
Ghent University

Faculty of Sciences

Department of Applied Mathematics and Computer Science

Generation Algorithms for Mathematical and

Chemical Problems

Dissertation submitted in partial fulfillment of the requirements for

the degree of Doctor of Computer Science

Jan Goedgebeur

May 2013

Promotor: prof. dr. Gunnar Brinkmann

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55901344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Annelies

Dankwoord

Deze thesis zou er zeker niet gekomen zijn zonder de hulp en steun van heel wat
mensen. Eerst en vooral wil ik mijn promotor, Gunnar Brinkmann, bedanken
voor de uitstekende begeleiding. Zijn deur stond altijd voor mij open en hij gaf
altijd met veel plezier en met een engelengeduld antwoorden op mijn vele vragen.
Het is onmogelijk om op te sommen wat ik allemaal van hem heb bijgeleerd. Ik
heb ook enorm genoten van onze vele fietstochten samen en hoop dat we dit in
de toekomst zullen kunnen blijven doen.

Ik wil ook graag de leden van mijn jury bedanken voor het lezen van mijn
thesis en voor hun goede suggesties om mijn thesis nog verder te verbeteren.

Mijn vriendin Annelies, mijn ouders en mijn toekomstige schoonouders kan
ik nooit genoeg bedanken. Zij hebben me altijd enorm gesteund en gemotiveerd
en boden me telkens een luisterend oor.

Ik ben ook mijn collega’s en vrienden van de onderzoeksgroep “Combina-
torische Algoritmes en Algoritmische Grafentheorie” (CAAGT) heel dankbaar.
Tijdens onze wekelijkse CAAGT-lunches hadden we vele interessante discussies.
Telkens als ik een Chinees restaurant zie, zal ik aan jullie denken.

Natuurlijk ben ik ook mijn collega’s en vrienden van onze vakgroep heel
dankbaar voor de leuke sfeer. Tijdens de koffiepauzes heb ik van jullie veel straffe
anekdotes gehoord en ook de spelletjes- en filmavonden zal ik nooit vergeten.

In het bijzonder wil ik mijn bureaugenoten Annick, Jean-Marie en Steven be-
danken. Het was een waar genoegen om met jullie een bureau te delen. Daarnaast
wil ik graag nog eens uitdrukkelijk Michaël bedanken voor onze vele aangename
gesprekken over de middag, Stéphanie voor het nalezen van stukken van mijn the-
sis en Nico voor het goede gezelschap op de conferenties die we samen bijgewoond
hebben.

Ik wil zeker ook mijn vrienden van de “reguliere” bedanken met wie ik op
regelmatige basis onder het genot van een goede trappist vele wetenschappelijke

i

ii Dankwoord

en minder wetenschappelijke discussies gevoerd heb.
During my PhD I have also had a wonderful research stay at the Australian

National University in Canberra. I was very warmly welcomed there and I imme-
diately felt at home. Brendan, Fateme, Leanne, Miriam, Mirka, Mohammadreza
and Pascal, thanks a lot for the great time you gave me in Australia and I hope
I will be seeing you again sooner or later.

During the last year of my PhD I also had the honour of collaborating with
Professor Staszek Radziszowski on Ramsey numbers. I really learned a lot from
him. During this period we exchanged hundreds of emails and I was very happy
to meet Staszek in person at two conferences. I also really enjoyed my research
stay with him in Rochester where he took great care of me. So Staszek, really
thanks a lot for everything!

Tenslotte wil ik ook het Fonds Wetenschappelijk Onderzoek Vlaanderen be-
danken voor de vele kansen die ze me geboden hebben door me deze beurs te
geven. Ik heb tijdens mijn doctoraat ook veel gebruikgemaakt van de STEVIN
supercomputer van de Universiteit Gent. Daarom ben ik het STEVIN-team heel
dankbaar voor hun uitstekende ondersteuning.

Jan Goedgebeur
mei 2013

Contents

Summary vii

1 Introduction 1
1.1 Definitions and preliminaries . 3
1.2 Exhaustive generation . 5
1.3 Isomorphism-free generation . 6

2 Generation of cubic graphs 11
2.1 Introduction . 11
2.2 The generation algorithm . 13
2.3 Generation of prime graphs . 14

2.3.1 Introduction . 14
2.3.2 Isomorphism rejection . 16
2.3.3 Determining possible expansions 23
2.3.4 Conclusion . 27

2.4 Generation of graphs with reducible triangles 28
2.4.1 Introduction . 28
2.4.2 Construction . 30
2.4.3 Optimisations . 32

2.5 Generation of non-prime graphs without reducible triangles 34
2.5.1 Isomorphism rejection . 34
2.5.2 Determining possible expansions 37
2.5.3 Optimisations . 40

2.6 Generation of graphs with girth at least 4 or 5 43
2.6.1 Graphs with girth at least 4 43

iii

iv Contents

2.6.2 Graphs with girth at least 5 44
2.6.3 Conclusion . 45

2.7 Generation of graphs with connectivity requirements 47
2.8 Testing and results . 50
2.9 Closing remarks . 51

3 Generation of snarks 55
3.1 Introduction . 56
3.2 Definitions . 58
3.3 The generation algorithm . 58
3.4 Optimisations . 61

3.4.1 The order of applying filters 61
3.4.2 Postponing isomorphism rejection 62

3.5 Testing and results . 65
3.5.1 Running times and the number of snarks 65
3.5.2 Testing conjectures on snarks 66

3.6 Closing remarks . 69

4 Generation of fullerenes 73
4.1 Introduction . 73

4.1.1 Definitions . 73
4.1.2 Literature review . 76

4.2 Generation of fullerenes . 78
4.2.1 The construction algorithm 78
4.2.2 Isomorphism rejection . 81
4.2.3 Optimisations . 86

4.3 Generation of IPR fullerenes . 91
4.3.1 Generator for all fullerenes with filter and look-aheads . . . 91
4.3.2 Recursive generation of IPR fullerenes 93

4.4 Testing and results . 113
4.4.1 Running times and the number of fullerenes 113
4.4.2 Testing conjectures related to fullerenes 122

4.5 Closing remarks . 124

5 Ramsey numbers 127
5.1 Introduction . 128
5.2 Generalised triangle Ramsey numbers 129

Contents v

5.2.1 Introduction . 129
5.2.2 Theoretical results . 131
5.2.3 Generation of maximal triangle-free graphs 133
5.2.4 Generation of Ramsey graphs 140
5.2.5 Computation of Ramsey numbers 144
5.2.6 Testing and results . 145
5.2.7 Closing remarks . 147

5.3 Classical triangle Ramsey numbers 150
5.3.1 Definitions and preliminaries 150
5.3.2 Summary of prior and new results 151
5.3.3 Methods for computing e(3, k, n) 155
5.3.4 Algorithmic details . 161
5.3.5 Progress on computing small e(3, k, n) 165
5.3.6 Improved lower bounds for e(3, 9, 35) and e(3, 10, 42) 167
5.3.7 R(3, 10) ≤ 42 . 169
5.3.8 New upper bounds on R(3, k) for k ≥ 11 171
5.3.9 Improving lower bounds for R(3, k) 177
5.3.10 Testing . 179
5.3.11 Closing remarks . 182

A Notation 183

B Ramsey numbers of connected graphs of order 10 185

C Number of Ramsey graphs for R(3, k) 189

Bibliography 195

Nederlandstalige samenvatting 207

List of Figures 211

List of Tables 215

Index 218

vi Contents

Summary

In this thesis we develop efficient structure generation algorithms which can be
used to solve problems in chemistry and mathematics. To this end we design and
implement algorithms to construct mathematical structures (more specifically:
graphs).

In the first chapter we give an introduction about structure generation and
introduce the necessary graph theoretical concepts which will be used in this
thesis. A graph is a structure which consists of a set of vertices and a set of
edges which represent connections between these vertices. A graph can serve as
a model for a road network where the vertices represent crossroads and the edges
streets. This model can for example be used to determine the shortest route
between two crossroads. A graph can also model a molecule. Here the vertices
represent atoms and the edges bindings between atoms. A graph can also be
used to determine an assignation of teachers to courses. In this case the vertices
represent teachers and courses and the edges denote which courses a teacher can
give.

The algorithms for the generation of structures are designed to generate struc-
tures from a specific graph class very efficiently, for example the class of graphs
where all vertices have exactly 3 neighbours. In this thesis we investigate and
design exhaustive generation algorithms. These are algorithms that make sure
that all graphs in the class of graphs which we want to generate are enumerated.
Our algorithms are also isomorphism-free, i.e. they guarantee that no isomorphic
copies are output (that are graphs which have the same structure).

Structure generation has applications in amongst others mathematics and
chemistry. In mathematics, complete lists of structures with specific properties
are used to test mathematical conjectures. In theoretical chemistry such lists are
used to determine or predict the structure of molecules. In this thesis we develop
algorithms for the generation of complete lists of graphs which have important

vii

viii Summary

applications in mathematics as well as generation algorithms which are important
in chemistry.

In the second chapter we discuss the generation of 3-regular graphs. These
are graphs where every vertex has exactly 3 neighbours. The first complete list of
3-regular graphs was already enumerated in 1889 by J. de Vries: he constructed
all 3-regular graphs with up to 10 vertices by hand [42, 43]. Since then, several
other scientists have done research on the enumeration of complete lists of 3-
regular graphs. Hence this can be considered a benchmark problem in structure
enumeration.

Our generation algorithm for 3-regular graphs consists of two parts: first we
generate prime graphs (this is a special subclass of the 3-regular graphs) and
then we start from these prime graphs to construct all 3-regular graphs. Our
implementation of this algorithm is more than 4 times faster than the previously
fastest generators for 3-regular graphs. We also extend our algorithm such that
3-regular graphs without triangles or squares can be enumerated efficiently.

In the third chapter we adapt our generation algorithm for 3-regular graphs
to generate snarks efficiently. Snarks form an important subclass of 3-regular
graphs. They do not contain triangles and have special colourability properties.
It is known that 3 or 4 colours are required to colour the edges of a 3-regular
graph such that the 3 edges of every vertex each have a different colour. Snarks do
not have such an edge colouring with 3 colours. This class of graphs is especially
interesting since for a lot of mathematical conjectures it can be proven that these
conjectures are true if and only if they are true for snarks. Often it has even been
proven that if there would be a counterexample, the smallest counterexample
would be a snark.

Our implementation of this specialised generation algorithm for snarks is more
than 14 times faster than the fastest existing generator for snarks. This allowed
us to enumerate all snarks up to 34 vertices and all snarks without squares up to
36 vertices. Previously only complete lists of snarks up to 32 vertices were known.
Using these new lists we tested 22 (open) mathematical conjectures. Our lists
yielded several counterexamples for 8 of these conjectures. This shows that (com-
plete) lists of snarks are not only theoretically a good source for counterexamples
to conjectures, but also in practice.

In the fourth chapter we discuss an important application of structure gen-
eration in chemistry. More specifically, we discuss the generation of (models
of) fullerenes. These are 3-regular graphs that can be drawn on a sphere and
where every face is a pentagon or a hexagon. Here the vertices of the graph

Summary ix

represent carbon atoms. The first (chemical) fullerene was discovered in 1985 by
H.W. Kroto and his colleagues [80]. They discovered a fullerene with the shape
of a soccer ball: the famous C60 buckyball. Kroto and his colleagues later also
received the Nobel Prize in Chemistry for this discovery. The carbon nanotubes
(these are fullerenes with a tubular shape) are an important subclass of fullerenes.
They are very promising for potential applications [45]. For example, researchers
are trying to build nanotransistors using nanotubes.

