7 research outputs found

    Ramsey numbers R(K3,G) for graphs of order 10

    Get PDF
    In this article we give the generalized triangle Ramsey numbers R(K3,G) of 12 005 158 of the 12 005 168 graphs of order 10. There are 10 graphs remaining for which we could not determine the Ramsey number. Most likely these graphs need approaches focusing on each individual graph in order to determine their triangle Ramsey number. The results were obtained by combining new computational and theoretical results. We also describe an optimized algorithm for the generation of all maximal triangle-free graphs and triangle Ramsey graphs. All Ramsey numbers up to 30 were computed by our implementation of this algorithm. We also prove some theoretical results that are applied to determine several triangle Ramsey numbers larger than 30. As not only the number of graphs is increasing very fast, but also the difficulty to determine Ramsey numbers, we consider it very likely that the table of all triangle Ramsey numbers for graphs of order 10 is the last complete table that can possibly be determined for a very long time.Comment: 24 pages, submitted for publication; added some comment

    Ramsey numbers R(K3, G) for graphs of order 10

    Get PDF
    In this article we give the generalized triangle Ramsey numbers R(K3,G) of 12 005 158 of the 12 005 168 graphs of order 10. There are 10 graphs remaining for which we could not determine the Ramsey number. Most likely these graphs need approaches focusing on each individual graph in order to determine their triangle Ramsey number. The results were obtained by combining new computational and theoretical results. We also describe an optimized algorithm for the generation of all maximal triangle-free graphs and triangle Ramsey graphs. All Ramsey numbers up to 30 were computed by our implementation of this algorithm. We also prove some theoretical results that are applied to determine several triangle Ramsey numbers larger than 30. As not only the number of graphs is increasing very fast, but also the difficulty to determine Ramsey numbers, we consider it very likely that the table of all triangle Ramsey numbers for graphs of order 10 is the last complete table that can possibly be determined for a very long time

    New Computational Upper Bounds for Ramsey Numbers R(3,k)

    Get PDF
    Using computational techniques we derive six new upper bounds on the classical two-color Ramsey numbers: R(3,10) <= 42, R(3,11) <= 50, R(3,13) <= 68, R(3,14) <= 77, R(3,15) <= 87, and R(3,16) <= 98. All of them are improvements by one over the previously best known bounds. Let e(3,k,n) denote the minimum number of edges in any triangle-free graph on n vertices without independent sets of order k. The new upper bounds on R(3,k) are obtained by completing the computation of the exact values of e(3,k,n) for all n with k <= 9 and for all n <= 33 for k = 10, and by establishing new lower bounds on e(3,k,n) for most of the open cases for 10 <= k <= 15. The enumeration of all graphs witnessing the values of e(3,k,n) is completed for all cases with k <= 9. We prove that the known critical graph for R(3,9) on 35 vertices is unique up to isomorphism. For the case of R(3,10), first we establish that R(3,10) = 43 if and only if e(3,10,42) = 189, or equivalently, that if R(3,10) = 43 then every critical graph is regular of degree 9. Then, using computations, we disprove the existence of the latter, and thus show that R(3,10) <= 42.Comment: 28 pages (includes a lot of tables); added improved lower bound for R(3,11); added some note

    THE ELECTRONIC JOURNAL OF COMBINATORICS (2014), DS1.14 References

    Get PDF
    and Computing 11. The results of 143 references depend on computer algorithms. The references are ordered alphabetically by the last name of the first author, and where multiple papers have the same first author they are ordered by the last name of the second author, etc. We preferred that all work by the same author be in consecutive positions. Unfortunately, this causes that some of the abbreviations are not in alphabetical order. For example, [BaRT] is earlier on the list than [BaLS]. We also wish to explain a possible confusion with respect to the order of parts and spelling of Chinese names. We put them without any abbreviations, often with the last name written first as is customary in original. Sometimes this is different from the citations in other sources. One can obtain all variations of writing any specific name by consulting the authors database of Mathematical Reviews a

    Generation algorithms for mathematical and chemical problems

    Get PDF
    corecore