on real-life, expensive, black-box objective functions. This makes it very difficult to draw conclusions on the effect of algorithmic contributions. A new benchmark library, EXPObench, provides first steps towards such a standardisation. The library is used to provide an extensive comparison of six different surrogate algorithms on four expensive optimisation problems from different real-life applications. This has led to new insights regarding the relative importance of exploration, the evaluation time of the objective, and the used model. A further contribution is that we make the algorithms and benchmark problem instances publicly available, contributing to more uniform analysis of surrogate algorithms. Most importantly, we include the performance of the six algorithms on all evaluated problem instances. This results in a unique new dataset that lowers the bar for researching new methods as the number of expensive evaluations required for comparison is significantly reduced.Comment: 13 page

    Adaptive swarm optimisation assisted surrogate model for pipeline leak detection and characterisation.

    Get PDF
    Pipelines are often subject to leakage due to ageing, corrosion and weld defects. It is difficult to avoid pipeline leakage as the sources of leaks are diverse. Various pipeline leakage detection methods, including fibre optic, pressure point analysis and numerical modelling, have been proposed during the last decades. One major issue of these methods is distinguishing the leak signal without giving false alarms. Considering that the data obtained by these traditional methods are digital in nature, the machine learning model has been adopted to improve the accuracy of pipeline leakage detection. However, most of these methods rely on a large training dataset for accurate training models. It is difficult to obtain experimental data for accurate model training. Some of the reasons include the huge cost of an experimental setup for data collection to cover all possible scenarios, poor accessibility to the remote pipeline, and labour-intensive experiments. Moreover, datasets constructed from data acquired in laboratory or field tests are usually imbalanced, as leakage data samples are generated from artificial leaks. Computational fluid dynamics (CFD) offers the benefits of providing detailed and accurate pipeline leakage modelling, which may be difficult to obtain experimentally or with the aid of analytical approach. However, CFD simulation is typically time-consuming and computationally expensive, limiting its pertinence in real-time applications. In order to alleviate the high computational cost of CFD modelling, this study proposed a novel data sampling optimisation algorithm, called Adaptive Particle Swarm Optimisation Assisted Surrogate Model (PSOASM), to systematically select simulation scenarios for simulation in an adaptive and optimised manner. The algorithm was designed to place a new sample in a poorly sampled region or regions in parameter space of parametrised leakage scenarios, which the uniform sampling methods may easily miss. This was achieved using two criteria: population density of the training dataset and model prediction fitness value. The model prediction fitness value was used to enhance the global exploration capability of the surrogate model, while the population density of training data samples is beneficial to the local accuracy of the surrogate model. The proposed PSOASM was compared with four conventional sequential sampling approaches and tested on six commonly used benchmark functions in the literature. Different machine learning algorithms are explored with the developed model. The effect of the initial sample size on surrogate model performance was evaluated. Next, pipeline leakage detection analysis - with much emphasis on a multiphase flow system - was investigated in order to find the flow field parameters that provide pertinent indicators in pipeline leakage detection and characterisation. Plausible leak scenarios which may occur in the field were performed for the gas-liquid pipeline using a three-dimensional RANS CFD model. The perturbation of the pertinent flow field indicators for different leak scenarios is reported, which is expected to help in improving the understanding of multiphase flow behaviour induced by leaks. The results of the simulations were validated against the latest experimental and numerical data reported in the literature. The proposed surrogate model was later applied to pipeline leak detection and characterisation. The CFD modelling results showed that fluid flow parameters are pertinent indicators in pipeline leak detection. It was observed that upstream pipeline pressure could serve as a critical indicator for detecting leakage, even if the leak size is small. In contrast, the downstream flow rate is a dominant leakage indicator if the flow rate monitoring is chosen for leak detection. The results also reveal that when two leaks of different sizes co-occur in a single pipe, detecting the small leak becomes difficult if its size is below 25% of the large leak size. However, in the event of a double leak with equal dimensions, the leak closer to the pipe upstream is easier to detect. The results from all the analyses demonstrate the PSOASM algorithm's superiority over the well-known sequential sampling schemes employed for evaluation. The test results show that the PSOASM algorithm can be applied for pipeline leak detection with limited training datasets and provides a general framework for improving computational efficiency using adaptive surrogate modelling in various real-life applications

    A Data Mining Methodology for Vehicle Crashworthiness Design

    Get PDF
    This study develops a systematic design methodology based on data mining theory for decision-making in the development of crashworthy vehicles. The new data mining methodology allows the exploration of a large crash simulation dataset to discover the underlying relationships among vehicle crash responses and design variables at multiple levels and to derive design rules based on the whole-vehicle safety requirements to make decisions about component-level and subcomponent-level design. The method can resolve a major issue with existing design approaches related to vehicle crashworthiness: that is, limited abilities to explore information from large datasets, which may hamper decision-making in the design processes. At the component level, two structural design approaches were implemented for detailed component design with the data mining method: namely, a dimension-based approach and a node-based approach to handle structures with regular and irregular shapes, respectively. These two approaches were used to design a thin-walled vehicular structure, the S-shaped beam, against crash loading. A large number of design alternatives were created, and their responses under loading were evaluated by finite element simulations. The design variables and computed responses formed a large design dataset. This dataset was then mined to build a decision tree. Based on the decision tree, the interrelationships among the design parameters were revealed, and design rules were generated to produce a set of good designs. After the data mining, the critical design parameters were identified and the design space was reduced, which can simplify the design process. To partially replace the expensive finite element simulations, a surrogate model was used to model the relationships between design variables and response. Four machine learning algorithms, which can be used for surrogate model development, were compared. Based on the results, Gaussian process regression was determined to be the most suitable technique in the present scenario, and an optimization process was developed to tune the algorithm’s hyperparameters, which govern the model structure and training process. To account for engineering uncertainty in the data mining method, a new decision tree for uncertain data was proposed based on the joint probability in uncertain spaces, and it was implemented to again design the S-beam structure. The findings show that the new decision tree can produce effective decision-making rules for engineering design under uncertainty. To evaluate the new approaches developed in this work, a comprehensive case study was conducted by designing a vehicle system against the frontal crash. A publicly available vehicle model was simplified and validated. Using the newly developed approaches, new component designs in this vehicle were generated and integrated back into the vehicle model so their crash behavior could be simulated. Based on the simulation results, one can conclude that the designs with the new method can outperform the original design in terms of measures of mass, intrusion and peak acceleration. Therefore, the performance of the new design methodology has been confirmed. The current study demonstrates that the new data mining method can be used in vehicle crashworthiness design, and it has the potential to be applied to other complex engineering systems with a large amount of design data
    • …
    corecore