Already a lot of research has been done on the generation of fullerenes, but
until now only one successful algorithm for the generation of fullerenes was known.
This algorithm was designed by G. Brinkmann and A.W.M. Dress [19]. They also
implemented an efficient program – called fullgen – based on their algorithm. In
this chapter we discuss a new and entirely independent generation algorithm for
fullerenes and show how it can be implemented efficiently. Our implementation of
this algorithm is more than 3.5 times faster than fullgen. Contradictory results of
our generator and fullgen led to the detection of a programming error in fullgen.
Due to this error, not all fullerenes were generated starting from 136 vertices. In
the meantime this error has been fixed and now the results of fullgen and our
program are in complete agreement. Using our program we were able to generate
all fullerenes up to 400 vertices. This allowed us to prove that the smallest
counterexample to the spiral conjecture has 380 vertices [30] (which has been an
open problem since 1991).

We also design a specialised algorithm for the generation of IPR fullerenes.
These are fullerenes which do not contain any adjacent pentagons. IPR fullerenes
are especially interesting due to a general tendency to be chemically more stable
and thus they are more likely to occur in nature. Also in this case our implemen-
tation of this specialised algorithm for the generation of IPR fullerenes is faster
than other generators for IPR fullerenes.

In the last chapter we discuss another application of structure generation
in mathematics, namely the generation of Ramsey graphs in order to determine
triangle Ramsey numbers R(K3, G). A triangle Ramsey graph is a graph which
does not contain any triangles and its complement does not contain a given graph
G as subgraph. The computation of Ramsey numbers is a difficult computational
problem which has already been studied by various researchers and can therefore
also be considered a benchmark problem.

In the first part of this chapter we describe an optimised version of an exist-
ing algorithm for the generation of maximal triangle-free graphs [9]. These are
triangle-free graphs where no edges can be added without creating a triangle.

x Summary

Afterwards we show how this algorithm can be extended to enumerate triangle
Ramsey graphs efficiently. This algorithm allowed us to determine all triangle
Ramsey numbers up to 30 for graphs of order 10. By combining our computa-
tional results with new theoretical results, we were able to determine the triangle
Ramsey number of nearly all of the 12 005 168 graphs of order 10, except for 10
of the hardest cases. Because of the rapid growth of Ramsey numbers, the list of
triangle Ramsey numbers for graphs of order 10 will very likely be the last list of
Ramsey numbers that can be completed for a very long time.

In the second part of this chapter we develop completely different specialised
algorithms to improve the upper bounds of classical triangle Ramsey numbers.
These are triangle Ramsey numbers R(K3, G) where the graph G is a complete
graph. Using these algorithms we managed to determine improved upper bounds
for several classical triangle Ramsey numbers. More specifically, we proved
that R(K3,K10) ≤ 42, R(K3,K11) ≤ 50, R(K3,K13) ≤ 68, R(K3,K14) ≤ 77,
R(K3,K15) ≤ 87 and R(K3,K16) ≤ 98. All of these new upper bounds improve
the old upper bounds by one. We also determine all critical Ramsey graphs for
K8 and prove that the known Ramsey graph for K9 is unique. A Ramsey graph
for G is critical if it has R(K3, G)− 1 vertices.

Chapter 1

Introduction

A graph is an object which consists of a set of vertices and a set of edges which
represent connections between these vertices. A graph can for example serve as a
model for a molecule, a road network or a communication network. As a model of
a road network it can for example be used to determine the shortest route between
two cities. Complete lists of graphs (i.e. lists with all graphs from a given class
of graphs) are used in many applications, amongst others in mathematics and in
chemistry. Therefore we develop algorithms in this thesis to generate all graphs
from a given class efficiently. Such algorithms are called structure generation
algorithms and the process of generating all structures (such as graphs) from a
given class is called structure generation.

The enumeration of complete lists of structures with given properties has a
long tradition. Already in 400 B.C. Theaetetus determined the complete list of
regular polyhedra and in 1889 J. de Vries [42, 43] gave a first list of all cubic graphs
up to 10 vertices (i.e. graphs where every vertex has exactly three neighbours).
Starting from the sixties, computers were also used to generate complete lists of
structures.

In mathematics, complete lists of structures with specific properties are used
to test conjectures. For example lists of snarks (see Chapter 3) are very useful to
test conjectures as for a lot of conjectures it can be proven that these conjectures
are true if and only if they are true for snarks. Structure generation can also
be used to solve problems of “finite nature” such as the computation of specific
Ramsey numbers (see Chapter 5).

In chemistry, lists of graphs are used to determine or predict the structure
of molecules (i.e. structure elucidation and structure prediction, respectively). In

1

2 Introduction

structure elucidation, the goal is to identify molecules. By analysing the mass
spectrum of a substance, chemists can determine the chemical formula of the
molecule of which the substance consists together with forbidden or forced sub-
structures. One can then use a program to generate all structures which rep-
resent molecules with this chemical formula and forbidden/forced substructures
and compute the spectrum of the generated structures. Then by comparing the
computed spectra with the measured spectrum of the substance one can often
propose a small list of candidate structures. This helps to determine the structure
of the molecule. The DENDRAL project [82] which was initiated in the sixties
at Stanford University was the first project for the automatic recognition of the
structure of molecules.

In structure prediction, a generation algorithm is used to generate all graphs
which represent molecules of a given class which have useful properties. One
can then compute the chemical energy of each of the generated structures. The
ones with the best energy are chemically the most stable ones and chemists can
investigate their potential applications and the possibility to synthesise these
molecules.

Programs for generating models of fullerenes (see Chapter 4) have also been
used by chemists to investigate the hypothesis that IPR fullerenes are chemically
more stable than non-IPR fullerenes [1].

Of course structure generation has also applications outside the field of math-
ematics or chemistry. Structure generation algorithms have for example already
been used to determine the optimal pitch sequence of tires. The surface of a
tire can contain several types of blocks, e.g. short, medium and long ones. The
sequence of these blocks is called the pitch sequence of the tire. One pitch se-
quence can be more resistant to wear or have a lower noise level than another.
So in order to determine the best pitch sequence, one can generate all possible
pitch sequences (here the generated structures are not graphs) and compute the
resistance to wear or noise level of each generated pitch sequence.

In this thesis we develop algorithms for the generation of complete lists of
graphs which have important applications in mathematics as well as generation
algorithms which are important in chemistry.

In principle one can generate all graphs from a specific graph class by using
an existing algorithm to generate all graphs with a filter at the end which only
outputs graphs which are part of the specific graph class. However for most
graph classes this approach is very inefficient as often only a tiny percentage of
all graphs are part of this graph class. For example only 0.000000057 percent of

1.1. Definitions and preliminaries 3

the graphs with 12 vertices are cubic and the percentage is decreasing rapidly.
So for interesting graph classes it is justified to develop specialised algorithms to
generate graphs from these classes efficiently.

Note: several parts of this thesis were taken from articles which were written
in collaboration with not only the promotor of this thesis, but also with other
co-authors. Parts which were mainly developed and written by other co-authors
are clearly marked.

1.1 Definitions and preliminaries

In this section we give the definitions and notations which are used in this thesis.
Most of them are widely used in the field of graph theory. For a good introduction
to graph theory, we refer the reader to [44] or [120].

Unless stated otherwise, all graphs in this thesis are simple and undirected.
Let G be such a graph. The vertex set of G is denoted by V (G) and the edge
set of G by E(G). Sometimes we also denote a graph as G = (V,E). Here V
represents the set of vertices of G and E the set of edges. We also refer to |V | as
the order of G.

Two vertices v, w ∈ V (G) are called adjacent if {v, w} ∈ E(G). We say that
an edge e ∈ E(G) is incident to v ∈ V (G) if v ∈ e. Two edges are called adjacent
if they share a vertex.

The degree of a vertex v ∈ V (G) is the number of edges which are incident
to v and is denoted by degG(v) (or simply deg(v) if G is fixed). The minimum
and maximum degree of vertices in G is denoted by δ(G) and ∆(G), respectively.
If δ(G) = ∆(G) = d, G is called d-regular. The set of neighbours (i.e. adjacent
vertices) of a vertex v ∈ V (G) is written as Nv(G) (or N(v) if G is fixed).

A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). If G′

is a subgraph of G and V (G′) = V (G), then G′ is a spanning subgraph of G. If
G′ is a subgraph of G and ∀ v, w ∈ V (G′) the following holds: {v, w} ∈ E(G)⇒
{v, w} ∈ E(G′), then G′ is called an induced subgraph of G. We also refer to
G′ as the subgraph of G induced by the set of vertices X = V (G′) (denoted by
G[X]).

If G′ is a subgraph of G, then G is also called a supergraph of G′.
The complement of a graph G = (V,E) (denoted by Gc), is the graph Gc =

(V,
(
V
2

)
\ E).

A subgraph P of a graph G is a path if V (P) = {v0, v1, ..., vn} and E(P) =
{{vi, vi+1} | 0 ≤ i ≤ n} where all vertices of V (P) are distinct. The length of the

4 Introduction

path is its number of edges.
The distance d(v, w) between 2 vertices v, w ∈ V (G) is the length of the

shortest path from v to w in G. If there is no path from v to w, d(v, w) is defined
as ∞. The diameter of G is the greatest distance between any two vertices in G.

A subgraph C of a graph G is a cycle if V (C) = {v0, v1, ..., vn} and E(C) =
{{vi, vi+1} | 0 ≤ i < n} ∪ {v0, vn} where all vertices of V (C) are distinct. The
length of the cycle is its number of edges (or vertices).

A complete graph of order n (denotedKn) is a graphG = (V,E) with E =
(
V
2

)
.

A graph G is called bipartite if there are two sets of vertices V1 and V2 such
that V1 ∩ V2 = ∅ and V1 ∪ V2 = V (G) and ∀ e ∈ E(G) : |e ∩ V1| = |e ∩ V2| = 1.

A complete bipartite graph G = (V1∪V2, E) is a bipartite graph with partitions
V1 and V2 such that for any two vertices v1 ∈ V1 and v2 ∈ V2, {v1, v2} is an edge
in G. The complete bipartite graph with partitions of size |V1| = m and |V2| = n,
is denoted Km,n.

The girth of a graph G is the length of its shortest cycle and is denoted by
g(G). For acyclic graphs the girth is defined as ∞. A tree is a connected acyclic
graph.

A graph G = (V,E) is connected if for every v, w ∈ V there is a path from v

to w. A disconnected graph is a graph which is not connected. Given a connected
graph G = (V,E). A set S ⊆ V is a vertex-cut if G[V \S] is disconnected. If the
vertex-cut only contains one vertex, we call that vertex a cutvertex . A graph G

is k-connected if G is connected and no vertex-cut S exists with |S| < k.
Given a connected graph G = (V,E). A set S ⊆ E is an edge-cut if the

graph G′ = (V,E \S) is disconnected. If the edge cut only contains one edge, we
call that edge a bridge. A graph G is k-edge-connected if G is connected and no
edge-cut S exists with |S| < k. We call an (edge) cut S with |S| = k a k-(edge)-
cut. Thus if a graph is k-edge-connected but not (k + 1)-edge-connected, it has
a k-edge-cut.

A graph G is cyclically k-edge-connected if the deletion of fewer than k edges
from G does not create two components both of which contain at least one cycle.
The largest integer k such that G is cyclically k-edge-connected is called the cyclic
edge-connectity of G and is denoted by λc(G). If no set of edges can be deleted
such that two components are created which both contain at least one cycle, the
cyclic edge-connectivity is defined as ∞ (so λc(K4) =∞).

The chromatic index χ′(G) of a graph G is the minimum number of colours
required for an edge colouring of that graph such that no two adjacent edges have
the same colour.

1.2. Exhaustive generation 5

A k-factor of a graph G is a spanning k-regular subgraph of G. A 1-factor is
also called a perfect matching.

A graph is called hamiltonian if it contains a hamiltonian cycle, this is a cycle
which contains all vertices of the graph.

An independent set of G is a set of vertices S ⊆ V (G) such that ∀ v, w ∈
S : {v, w} /∈ E(G). The size of the largest independent set of G is called the
independence number of G and is denoted by α(G).

Two graphs G and G′ are isomorphic (denoted by G ∼= G′) if and only if there
is a bijective function φ : V (G) → V (G′) : {v, w} ∈ E(G) ⇐⇒ {φ(v), φ(w)} ∈
E(G′). The function φ is called an isomorphism from G to G′. An isomorphism
from G to itself is called an automorphism. The automorphism group Aut(G) of
G is the group of all automorphisms of G.

If the automorphism group only contains one element (namely the identity
automorphism which maps every vertex to itself), we call that group trivial .

The orbit of a vertex v ∈ V (G) is the set of vertices to which v can be mapped
by an automorphism of G.

In this thesis we also use several definitions which are specific for plane graphs.
These definitions are introduced in Chapter 4.

For an overview of the notations which are used in this thesis, see Appendix A.

1.2 Exhaustive generation

All algorithms described in this thesis are designed to generate graphs from a
specific class of graphs (e.g. cubic graphs, fullerenes,...) efficiently. All of these
algorithms generate these classes of graphs exhaustively, i.e. they generate all
graphs of a given graph class (for a given number of vertices). The graphs are
obtained by recursively applying construction operations to a set of initial graphs.

A construction or expansion operation is an operation which constructs a
larger graph from a given graph. A reduction operation is an operation inverse to
a construction operation. We call the graphs which are obtained by applying a
construction operation to a smaller graph children and this smaller graph where
these children are obtained from the parent . We also call the graph obtained by
applying an expansion to a graph an expanded graph.

To prove that all graphs of a given class can be generated by our algorithm,
we usually prove that each graph from the class of graphs (except for a small
number of irreducible graphs) can be reduced to a smaller graph of the same
class by our reduction operations.

6 Introduction

1.3 Isomorphism-free generation

When generating combinatorial structures, it is important that no isomorphic
copies are output by the generation algorithm. In the literature various tech-
niques exist to avoid the generation of isomorphic copies. The most commonly
used ones are McKay’s canonical construction path method [89] and the method
of generating canonical representatives (which was independently pioneered by
Faradžev [50] and Read [105]). A good survey of isomorphism rejection tech-
niques can be found in [14].

Both the method of generating canonical representatives and the canonical
construction path method use a canonical labelling .

If L is the set of all labelled graphs, then a canonical representative function is
a function c : L → L with the properties that for every G ∈ L, c(G) is isomorphic
to G and that c(G) = c(G′) if and only if G and G′ are isomorphic. The graph
c(G) is also called the canonical representative of G. An isomorphism φ from G

to c(G) is called a canonical labelling of G.
We can implement our own canonical representative function or we can use a

program such as nauty [88] to compute a canonically labelled isomorph of a given
graph. A labelling can for example be represented by a string consisting of the
adjacency matrix of the graph written into one row. The adjacency matrix of a
graph with n vertices is an n× n matrix where the entry of row i and column j

is 1 if and only if there is an edge between vertex i and vertex j, else the entry
is 0. One could then define the labelling of the canonical representative of G to
be e.g. the one with the lexicographically minimal representation.

A straightforward isomorphism rejection technique is isomorphism rejection
by lists. In this method, a list of non-isomorphic graphs which were generated
so far is stored (preferably in the memory for efficiency reasons). Each time a
new graph is generated, it is compared to the graphs from the list. If it is not
isomorphic to any of the graphs in the list, the graph is added to the list, else it is
rejected. Usually the canonical representative is stored rather than the generated
graph, since then one does not have to recompute the canonical representative
of the stored graphs. When the canonical representative of the new graph is
computed, one only has to compare it to the stored canonical representatives.

This approach is of course only feasible if the number of non-isomorphic
graphs is not too big. We use this technique for the generation of irreducible
IPR fullerenes (see Section 4.3) and minimal Ramsey graphs (see Section 5.3).

The method of generating canonical representatives only accepts graphs if
their labelling is canonical. The difficulty of this method is to define a canonical

1.3. Isomorphism-free generation 7

labelling in such a way that it allows an early bounding criterion with respect to
the canonicity criterion. Therefore the canonical labelling and the construction
operations must be compatible to make it possible to detect at an early stage that
a given partial graph cannot lead to a canonically labelled graph. Algorithms for
generating canonical representatives which use such an early bounding criterion
are sometimes also referred to as Read/Faradžev-type orderly algorithms. This
method is amongst others used in Brinkmann’s generator for cubic graphs [11]
(called minibaum) and in Meringer’s generator for regular graphs [95] (called
genreg).

Before we go into the details of the canonical construction path method, we
first discuss how isomorphic copies can occur. This can happen in two different
ways: isomorphic graphs which are obtained from the same parent and isomorphic
graphs which are obtained from different parents.

We illustrate this for the example of generating cubic or 3-regular graphs.
These are graphs where each vertex has degree 3. The basic edge insertion oper-
ation to make a cubic G′ with n vertices from a cubic graph G with n−2 vertices
is shown in Figure 1.1. It is the insertion of a new edge between new vertices
inserted in two different edges of G (see Chapter 2 for more details). Two edge
insertions of a graph G are called equivalent if there is an automorphism of G
mapping the pairs of edges to which the operation is applied onto each other.

Figure 1.1: The basic edge insertion operation for cubic graphs.

Isomorphic children can be obtained from the same parent: applying the edge
insertion operation to pairs of edges of the parent graph which are equivalent
under the automorphism group of the parent graph yields isomorphic children.
For example applying the edge insertion operation to the edge pair {{0, 1}, {0, 2}}
or {{1, 2}, {1, 3}} (and many other edge pairs) of the graph in Figure 1.2 both
yield the same (isomorphic) graph.

Isomorphic children can also be generated from the same parent by applying
the edge operation to non-equivalent pairs of edges of the parent graph G. This
can be seen in Figure 1.3: edge pairs {{0, 1}, {2, 3}} and {{4, 5}, {6, 7}} are not
equivalent under the automorphism group of G, but applying the edge insertion
operation to each of them yields the same (isomorphic) graph. This is sometimes

8 Introduction

Figure 1.2: A parent graph with isomorphic children.

called pseudosimilarity of construction operations.
Isomorphic graphs can also be obtained from different parents. For example

when the basic edge insertion operation is applied to the dashed pairs of edges
of the non-isomorphic graphs G and G′ of Figure 1.4, they yield two isomorphic
graphs: H and H ′, respectively.

The canonical construction path method takes care of all of these sources of
isomorphism. When using this method, we first have to define, for every graph
G of the class of graphs which we want to generate, a canonical reduction which
is unique up to isomorphism. We call the graph which is obtained by applying
the canonical reduction to G the canonical parent of G and an expansion that is
the inverse of a canonical reduction a canonical expansion. The two rules of the
canonical construction path method are:

1. Only accept a graph if it was constructed by a canonical expansion.

2. For every graph G to which construction operations are applied, only per-
form one expansion from each equivalence class of expansions of G.

Note that accepting a graph if it was constructed from a canonical parent
would not be sufficient, as this does not eliminate pseudosimilarity. A canonical
graph is a graph which was constructed by a canonical expansion.

The canonical construction path method is applied in most of the generation
algorithms which are described in this thesis. More specifically, it is used for

1.3. Isomorphism-free generation 9

0

1

3

2

4

5
7

6

G

∼=

Figure 1.3: A parent graph with isomorphic children obtained by non-equivalent ex-

pansions.

the generation of cubic graphs (see Chapter 2), fullerenes (see Chapter 4) and
maximal triangle-free graphs (see Chapter 5).

The coarse structure of an algorithm to recursively generate all non-isomorphic
graphs of a given class using the canonical construction path method is given as
pseudocode in Algorithm 1.1.

10 Introduction

Figure 1.4: A graph which can be obtained from multiple parents.

Algorithm 1.1 Construct(graph G)
if G has the desired number of vertices then

output G
else

find expansions
compute classes of equivalent expansions
for each equivalence class do

choose one expansion X

perform expansion X

if expansion is canonical then
Construct(expanded graph)

end if
perform reduction X−1

end for
end if

Chapter 2

Generation of cubic graphs

Hier fängt die Geschichte an.

Walter Moers, Die Stadt der Träumenden Bücher

In this chapter we describe a new algorithm for the efficient generation of all
non-isomorphic connected cubic graphs. Our implementation of this algorithm
is more than 4 times faster than previous generators for cubic graphs. The
generation can also be efficiently restricted to cubic graphs with girth at least 4
or 5.

In Chapter 3 we describe how this algorithm can be extended to generate
snarks efficiently.

Remark: our algorithm for the generation of cubic graphs is also described
in [28]. This was joint work also with Brendan D. McKay and various parts of
this chapter were adopted from that article.

2.1 Introduction

Cubic or 3-regular graphs are (simple) graphs where each vertex has degree 3.
Some examples of cubic graphs are given in Figure 2.1. Figure 2.1a depicts

K4, Figure 2.1b the Petersen graph and Figure 2.1c the buckminsterfullerene C60.
When we speak about graphs in the rest of this chapter, we always mean

cubic graphs (unless specified otherwise). For a cubic graph G, the number of
edges |E(G)| is equal to 3·|V (G)|

2 .

11

12 Generation of cubic graphs

(a) (b) (c)

Figure 2.1: Some examples of cubic graphs: K4, the Petersen graph and the C60

fullerene respectively.

The class of cubic graphs is especially interesting for mathematical applica-
tions because for various important open problems in graph theory, the smallest
or simplest possible potential counterexamples are cubic graphs (see Chapter 3
for more information). In chemistry, cubic graphs serve as models for e.g. the
Nobel Prize winning fullerenes [80] (see Chapter 4) or, more generally, for some
cyclopolyenes [5].

The generation of cubic graphs can be considered a benchmark problem in
structure enumeration. The first complete lists of cubic connected graphs were
given by de Vries at the end of the 19th century, who gave a list of all cubic (con-
nected) graphs up to 10 vertices [42, 43]. The first computer approach was by
Balaban, a theoretical chemist. He generated all cubic graphs up to 12 vertices
in 1966/67 [5]. De Vries’ lists were independently confirmed by hand by Busse-
maker and Seidel in 1968 [38] and Imrich in 1971 [70]. From 1974 on, various
algorithms for the generation of cubic graphs were published. Each algorithm
was implemented in a computer program that could generate larger lists of cubic
graphs, see [97],[50],[37],[92],[11]. In 1983 Robinson and Wormald [106] published
a paper on the non-constructive enumeration of cubic graphs.

When present research began, the fastest publicly available program for the
generation of cubic graphs was minibaum [11]. When developed in 1992, mini-
baum could be used to generate complete lists of all cubic graphs up to 24 vertices
and several more restricted subclasses of cubic graphs with more vertices, like cu-
bic bipartite graphs or cubic graphs with higher girth. Later, when more and
faster computers were available, minibaum was used to generate all cubic graphs
up to 30 vertices in order to test them for Yutsis decompositions [2].

In 1999, Meringer [95] published a very efficient algorithm for the generation

2.2. The generation algorithm 13

of regular graphs of given degree. But for the generation of all cubic graphs the
program based on his algorithm is slower than minibaum. In 2000, Sanjmyatav
[110] and her supervisor McKay developed a set of very fast specialised programs
for various classes of cubic graphs. Unfortunately these programs were never
released or published. In this chapter we describe an algorithm based on ideas
already used by de Vries and Sanjmyatav/McKay but also with several new ideas.
Our implementation of this algorithm is faster than any previous program.

The algorithm is described in Sections 2.2-2.5. In Section 2.6 we describe how
we adapted the algorithm to generate cubic graphs with a non-trivial lower bound
on the girth efficiently and in Section 2.7 we describe how the algorithm can be
used to generate cubic graphs with certain connectivity requirements. We con-
clude this chapter with a comparison of our algorithm with previous generators
for cubic graphs.

2.2 The generation algorithm

Our basic construction operation to make a cubic graph G′ with n vertices from
a cubic graph G with n − 2 vertices is the insertion of a new edge between new
vertices inserted in two different edges of G. This operation was already used by
de Vries and can be seen in Figure 2.2. The inverse operation involves removing
an edge {x, y} and its endpoints x and y, then adding an edge between the two
vertices other than y that were previously adjacent to x, and an edge between
the two vertices other than x that were previously adjacent to y. We call this an
edge reduction operation in case the resulting graph is a connected cubic graph.
In that case we call the edge e = {x, y} reducible, otherwise irreducible. So e is
irreducible if and only if it is a bridge, has an endpoint in a triangle that does
not contain e, or has two endpoints in the same 4-gon that does not contain e.
The latter two situations are depicted in Figure 2.3.

Figure 2.2: The basic edge insertion operation.

A cubic connected graph without reducible edges is called a prime graph. By
definition, each connected cubic graph can be constructed from a prime graph by

14 Generation of cubic graphs

(a) (b)

Figure 2.3: Two examples of an irreducible edge e: an edge which has an endpoint in

a triangle that does not contain e (i.e. Figure 2.3a) and an edge with two

endpoints in the same 4-gon that does not contain e (i.e. Figure 2.3b).

recursive application of the edge insertion operation. The class of all connected
cubic graphs is constructed in two steps:

K4

⇓ (operations to generate prime graphs)
Prime graphs

⇓ (edge insertion operation)
All cubic graphs

The construction operations to generate prime graphs are described in Sec-
tion 2.3. The second step is described in more detail in Sections 2.4 and 2.5.
In both steps we use the canonical construction path method (see Section 1.3)
to make sure no isomorphic graphs are output by the algorithm. In those sec-
tions we also describe how this isomorphism rejection technique is applied for the
generation of cubic graphs.

2.3 Generation of prime graphs

2.3.1 Introduction

We refer to a subgraph of a graph isomorphic to K4−e (with e an edge of K4) as
a K−4 . The two vertices in a K−4 that have degree 2 in this subgraph are called
extremal vertices. This is shown in Figure 2.4a, where the extremal vertices are
labelled v1 and v2. K4 with an edge subdivided by inserting a vertex of degree 2
is referred to as K+

4 . The vertex in a K+
4 which has degree 2 in this subgraph is

2.3. Generation of prime graphs 15

called the central vertex . This is shown in Figure 2.4b where the central vertex
is labelled vc.

(a) (b)

Figure 2.4: A K−4 and a K+
4

Lemma 2.1. A connected cubic graph is a prime graph if and only if each edge
is a bridge or has an endpoint in a K−4 .

Proof. The direction ⇐ is immediate, because neither bridges nor edges with
endpoints in a K−4 can be reduced.

So suppose that e = {x, y} is an edge in a prime graph G which is not a
bridge and has no endpoints in a K−4 . Note that if an edge has two endpoints in
the same cycle, the edge reduction applied to this edge can reduce the length of
the cycle by at most 2. If the endpoints of the reduced edge are not part of the
same cycle, the edge reduction can reduce the length of each cycle in which the
reduced edge has endpoints by at most 1. Also note that if an edge in a prime
graph has two endpoints in the same square, it is part of a K−4 . Thus if e has no
endpoints in a triangle, then e is reducible. On the other hand, if x is contained
in a triangle, but not in a K−4 , each edge of the triangle is reducible.

We use the three construction operations from Figure 2.5 to generate all
prime graphs. We also refer to operation (a) as the lollipop insertion operation,
operation (b) as the edge diamond insertion operation and operation (c) as the
non-adjacent edge diamond insertion operation.

We call a K+
4 which is part of a prime graph and which is reducible by a

lollipop reduction a reducible lollipop. A K−4 which is part of a prime graph and
which is reducible by an edge diamond reduction a reducible edge diamond and
similarly a K−4 which is reducible by a non-adjacent edge diamond reduction is
called a reducible non-adjacent edge diamond . Reductions are only valid if the

16 Generation of cubic graphs

reduced graph is a connected cubic graph without parallel edges or loops. Note
that each reducible non-adjacent edge diamond is also a reducible edge diamond.

Figure 2.5: The construction operations for prime graphs.

To prove that all prime graphs can be generated by our construction opera-
tions, we will show in Section 2.3.2 that each prime graph can be reduced to a
smaller prime graph by one of the reduction operations (i.e. Lemma 2.2). Note
that the class of prime graphs is not closed under these construction operations
(for an example, see Figure 2.6). So after applying an operation it must be tested
whether the new graph is a prime graph or not. We use some simple look-aheads
that avoid the construction of non-prime graphs. These look-aheads and other
details about the construction are explained in Section 2.3.3. In Section 2.3.2 we
explain how we make sure that the algorithm does not output isomorphic prime
graphs and prove that our algorithm generates exactly one representative of every
isomorphism class of prime graphs.

2.3.2 Isomorphism rejection

We use the canonical construction path method (see Section 1.3) to make sure
no isomorphic prime graphs are generated. We will now describe how to apply
the canonical construction path method for the generation of prime graphs.

Note that the lollipop insertion operation and the edge diamond insertion
operation are applied to edges, while the non-adjacent edge diamond insertion
operation is applied to pairs of non-adjacent edges. Two lollipop (or edge dia-
mond) expansions of a prime graph G are equivalent if there is an automorphism

2.3. Generation of prime graphs 17

Figure 2.6: Application of the edge insertion operation which yields a non-prime

graph.

of G mapping the edges onto each other (i.e. they are in the same orbit of edges
of the automorphism group of G). Two non-adjacent edge diamond expansions
are equivalent if there is an automorphism of G mapping the pairs of edges onto
each other.

Recall from Section 1.3 that we first have to define a canonical reduction which
is unique up to isomorphism and that the two rules of the canonical construction
path method (applied to the generation of prime graphs) are:

1. Only accept a prime graph if it was constructed by a canonical expansion.

2. For every prime graph G to which construction operations are applied, only
perform one expansion from each equivalence class of expansions of G.

A canonical expansion is the inverse of a canonical reduction. The three
construction operations for prime graphs were introduced in Section 2.3.1. We
will now introduce the concepts of canonical reducible lollipops, edge diamonds
and non-adjacent edge diamonds in order to define a canonical reduction. The
concepts of central vertex, extremal vertex and reducible lollipop, edge diamond
and non-adjacent edge diamond were already introduced in Section 2.3.1 and
Aut(G) stands for the automorphism group of a graph G.

Definition 2.1 (Canonical reducible lollipop). Given a graph G and a canonical
representative function f . We call a reducible lollipop of G canonical if it is in the
same orbit of Aut(G) as the reducible lollipop which contains the central vertex
with the largest label in f(G) (i.e. the canonically labelled representative of G).

18 Generation of cubic graphs

We use the program nauty [88] to compute a canonically labelled isomorph
of a given graph. Note that it is of no importance that we chose the reducible
lollipop with the central vertex with the largest label in the canonically labelled
graph. We also could have chosen the one with the smallest label or have used
another criterion. The only requirement is that it is uniquely defined up to
isomorphism.

Definition 2.2 (Canonical reducible non-adjacent edge diamond). Given a graph
G and a canonical representative function f . We call a reducible non-adjacent
edge diamond of G canonical if it is in the same orbit of Aut(G) as the reducible
non-adjacent edge diamond which contains the extremal vertex with the largest
label in f(G).

Definition 2.3 (Canonical reducible edge diamond). Given a graph G and a
canonical representative function f . We call a reducible edge diamond of G
canonical if it is in the same orbit of Aut(G) as the reducible edge diamond
which contains the extremal vertex with the largest label in f(G).

Definition 2.4 (Canonical reduction for prime graphs). Given a prime graph G
with more than 4 vertices.

• If G contains a reducible lollipop, it is reduced by applying the lollipop re-
duction operation to a canonical reducible lollipop.

• If G contains no reducible lollipops but at least one reducible non-adjacent
edge diamond, it is reduced by applying the non-adjacent edge diamond
reduction operation to a canonical reducible non-adjacent edge diamond.

• If G contains no reducible lollipops and no reducible non-adjacent edge di-
amonds, it is reduced by applying the edge diamond reduction operation to
a canonical reducible edge diamond.

So the lollipop operation has the highest priority, the non-adjacent edge dia-
mond operation the second highest priority and the edge diamond operation the
lowest priority.

Lemma 2.2. Every prime graph G with more than 4 vertices is reducible by the
canonical reduction and the reduced graph is also prime.

Proof. If the canonical reduction is a lollipop (or a non-adjacent edge diamond)
reduction, the new edge (respectively edges) is a bridge or contains vertices of a
K−4 . Thus the reduced graph is also prime.

2.3. Generation of prime graphs 19

So suppose G contains no reducible lollipops and no reducible non-adjacent
edge diamonds. If G contains a reducible edge diamond, the canonical reduction
is an edge diamond reduction. Suppose that the reduced graph G′ obtained by
applying the edge diamond reduction to a canonical reducible edge diamond is
not prime. This means that the edge e by which the reducible edge diamond has
been replaced by the canonical reduction is reducible. So e is not a bridge and
has no endpoints in a K−4 . But this implies that G also had a non-adjacent edge
diamond reduction, so the edge diamond reduction was not canonical.

If G also does not contain any reducible edge diamonds, applying the edge
diamond reduction to any K−4 of G yields a cubic graph with parallel edges or
loops. Let e be the edge by which a K−4 has been replaced by the edge diamond
reduction. If e is parallel with an edge e′, e′ was also present in G. But e and e′

are no bridges and do not have an endpoint in a K−4 , so this would imply that
G was not prime. Now suppose e is a loop. Let v be the endpoint of e and let w
be the other neighbour of v in the reduced graph G′. If w is an extremal vertex
of a K−4 this would mean that this K−4 was a reducible edge diamond in G. So
suppose w is not an extremal vertex of a K−4 . Since G is prime, this means that G
contained a reducible lollipop with central vertex v, contrary to our assumption.

So every prime graph with at least 4 vertices is reducible by the canonical
reduction.

The construction is the inverse of the reduction, so a prime graph is only
accepted if it was constructed from a graph isomorphic to its canonical parent
by the inverse of the canonical reduction (i.e. if it was constructed by a canonical
expansion).

We also have to take the second rule of the canonical construction path into
account. This rule says:

2. For every graph G to which construction operations are applied, only per-
form one expansion from each equivalence class of expansions of G.

The lollipop insertion operation and the edge diamond insertion operation
are applied to edges, while the non-adjacent edge diamond insertion operation is
applied to pairs of non-adjacent edges.

Recall that two lollipop (or edge diamond) expansions of a prime graph G

are equivalent if there is an automorphism of G mapping the edges onto each
other. Two non-adjacent edge diamond expansions are equivalent if there is an
automorphism of G mapping the pairs of edges onto each other.

20 Generation of cubic graphs

We use nauty [88] to compute the automorphism group of a graph G. Nauty
does not compute orbits of edges or pairs of edges of G under the action of
Aut(G) by default, but by using the userautomproc option in nauty, we can save
the generators of Aut(G). Using these generators we can compute the orbits of
edges or pairs of edges (e.g. by using a union-find algorithm).

The class of prime graphs is not closed under the three construction opera-
tions. So after applying a construction operation we still have to test whether
the constructed graph is still prime. If it is not prime, the graph is not accepted
by the algorithm.

The coarse pseudocode for generating all non-isomorphic prime graphs is given
in Algorithm 2.1 (cf. Algorithm 1.1 from Section 1.3).

Algorithm 2.1 Construct prime graphs(prime graph G)
output G
if G has less vertices than the desired number of vertices then

find expansions
compute classes of equivalent expansions
for each equivalence class do

choose one expansion X

perform expansion X

if expansion is canonical and expanded graph is prime then
Construct prime graphs(expanded graph)

end if
perform reduction X−1

end for
end if

2.3. Generation of prime graphs 21

Theorem 2.3. When the generation algorithm for prime graphs which was just
described (cf. Algorithm 2.1) is recursively applied to K4, then exactly one repre-
sentative of each isomorphism class of cubic connected prime graphs is accepted.

Proof. The proof can be split into 2 parts:

1. At least one prime graph is accepted by the algorithm for each isomorphism
class of prime graphs.

2. At most one prime graph is accepted by the algorithm for each isomorphism
class of prime graphs.

Both parts are proven by induction on the number of vertices n of a prime
graph.

Proof of part 1. Assume that all prime graphs with less than n vertices
(n > 4) are generated at least once by the algorithm.

Suppose that no graph from the isomorphism class of a prime graph G with n
vertices was generated and accepted by the algorithm. It follows from Lemma 2.2
that the canonical reduction reduces G to a smaller prime graph. The following
cases can occur:

1. G contains at least one reducible lollipop.

So the canonical reduction of G is a lollipop reduction. We reduce G by
reducing a canonical reducible lollipop and call the reduced graph p(G).
The reducible lollipop l of G which was reduced is mapped to an edge e in
p(G). It follows from Lemma 2.2 that p(G) is prime.

By induction a graph H from the same isomorphism class as p(G) was
generated by the algorithm. Let γ be an isomorphism from p(G) to H.

The algorithm applies the lollipop insertion operation to one edge of each
equivalence class of edges of H. So if the lollipop operation was not applied
to γ(e), it was applied to some other edge e′ from the same orbit of edges
of H under the action of Aut(H). Let l′ be the lollipop which was obtained
by applying the expansion to e′. This yields an expanded graph G′ which
is isomorphic to G, so there is an isomorphism γ∗ from G to G′. l′ is in the
same orbit as γ∗(l) of Aut(G′), so l′ is a canonical reducible lollipop. Thus
G′ is accepted by the algorithm 	.

22 Generation of cubic graphs

2. G contains no reducible lollipops, but contains at least one reducible non-
adjacent edge diamond.

The proof is completely analogous to the proof of 1.

3. G contains no reducible lollipops and no reducible non-adjacent edge dia-
monds, but at least one reducible edge diamond.

The proof is completely analogous to the proof of 1.

Proof of part 2. Assume that all prime graphs with less than n vertices
(n > 4) are generated at most once by the algorithm.

Suppose that the algorithm generated two isomorphic prime graphs G and G′

with n vertices which are both accepted by the algorithm. The following cases
can occur:

1. G contains at least one reducible lollipop.

In this case G and G′ were constructed by a lollipop insertion operation. So
we apply the canonical reduction to G and G′ and call the reduced graphs
p(G) and p(G′) respectively. It follows from Lemma 2.2 that p(G) and
p(G′) are prime. Suppose the lollipop l was reduced in G and the lollipop
l′ in G′ and let γ be an isomorphism from G to G′. Since l and l′ are both
canonical reducible lollipops, γ(l) is in the same orbit as l′ under the action
of Aut(G′), so p(G) ∼= p(G′). By induction p(G) = p(G′).

Suppose that G was constructed from p(G) by applying the lollipop inser-
tion operation to the edge e of p(G) and that G′ was obtained by applying
the lollipop insertion operation to edge e′. But restricting the isomorphism
γ (that maps l to l′) to the vertices that already belonged to p(G) gives
an automorphism of p(G) mapping e to e′, showing that they were in the
same orbit of Aut(p(G)), contrary to our procedure.

2. G contains no reducible lollipops, but contains at least one reducible non-
adjacent edge diamond.

The proof is completely analogous to the proof of 1.

3. G contains no reducible lollipops and no reducible non-adjacent edge dia-
monds, but at least one reducible edge diamond.

The proof is completely analogous to the proof of 1.

2.3. Generation of prime graphs 23

2.3.3 Determining possible expansions

Recall from Section 2.3.2 that a graph is only accepted if it was constructed by
a canonical expansion. The class of prime graphs is not closed under the con-
struction operations for prime graphs, but every prime graph can be constructed
from a smaller prime graph by a canonical expansion (see Lemma 2.2). So if a
canonical expansion yields a non-prime graph, we do not accept the expanded
graph.

We call an edge where both endpoints are part of the same K−4 a diamond
edge. Note that if a lollipop or edge diamond insertion operation is applied to
a diamond edge, the resulting graph will not be prime (unless the parent graph
was K4). If one of the edges of the pair of edges to which a non-adjacent edge
diamond insertion operation is applied is a diamond edge, the resulting graph
will also not be prime.

In the remainder of this section we describe for each of the three construction
operations which expansions can yield an expanded graph which is accepted by
the algorithm. Expansions which can clearly not be canonical are not performed
by the algorithm.

Lollipop insertion operation

The lollipop insertion operation is applied to edges. Since this operation has the
highest priority, it can be applied to each edge of a given prime graph as long as
the expanded graph is also prime.

Applying the lollipop insertion operation to an edge e of a prime graph with
more than 4 vertices yields a prime graph if and only if e is a bridge or both
endpoints of e are part of a different K−4 .

Non-adjacent edge diamond insertion operation

The non-adjacent edge operation has a lower priority than the lollipop operation.
Thus if the graph obtained after a non-adjacent edge diamond insertion contains
reducible lollipops, it is not accepted. So the non-adjacent edge diamond insertion
operation has to destroy all existing reducible lollipops without generating any
new ones. Figure 2.7 gives an example of how a non-adjacent edge diamond
insertion can yield a new reducible lollipop. Next to that the expanded graph
still has to be prime.

24 Generation of cubic graphs

Figure 2.7: A non-adjacent edge diamond insertion which yields a new reducible lol-

lipop with central vertex c.

The non-adjacent edge diamond insertion operation is applied to pairs of non-
adjacent edges. Suppose that we have a prime graph G, then the following cases
can occur:

• G contains at least 3 reducible lollipops.

The non-adjacent edge diamond insertion operation can destroy at most 2
reducible lollipops. So the list of non-adjacent edges which are eligible for
expansion is empty.

• G contains contains 2 reducible lollipops.

The lollipops can only be destroyed if both endpoints of the first edge in
the pair of edges to which the expansion is applied are in the K+

4 of the
first reducible lollipop and the endpoints of the second edge of the edge pair
are in the K+

4 of the second reducible lollipop. However applying the non-
adjacent edge diamond operation to such a pair of edges yields a non-prime
graph. So also in this case the list of non-adjacent edges which are eligible
for expansion is empty.

2.3. Generation of prime graphs 25

• G contains 1 reducible lollipop.

The reducible lollipop can only be destroyed if both endpoints of an edge
in the pair of edges to which the non-adjacent edge diamond expansion
is applied are in the K+

4 of the reducible lollipop. However applying an
expansion to such a pair of edges yields a non-prime graph. So also here
the list of non-adjacent edges which are eligible for expansion is empty.

• G contains no lollipops.

Here we only have to make sure we do not generate any new reducible
lollipops and that the expanded graph is still prime. The pairs of edges
which can be chosen for expansion consist of all pairs of non-adjacent edges
where none of the edges is a diamond edge.

When an expansion is applied we still have to check if no new reducible lol-
lipops are generated, because the non-adjacent diamond edge insertion operation
can turn a K−4 into a reducible lollipop (cf. Figure 2.7). We also have to test if
the expanded graphs are prime.

For the efficiency of the algorithm it is not a problem that various graphs might
be rejected by the generation algorithm for prime graphs. Since, as is shown in
Section 2.3.4, the generation of prime graphs is certainly not the bottleneck in
the generation algorithm for all cubic graphs.

Edge diamond insertion operation

Since the edge diamond operation has the lowest priority among the three opera-
tions for prime graphs, we have to make sure that this insertion operation destroys
all existing reducible lollipops and reducible non-adjacent edge diamonds with-
out generating any new ones. Next to that, we also have to make sure that the
expanded graphs are still prime.

The edge diamond insertion operation is applied to edges. Suppose that we
have a prime graph G, the following cases can occur:

• G contains 2 reducible lollipops and no reducible non-adjacent edge dia-
monds.

It is only possible to destroy these 2 reducible lollipops if the 2 central
vertices of those lollipops are neighbours. This is only the case in the graph
of Figure 2.8. Here the only edge which is eligible for expansion is the edge
connecting the 2 central vertices.

26 Generation of cubic graphs

Figure 2.8: A prime graph which contains 2 lollipops.

• G contains 1 reducible lollipop and no reducible non-adjacent edge dia-
monds.

Here there are exactly 3 edges which can be chosen for expansion: the 3
edges which are incident to the central vertex of the reducible lollipop. If
the expansion is applied to other edges of the lollipop, the expanded graph
will not be prime.

• G contains reducible 1 non-adjacent edge diamond and no reducible lol-
lipops.

The only way to destroy the reducible non-adjacent edge diamond without
generating a new one (and where the expanded graph is still prime) is to
apply the expansion to the edges where one vertex is an extremal vertex of
the K−4 of the reducible non-adjacent edge diamond and where the other
vertex of the edge is the neighbour of that extremal vertex which is not part
of the K−4 . So there are exactly 2 edges which can be chosen for expansion.

• G contains no reducible lollipops and no reducible non-adjacent edge dia-
monds.

In this case all edges which are no diamond edges are eligible for expansion.

• In any other case the list of edges which are eligible for expansion is empty:
since the edge diamond insertion operation only modifies one edge of the
original graph, it cannot destroy more than 1 reducible lollipop or reducible
non-adjacent edge diamond (except for the graph from Figure 2.8).

The edge diamond insertion operation only modifies one edge in the original
graph and the new edges of the expanded graph are irreducible since they share a
vertex with a K−4 . Since we do not apply this operation to diamond edges (unless
the parent graph is K4), the expanded graph will be prime if the original graph
was. So for the edge diamond operation we do not have to check if the expanded
graphs are prime.

2.3. Generation of prime graphs 27

2.3.4 Conclusion

We could apply additional optimisations to further speed up the generation of
prime graphs, but as Table 2.1 shows, the number of prime graphs is negligible
compared to the number of cubic graphs. So these optimisations would make
no difference in the total generation time for the algorithm to construct all cu-
bic graphs. Thus the generation algorithm for prime graphs is certainly not a
bottleneck.

Though it is unimportant in practice, we can prove the asymptotic rarity of
prime graphs: A cubic graph with 2n vertices has 3n edges. Each construction
operation for prime graphs adds a new K−4 and increases the number of vertices
by at most 6. So by induction using Lemma 2.2, each prime graph of order 2n
for n ≥ 3 has at least 2n

6 = n
3 copies of K−4 .

By simultaneously removing the central edge in all copies of K−4 , we obtain a
cubic multigraph (i.e. parallel edges are allowed) with at most than 2n− 2n

3 = 4n
3

vertices. This shows that the number of prime graphs of order 2n is at most
equal to the number of connected cubic multigraphs of order at most 4n

3 . It was
shown by Read [104] that the numbers of labelled cubic graphs or labelled cubic
multigraphs on 2k vertices is, in each case, asymptotically

Θ(1)(6k)!
288k(3k)!

We can divide by (2k)! to obtain the asymptotic counts of unlabelled graphs,
since in both classes most graphs have trivial automorphism groups [93]. Let
F (2k) be Θ(1)(6k)!

288k(3k)!(2k)!
. By Stirling’s formula F (2k) ≈ kkeO(k). This gives us:

F (2/3 · 2n)
F (2n)

≈
(2n

3)
2n
3

nn

≈ n(2
3−1)n

This shows that the fraction of cubic graphs which are prime is n−Ω(n).

28 Generation of cubic graphs

|V (G)| # prime graphs # cubic graphs
4 1 1
6 0 2
8 1 5
10 1 19
12 1 85
14 3 509
16 2 4 060
18 5 41 301
20 4 510 489
22 9 7 319 447
24 11 117 940 535
26 16 2 094 480 864
28 32 40 497 138 011
30 37 845 480 228 069
32 73 18 941 522 184 590

Table 2.1: Number of prime graphs vs. number of cubic graphs.

2.4 Generation of graphs with reducible trian-

gles

2.4.1 Introduction

As can be seen from Table 2.1, the number of prime graphs is very small compared
to the number of cubic graphs. So the efficiency of the algorithm is entirely de-
termined by the efficiency of the algorithm to generate non-prime graphs. These
graphs are constructed by the edge insertion operation from Figure 2.9.

The class of connected cubic graphs is closed under the edge insertion oper-
ation, so the only time consuming routines are those that make sure that only
pairwise non-isomorphic graphs are generated. As with the generation for prime
graphs, we also use the canonical construction path method for this.

When using the canonical construction path method, we first have to define
a canonical reduction which is unique up to isomorphism for every non-prime
graph. The inverse of a canonical reduction is a canonical expansion. Recall
from Section 1.3 that the two rules of this method are:

1. Only accept a graph if it was constructed by a canonical expansion.

2.4. Generation of graphs with reducible triangles 29

2. For every graph G to which construction operations are applied, only per-
form one expansion from each equivalence class of expansions of G.

The isomorphism rejection for non-prime graphs is described in more detail
in Sections 2.4.2 and 2.5.1.

Figure 2.9: The basic edge insertion operation.

The theory of random cubic graphs (see [122] for example) says that the num-
ber of triangles is asymptotically a Poisson distribution with mean 4

3 . So asymp-
totically the probability that a cubic graph contains no triangles is e−

4
3 = 0.264...

The expected number of copies of K−4 is o(1), so this implies that asymptotically
about 74% of cubic graphs have triangles whose edges are reducible (that are tri-
angles which are not contained in a K−4). This percentage is also approximately
true for the graphs of the small sizes we are dealing with, which justifies paying
special attention to these reducible triangles as they allow some optimisations
that do not work in general. Table 2.2 shows statistics about the number of
reducible triangles in cubic graphs with 26 vertices.

reducible
triangles

graphs

0 497 010 000
1 774 885 044
2 540 977 972
3 218 274 256
4 54 459 966
5 8 183 373
6 666 137
7 23 837
8 279

Table 2.2: Counts of all 2 094 480 864 connected cubic graphs with 26 vertices accord-

ing to the number of reducible triangles they have.

30 Generation of cubic graphs

2.4.2 Construction

Note that the operation of edge insertion applied to two vertices having a common
endpoint can be seen as that of replacing the common endpoint by a triangle.
The result depends only on what the common endpoint was and not which two
edges were used. We call this triangle insertion. Similarly, the reverse operation
of triangle reduction can be seen as that of replacing a reducible triangle by a
vertex. This operation is also shown in Figure 2.10.

Figure 2.10: The basic triangle operation.

We give triangle reductions priority over other edge reductions. So the canon-
ical reduction of a graph with reducible triangles is a triangle reduction. This
allows us to bundle triangle operations. The idea is to reduce each reducible
triangle at the same time, but there is a twist in that the two triangles in the
subgraph ext(K−4) shown in Figure 2.11 cannot be reduced at once, since par-
allel edges are not allowed. However reduction of either of the two triangles in
an ext(K−4) produces the same smaller graph, so we define our bundled triangle
reduction as simultaneously reducing one triangle from each ext(K−4) and every
other reducible triangle.

Thus a graph with reducible triangles has only one reduction (up to isomor-
phism). So this is the canonical reduction and it provides (up to isomorphism) a
unique ancestor for each connected cubic graph that has reducible triangles.

Figure 2.11: A subgraph ext(K−4) with two reducible triangles that cannot be reduced

at once.

We next identify the inverse operation of a bundled triangle reduction. For a
graph G call a set S ⊆ V (G) extensible if at least one vertex of every reducible

2.4. Generation of graphs with reducible triangles 31

triangle of G is contained in S. Then a bundled triangle insertion is to insert
a triangle at each of the vertices in S (note that it is also possible that |S| =
1). After a bundled triangle insertion, all the ext(K−4) subgraphs and other
reducible triangles have been created in this last operation, so every bundled
triangle insertion is canonical.

Applying a bundled triangle insertion to distinct extensible sets of a graph G
might yield isomorphic graphs. To avoid this, we define an equivalence relation on
the extensible sets and will apply bundled triangle insertion to only one extensible
set in every equivalence class (i.e. the second rule of the canonical construction
path method).

The equivalence relation “≡” on extensible sets is generated by the following
two equivalences:

(a) If there is an automorphism γ of G with γ(S) = S′, then S ≡ S′.

(b) If |S| = |S′| and (S \S′)∪ (S′ \S) is the set of extremal vertices of a K−4 in
G so that each of S, S′ contains exactly one vertex in this K−4 , then S ≡ S′.

Lemma 2.4. Consider a graph G and two extensible sets S, S′ of G. Let T (G,S),
respectively T (G,S′), denote the graphs obtained by applying bundled triangle
insertion to S, respectively S′. Then T (G,S) and T (G,S′) are isomorphic if and
only if S ≡ S′.

Proof.
Part 1: ⇐=

If S ≡ S′, there is a set of generating relations S ≡ S1, S1 ≡ S2, S2 ≡ S3, . . . ,
Sn ≡ S′. If Si ≡ Si+1 is an equivalence of type (a), T (G,Si) and T (G,Si+1) are
isomorphic. If Si ≡ Si+1 is an equivalence of type (b), T (G,Si) and T (G,Si+1)
are also isomorphic. So we have T (G,S) ∼= T (G,S1), T (G,S1) ∼= T (G,S2), . . . ,
T (G,Sn) ∼= T (G,S′). Since ∼= is transitive we have T (G,S) ∼= T (G,S′).

Part 2: =⇒
Suppose that γ is an isomorphism from T (G,S) to T (G,S′). Note that γ must

map the set of subgraphs ext(K−4) of T (G,S) onto the set of subgraphs ext(K−4)
of T (G,S′), and also map the other reducible triangles of T (G,S) onto the other
reducible triangles of T (G,S′). Consider the mapping φ from V (T (G,S)) to V (G)
defined by contracting the central two edges of each ext(K−4) (drawn horizontally
in Figure 2.11) and contracting all the edges of each reducible triangle that is not
in an ext(K−4) and relabelling the vertices of the contracted graph as in G. Define

32 Generation of cubic graphs

the mapping φ′ from V (T (G,S′)) to V (G) similarly. The permutation γ0 of V (G)
defined by γ0(φ(v)) = φ′(γ(v)) for all v ∈ V (T (G,S)) is an automorphism of G.
Moreover, γ0 maps S onto S′ with the possible exception that when S contains
one extremal vertex w, and no other vertex, of a K−4 subgraph H, S′ might
contain either γ0(w) or the other extremal vertex of the K−4 subgraph γ0(H). In
either case, S ≡ S′ by the definition of equivalence.

Since for every graph with reducible triangles the graph resulting from a
bundled triangle reduction is uniquely determined (i.e. every graph obtained by
a bundled triangle insertion operation is canonical), we get the following Lemma:

Lemma 2.5. If exactly one representative of every isomorphism class of cubic
connected graphs up to n − 2 vertices is given, then applying bundled triangle
insertion to one member of each equivalence class of extensible sets that leads
to a cubic connected graph on n vertices generates exactly one representative for
every isomorphism class of cubic connected graphs on n vertices that contain
reducible triangles.

Thus no isomorphism rejection is needed for graphs with reducible triangles
(other than the equivalence relation on extensible sets): graphs constructed by
the bundled triangle operation are always canonical and pairwise non-isomorphic.
This is one of the main advantages of the triangle insertion bundling, as checking
whether the last operation was canonical can be very expensive in general. This
does not only avoid the time for canonicity checking, but also the time needed
for constructing graphs that are rejected after construction because they are not
canonical. Also note that graphs with r reducible triangles and n vertices are
generated from graphs with n− 2r vertices. So as can be seen from Table 2.2 at
the beginning of this section, graphs with reducible triangles are often generated
from much smaller graphs.

2.4.3 Optimisations

One of the routines that can be time consuming in structure generation pro-
grams is the computation of automorphism groups. We used nauty for this task.
Although nauty is very efficient, the large number of calls can be expensive.

The argument used in the proof of Lemma 2.4 shows that a non-trivial au-
tomorphism of T (G,S) must come from a non-trivial automorphism of G. So if
Aut(G) is trivial, this implies that Aut(T (G,S)) is also trivial. Thus if Aut(G)
is trivial, we do not have to call nauty to compute Aut(T (G,S)). This is another

2.4. Generation of graphs with reducible triangles 33

big advantage of triangle insertion bundling. E.g. for 26 vertices about 78% of
the graphs have a trivial group and the ratio is increasing.

Even if Aut(G) is non-trivial, the orbits of Aut(G) can be used to define vertex
colours (see [88]) for T (G,S) to speed up the computation of Aut(T (G,S)). More
specifically it is possible to give a partition or colouring of the set of vertices when
calling nauty. Vertices which are in a different partition (i.e. have a different
colour), are assumed to be in a different orbit of the automorphism group of the
graph. An example of a simple and straightforward partitioning is to partition
the vertices according to their degree. But since we are dealing with cubic graphs,
this partitioning is not useful.

Since a non-trivial automorphism of T (G,S) must come from a non-trivial
automorphism of G, two vertices in G that are not in the same orbit of Aut(G)
will also be in different orbits of Aut(T (G,S)). If v, w ∈ V (G) are in the same
orbit of Aut(G) and v is in S and w is not, w and the vertices by which v was
replaced will be in different orbits of Aut(T (G,S)).

We illustrate these vertex colours in Figure 2.12, where the colours in the left
graph denote vertices which are in the same orbit of the automorphism group of
the graph and where the colours in the right graph denote vertices which may
be in the same orbit. The vertices in the left graph with a square around them
are vertices which are in an extensible set which will be blown up by the bundled
triangle insertion operation. All this information can be used by nauty to speed
up the computation of the automorphism group of the expanded graph. Note
that we assign the same vertex colour to all 3 vertices of a reducible triangle in
the expanded graph. In many cases we already know that these 3 vertices will
not be in the same orbit of the automorphism group of the expanded graph, but
we do not assign a different vertex colour to them, since nauty easily detects this.

Consider the mapping φ from V (T (G,S)) to V (G) defined by contracting
the central two edges of each ext(K−4) (drawn horizontally in Figure 2.11) and
contracting all the edges of each reducible triangle that is not in an ext(K−4) and
relabelling the vertices of the contracted graph as in G. More precisely, if G has
a non-trivial automorphism group, then two vertices v, w ∈ V (T (G,S)) have the
same vertex colour if and only if:

• v and w are part of an ext(K−4).

• v and w are part of a reducible triangle but not of a ext(K−4) and there is
an automorphism of G mapping φ(v) to φ(w).

• v nor w are part of a reducible reducible triangle and there is an automor-

34 Generation of cubic graphs

Figure 2.12: Reusing information about the orbits of the automorphism group of the

parent graph to speed up the computation of the automorphism group

of the expanded graph.

phism of G mapping φ(v) to φ(w).

If all vertices which are part of an extensible set S of a graph G are in a
different orbit of Aut(G), we can sometimes apply another optimisation. Let
|Γ(v)| be the size of the orbit of a v ∈ V (G) of Aut(G). If for an automorphism
γ ∈ Aut(G) and a v ∈ S it holds that γ(v) 6= v, then this automorphism cannot
lead to an automorphism of T (G,S). If ∃ v ∈ S : |Γ(v)| = |Aut(G)|, this means
that ∀ γ ∈ Aut(G) : γ(v) 6= v. So then the automorphism group of T (G,S)
will be trivial, thus we also do not have to call nauty to compute it. Though in
practice this optimisation only yields a tiny speedup.

2.5 Generation of non-prime graphs without re-

ducible triangles

2.5.1 Isomorphism rejection

Recall that we gave the triangle operation priority over the edge operation. So
in principle the non-prime connected cubic graphs without reducible triangles on
n vertices are generated by applying the edge insertion operation to each pair of
edges in a graph on n− 2 vertices that guarantees that no reducible triangles are
present in the resulting graph. We call such a pair an extensible pair of edges. In
Section 2.5.2 we go into more detail about determining which pairs of edges are
extensible.

2.5. Generation of non-prime graphs without reducible triangles 35

Applying the edge insertion operation to all extensible pairs of edges may lead
to the construction of isomorphic copies. Therefore we will now describe how we
can make sure that only pairwise non-isomorphic graphs are output. We also use
the canonical construction path method for this.

The first task is to define, for each non-prime graph G without reducible
triangles, a canonical edge reduction which is unique up to isomorphism. The
result of performing the canonical edge reduction will be a graph G′, uniquely
determined byG up to isomorphism, from whichG can be made by edge insertion.
As is usual with the canonical construction path method (cf. rule 1), we will only
accept G if it is made from a graph isomorphic to G′ by the inverse of the
canonical reduction (i.e. by a canonical expansion); otherwise we will reject it.

To define an efficient canonical edge reduction, we assign a 7-tuple (x0, . . . , x6)
to every reducible edge e and choose a reducible edge with the largest 7-tuple.
The values of x0, . . . , x4 are combinatorial invariants of increasing discriminating
power and cost. More specifically they are defined as follows:

1. x0 = 1 if e is part of a 4-gon and 0 otherwise.

2. x1 is the negative of the number of vertices at distance at most 2 from e.

3. x2 is the number of 4-gons containing e.

4. x3 is the negative of the number of vertices at distance at most 3 from e.

5. x4 is the sum of x1 and x3 of all 4 edges incident with e.

We call the edge which was inserted by the last edge insertion operation the
inserted edge. Each xi is only computed if the previous values fail to determine a
unique reducible edge and the inserted edge is still potentially one of those with
the largest 7-tuple. So we first compute x0 for all reducible edges. Only for the
edges for which x0 is maximal, the value of x1 is computed. Then for the edges
with maximal (x0, x1), x2 is computed, etc. As soon as the inserted edge is not
maximal or if it is the only maximal edge, we can stop. If the inserted edge is
not maximal, we know the graph is not canonical. If it is the only maximal edge,
we know it is canonical.

In case there is more than one reducible edge with the largest value of (x0, . . . , x4)
(and the inserted edge is among them), we canonically label the graph using
nauty, and define x5 > x6 such that {x5, x6} is the lexicographically largest
canonical labelling of an edge in the same orbit of Aut(G) as e.

36 Generation of cubic graphs

The discriminating power of x0, . . . , x4 is sufficient to avoid the more expensive
computation of x5, x6 in 92% of the cases for n = 26. This fraction is increasing
for larger values of n.

The values x0, . . . , x4 are invariant under isomorphisms, so edges that are
equivalent under the automorphism group have the same values. The values x5, x6

have an even stronger property: two edges are equivalent under the automorphism
group if and only if x5, x6 are the same. So two edges have the same tuple
(x0, . . . , x6) if and only if they are in the same orbit of the automorphism group
of the graph. Together with the definition of canonical labelling, this implies the
following:

Lemma 2.6. Let G1 and G2 be connected cubic graphs with reducible edges, and
let γ be an isomorphism from G1 to G2. Let e1 and e2 be, respectively, reducible
edges of G1 and G2 having largest 7-tuples. Then γ(e1) is in the same orbit as
e2. Furthermore, the graph Ḡ1 obtained by reducing e1 in G1 is isomorphic to
the graph Ḡ2 obtained by reducing e2 in G2.

Next to that, there is an isomorphism from Ḡ1 to Ḡ2 mapping the edge pairs
to which e1 and e2 were reduced onto each other: Let p1 be the edge pair of Ḡ1

obtained by applying the edge reduction to e1 in G1 and let p2 be the edge pair
of Ḡ2 obtained by applying the edge reduction to e2 in G2. Restricting the iso-
morphism from G1 to G2 that maps e1 to e2 to the vertices that already belonged
to Ḡ1 and Ḡ2, respectively, yields an isomorphism from Ḡ1 to Ḡ2 mapping p1 to
p2.

The algorithm would work correctly if only x5, x6 were computed, but x0, . . . , x4

are important for the efficiency of the algorithm. While for x5, x6 a canonical
form must be computed, the earlier values are based on purely local criteria that
are cheaper to compute. Furthermore these criteria allow some look-ahead. For
example, when expanding a graph G by inserting a new edge, it is easy to decide
already on the level of G whether x0 will be 1 or 0 for this edge in the expanded
graph G′ and whether other edges with x0 = 1 in G′ will exist. This allows us
to avoid the construction of a lot of children that would afterwards be rejected
because the last edge inserted does not have maximal value of (x0, . . . , x6). We
go into more detail about this in Section 2.5.2.

What we still have to make sure is that from a graph with n − 2 vertices
we never construct two isomorphic graphs that are both accepted. Therefore,
when applying the edge insertion operation to a graph G, we first determine its
automorphism group Aut(G). After constructing the set of all extensible edge

2.5. Generation of non-prime graphs without reducible triangles 37

pairs (see Section 2.5.2 for details), we compute the orbits of Aut(G) on the
pairs and apply the edge insertion operation to exactly one pair in each orbit
(implementing the second rule of the canonical construction path method). This
suffices to prevent isomorphic graphs from being accepted, as the following lemma
shows. The fact that all graphs are still constructed can be seen by observing that
applying the operation to edge pairs in the same orbit gives isomorphic graphs.

Lemma 2.7. Assume that exactly one representative of each isomorphism class
of connected cubic graphs with n − 2 vertices is given. Suppose we perform the
following steps (cf. Algorithm 1.1 from Section 1.3):

1. Apply the edge insertion operation to one edge pair in each orbit of exten-
sible edge pairs.

2. Accept each new non-prime graph with n vertices and without reducible tri-
angles if and only if the last edge inserted has maximum value of (x0, . . . , x6).

Then exactly one representative of each isomorphism class of connected cubic
non-prime graphs with n vertices and without reducible triangles is accepted.

Proof. From Lemma 2.6 we know that isomorphic graphs must be made from
the same parent. So assume that G is expanded by applying edge insertion to
edge pairs p1 = {e1, e

′
1} and p2 = {e2, e

′
2} in G and that the results are two

isomorphic graphs G1, G2 that are both accepted. The inserted edges ē1 and ē2

must both have maximum (x0, . . . , x6) (else G1 or G2 will not be accepted), so
by Lemma 2.6 there is an isomorphism from G1 to G2 that maps ē1 to ē2. But
then restricting the isomorphism to the vertices that already belonged to G gives
an automorphism of G mapping p1 to p2, showing that they were in the same
orbit of the automorphism group of G, contrary to our procedure.

Together, Lemma 2.5 and Lemma 2.7 give the following theorem:

Theorem 2.8. If the algorithm which was just described is recursively applied to
all prime graphs up to n vertices, exactly one representative of every isomorphism
class of cubic connected graphs on n vertices is constructed.

2.5.2 Determining possible expansions

Since we give the (bundled) triangle operation priority over the edge insertion
operation, pairs of edges which are eligible for edge insertion have to destroy all
reducible triangles without generating new ones when the edge insertion operation

38 Generation of cubic graphs

is applied to them. Next to that, the inserted edge must have maximal value of
(x0, . . . , x6). This allows for some look-ahead. We will now describe which edge
insertion expansions can lead to a canonical graph.

Suppose that we have a cubic graph G for which we want to determine the
possible edge insertions. The following cases can occur:

• G contains at least 3 reducible triangles.

The edge insertion operation can destroy at most 2 reducible triangles, so
if the graph contains more than 2 reducible triangles, the list of edge pairs
which are eligible for edge insertion is empty.

• G contains 2 reducible triangles.

The only pairs of edges which destroy both triangles after the edge insertion
operation has been applied to them, are the pairs of edges where one edge
is part of the first reducible triangle and the other edge is part of the second
triangle.

So there are 9 edgepairs which could be chosen for expansion. However we
also have to take canonicity requirements (see Section 2.5.1) into account.
Since the expanded graph will contain reducible edges which are part of
a 4-gon (namely at least the edges of the 2 reducible triangles which were
destroyed by the edge insertion operation), the inserted edge also has to be
part of a 4-gon. If this is not the case its value of x0 will be zero, while
there are reducible edges with x0 = 1. So the 2 reducible triangles have to
be connected by an edge.

The inserted edge not only has to be part of a square in the expanded
graph, the edges of the edge pair in the original graph also have to be part
of the same square or pentagon. If this is not the case, the expanded graph
will have another reducible edge which has the same values for (x0, x1) as
the inserted edge, but with a larger value of x2 (i.e. the number of 4-gons
where the edge is part of). This is depicted in Figure 2.13: the inserted
edge e and the reducible edge e′ are both part of a square and both have
10 vertices at distance at most 2 (i.e. their value of (x0, x1) is (1,−10). But
e′ is part of 2 squares, while e is only part of 1 square, so e cannot be a
canonical edge. However if v and w are the same vertex (i.e. the edge pair
to which the edge insertion is applied is part of a pentagon), the value of e
for (x0, x1) is (1,−9) while e′ still has value (1,−10).

2.5. Generation of non-prime graphs without reducible triangles 39

e

e′

v w

Figure 2.13: Subgraph of a cubic graph. The inserted edge e has value

(1,−10, 1) for (x0, x1, x2) while e′ has value (1,−10, 2).

Thus each eligible pair of edges must contain one edge of each reducible
triangle and the edges of the edge pair must be part of the same square or
pentagon. This is quite restrictive, so often the list of edge pairs which are
eligible for edge insertion will be empty if G contains 2 reducible triangles.

• G contains 1 reducible triangle.

Each pair of non-adjacent edges which contains an edge from the reducible
triangle will destroy the triangle. Similar to the case where G contains 2
reducible triangles, the inserted edge must be part of a square, otherwise
there is a reducible edge with a larger value of x0. Similarly, the inserted
edge must also be part of at least 2 squares, otherwise there is a reducible
edge which has the same value of (x0, x1), but which is part of more squares
(i.e. which has a larger value of x2) (cf. Figure 2.13).

So an edge pair {e, e′} is eligible for expansion if e is part of the reducible
triangle and there are two edges between endpoints of e and e′.

• The graph contains no reducible triangles.

In this case all pairs of non-adjacent edges are eligible for expansion.

We also have to make sure that no new reducible triangles are generated by the
expansion. The edge insertion operation only generates new reducible triangles
if the edges of the edge pair are adjacent or if one edge of the edge pair is part
of a K−4 and contains an extremal vertex, while the other non-adjacent edge of
the edge pair is not part of the same K−4 . So these pairs of edges are also not
eligible for edge insertion.

40 Generation of cubic graphs

2.5.3 Optimisations

Further optimisations speeded up the algorithm significantly. The first two opti-
misations avoid computing (x0, . . . , x6) for a lot of edges and the third optimisa-
tion reduces the time needed by nauty.

Look-ahead for maximality of (x0, . . . , x6)

In order to be canonical, the inserted edge not only has to destroy all reducible
triangles of the parent graph without generating any new ones. It also must have
the largest value of (x0, . . . , x6) among all reducible edges of the expanded graph.

Although x0, . . . , x4 are a lot cheaper to compute than x5, x6, the computation
of x0, . . . , x4 still consumes a large amount of CPU-time compared to the rest of
the algorithm, especially if x0, . . . , x4 have to be computed for a lot of reducible
edges. Therefore it would be useful to have a look-ahead for the maximality of
(x0, . . . , x6).

In Section 2.5.2 we already introduced some simple look-aheads using x0.

We also use a look-ahead for x1: suppose we want to apply the edge insertion
operation to a pair of edges e1, e2 of a graph G. The minimal value of x1 (i.e.
the negative of the number of vertices at distance at most 2 from a given edge)
is −14. The (vertex) neighbourhood N(e) of an edge e = {v, w} is defined as the
union of the neighbourhoods of v and w. Then the value of x1 of the inserted
edge in the expanded graph is −(14− |N(e1) ∩N(e2)|).

Note that the value of (x0, x1) for an edge {v, w} is not modified by applying
the edge insertion operation to e1, e2 if (N(e1) ∪N(e2)) ∩ {v, w} = ∅.

For every graph we store the reducible edges which have maximal value of
(x0, x1). We call these maximal edges. Suppose that these edges have value
(a, b) for (x0, x1) and that the inserted edge in the expanded graph will have
value (a′, b′) for (x0, x1). If (a, b) is lexicographically larger than (a′, b′) and
there is a maximal edge whose value of (x0, x1) will not be modified by applying
an edge insertion to e1, e2, we do not have to perform this edge insertion since
the expansion won’t be canonical.

This does not only save the cost of computing (x0, x1) for a lot of reducible
edges, but it also saves the time needed for performing those non-canonical ex-
pansions.

2.5. Generation of non-prime graphs without reducible triangles 41

Remembering previous rejector

When an edge is inserted, we compute the value of x0 for all reducible edges. If
the inserted edge has maximal value of x0, we compute the value of x1 for all
reducible edges which have maximal value of x0 etc. Whenever the constructed
graph is rejected because a reducible edge with a larger value of (x0, . . . , x4) was
found, we save the edge which caused the rejection. We call this the previous
rejector.

Note that the last edge which was inserted by a canonical edge insertion
expansion in a graph has the largest value of (x0, . . . , x6) in that graph. We also
call this the max edge of that graph.

Suppose that we applied an edge insertion operation to a graph and we want
to test if the expansion is canonical. Instead of computing the values of (x0, x1)
of the reducible edges in an arbitrary order and comparing them with the value
of (x0, x1) of the inserted edge, we first compute the value of (x0, x1) of the max
edge of the parent graph (at least if that edge is still present in the expanded
graph). That edge will mostly still have a large value of (x0, x1) in the expanded
graph.

If this edge has a larger value of (x0, x1) than the inserted edge, we can reject
the graph. Otherwise we compute the value of (x0, x1) of the previous rejector
(at least if it is still present and reducible in the current expanded graph). Since
the edge insertion operation does not modify the values of (x0, x1) of many edges,
the previous rejector will often have a larger value of (x0, x1) than the inserted
edge. Only if this is not the case we compute (x0, x1) for the remaining reducible
edges.

Often computing the values of (x0, x1) is sufficient to be able to reject the
constructed graph. By first testing the max edge of the parent graph and the
previous rejector, it is often possible to reject the constructed graph without
having to compute x0, . . . , x6 for many reducible edges. Table 2.3 shows statistics
about the percentage of cases where (x0, x1) is sufficient to decide whether or not
the constructed graph is canonical and the percentage of cases where first testing
the max edge and the previous rejector is sufficient to reject the constructed
graph.

Using vertex colours

Similar to the bundled triangle operation (see Section 2.4.3), vertex colours can
also be used to speed up the computation of the automorphism group of the

42 Generation of cubic graphs

number percentage percentage max edge

of (x0, x1) or prev. rejector

vertices sufficient sufficient

18 61.4 59.4

20 59.2 56.0

22 56.3 50.9

24 53.4 46.1

26 50.8 42.1

Table 2.3: The percentage of cases where (x0, x1) is sufficient to decide whether or

not the constructed graph is canonical and the percentage of cases where

first testing the max edge and the previous rejector is sufficient to reject

the constructed graph.

graphs constructed by edge insertion. More specifically it is possible to give a
partition or colouring of the set of vertices when calling nauty. Vertices which
are in a different partition (i.e. have a different colour), are assumed to be in a
different orbit of the automorphism group of the graph.

Recall that if the automorphism group of the parent graph G is trivial, the
automorphism group of the graph T (G,S) obtained by bundled triangle insertion
to an extensible set of vertices S is trivial as well. This is not the case for the
edge insertion operation. The automorphism group of a graph obtained by edge
insertion is not necessarily a subgroup of the automorphism group of its parent
graph. For example the expanded graph in Figure 2.14 has symmetries which
were not induced by the parent graph.

Figure 2.14: Edge insertion which yields symmetries which were not induced by the

parent graph.

If we call nauty to compute the automorphism group of a graph obtained by
edge insertion, it means that the inserted edge is among the reducible edges with

2.6. Generation of graphs with girth at least 4 or 5 43

the largest value of (x0, . . . , x4). So the values for xi (0 ≤ i ≤ 4) were already
computed for a lot of reducible edges. The values x0, . . . , x4 are invariant under
isomorphisms and can be interpreted as edge colours. Since nauty only accepts
vertex colours, we translate them to vertex colours. We are using the edge colours
x1 and x3 for this since they have the highest discriminating power.

Note that xi was not necessarily computed for every edge. If an edge is
irreducible or if the edge did not have maximal value of (x0, ..., xi−1), the value
of xi was not computed. For these edges we set the values of xi to zero. For
all edges which are in the same orbit of edges of the automorphism group of the
graph, the value of xi was either computed or not computed.

We define the colour of a vertex to be the sum of the value of x3 of its
three incident edges and partition them according to their vertex colour. For the
partition where all vertices have vertex colour zero, we make subpartitions by
using a different vertex colour: the sum of the value of x1 of the edges which are
incident to the vertex. This vertex colouring significantly speeds up nauty. We
also tried to use the shift operation instead of sum for the vertex colours, but this
did not yield an additional speedup. Furthermore we also tested other colours,
but they yielded a less significant speedup than the vertex colouring which was
described here.

2.6 Generation of graphs with girth at least 4

or 5

The girth of a graph is the length of its smallest cycle. So graphs with girth at
least 4 do not contain any triangles and graphs with girth at least 5 contain no
triangles or squares. The algorithm was developed and optimised for generation
without a girth restriction, but it can be adapted to generate connected cubic
graphs with a non-trivial lower bound on the girth quite efficiently. This is done
by some simple look-aheads, which are described in the next two sections. Various
interesting subclasses of cubic graphs such as snarks (see Chapter 3) have a lower
bound on the girth.

2.6.1 Graphs with girth at least 4

Suppose we want to generate all cubic graphs with girth at least 4 and n vertices.
Graphs with girth at least 4 do not contain any triangles, so we do not have to

44 Generation of cubic graphs

apply the bundled triangle operation if the number of vertices of the graph after
applying the operation will be n.

If G has at least 3 reducible triangles, then at least one of them remains
when an edge insertion is done. Since we favour triangle reduction over other
edge reductions, the expanded graph will not be accepted. Therefore all the
descendants of G will be made by triangle insertion and will have triangles. So in
a search for cubic graphs with girth at least 4, graphs with more than 2 reducible
triangles do not have to be generated.

Recall from Section 2.5.2 that, because of the canonicity requirements, if a
graph contains 2 reducible triangles, they can only be destroyed by the edge
insertion operation if the edges of the edge pair are part of the same square or
pentagon. This means that the only sets of 2 vertices to which the bundled
triangle operation should be applied, are those which consist of 2 vertices of a
triangle (possibly a triangle contained in a K−4).

The edge insertion operation can destroy at most 2 reducible triangles. If the
graph contains no reducible triangles, it can destroy the triangles of at most 2
K−4 ’s such that the expanded graph has girth at least 4. If the graph contains 1
reducible triangle, it can destroy at most 1 reducible triangle and the triangles
of 1 K−4 .

This allows us to determine a simple lower bound for the minimal number of
vertices which are required to destroy all triangles of a graph G. Let num∆(G)
denote the number of reducible triangles in G and numK−4

(G) the number of
K−4 ’s. Then a lower bound ming4(G) for the minimal number of vertices required
to destroy all triangles of G is:

ming4(G) =

⌈
num∆(G) + numK−4

(G)

2

⌉
· 2

The “· 2” is because the edge insertion operation adds 2 new vertices. So in
search of cubic graphs with n vertices and girth at least 4, we do not have to
expand graphs G for which |V (G)|+ming4(G) is larger than n.

2.6.2 Graphs with girth at least 5

Graphs with girth at least 5 do not contain any triangles or squares. When an
edge insertion operation destroys a triangle, it becomes a square. So we do not
have to apply the bundled triangle operation if the number of vertices of the
graph after bundled triangle insertion will be at least n− 2.

2.6. Generation of graphs with girth at least 4 or 5 45

A lower bound ming5(G) for the minimal number of vertices required to de-
stroy all triangles and squares of G is given by:

ming5(G) =

⌈
num∆(G) + numK−4

(G)

2

⌉
· 4

(Here we use the same notation as in Section 2.6.1.) An edge insertion can
destroy more than two squares (see Figure 2.15), but if a graph contains triangles,
at least ming5 (G)

2 edge insertions have to be performed in order to obtain a graph
with girth at least 5. So in search of cubic graphs with n vertices and girth at
least 5, we do not have to expand graphs G for which |V (G)|+ming5(G) is larger
than n.

Figure 2.15: Edge insertion which destroys more than two squares.

2.6.3 Conclusion

By simple look-aheads which were described in the previous sections, the genera-
tion tree can be substantially pruned so that girth bounds of 4 or 5 can be imposed
quite efficiently. Table 2.4 and 2.5 show how many non-isomorphic graphs are
generated on each level when using a girth restriction, compared to the number
of non-isomorphic graphs which would be generated when no look-aheads would
be used (i.e. generating all cubic graphs and applying a filter for the girth). As
can be seen from these tables, the look-aheads are most restrictive on the higher
levels (i.e. level n and n− 2). On the lower levels the percentage of graphs gen-
erated with girth less than 4 or 5 is much higher, but this is not a problem for
the efficiency since there are a lot more graphs on level m than on level m − 2
(approximately 20 times as many for m = 30 and the ratio is increasing for larger
values of m). So avoiding the generation of cubic graphs with n or n− 2 vertices
which cannot lead to graphs with n vertices that have girth at least 4 or 5 saves
a large amount of work.

46 Generation of cubic graphs

|V (G)| # cubic graphs
cubic graphs

generated
cubic graphs

with girth at least 4
4 1 1 0
6 2 2 1
8 5 5 2
10 19 14 6
12 85 62 22
14 509 342 110
16 4 060 2 612 792
18 41 301 25 878 7 805
20 510 489 315 940 97 546
22 7 319 447 4 505 972 1 435 720
24 117 940 535 72 430 903 23 780 814
26 2 094 480 864 1 183 209 311 432 757 568
28 40 497 138 011 8 542 471 494 8 542 471 494

Table 2.4: Number of non-isomorphic graphs generated on each level by the algorithm

when generating all graphs with 28 vertices and girth at least 4.

|V (G)| # cubic graphs
cubic graphs

generated
cubic graphs

with girth at least 5
4 1 1 0
6 2 2 0
8 5 5 0
10 19 14 1
12 85 62 2
14 509 342 9
16 4 060 2 612 49
18 41 301 25 877 455
20 510 489 315 902 5 783
22 7 319 447 4 452 362 90 938
24 117 940 535 71 745 564 1 620 479
26 2 094 480 864 241 172 459 31 478 584
28 40 497 138 011 656 783 890 656 783 890

Table 2.5: Number of non-isomorphic graphs generated on each level by the algorithm

when generating all graphs with 28 vertices and girth at least 5.

2.7. Generation of graphs with connectivity requirements 47

Our generator is faster than existing generators for all connected cubic graphs.
Also for girth bounds of 4 or 5 the program is faster than minibaum [11] and
genreg [95]. More details are given in Section 2.8. It is also faster than the
implementations by Sanjmyatav reported in [110], which use operations that
remain within the classes defined by the girth bounds (though it remains to be
determined whether those algorithms can be optimised).

This pruning technique is likely to become less efficient for larger lower bounds
on the girth. For girth close to the maximum possible for a given number of
vertices, the fastest method is that of McKay, Myrvold and Nadon [90].

2.7 Generation of graphs with connectivity re-

quirements

The generation algorithm from the previous sections can also be modified to
generate cubic graphs with certain connectivity requirements. This is done by a
filter and a simple look-ahead.

Connectivity requirements are for example useful when graphs are used to
model networks: it is desirable that all nodes (vertices) of the network can still
communicate with each other when one link (edge) or node fails. Next to that,
various interesting subclasses of cubic graphs such as snarks (see Chapter 3) have
certain connectivity requirements.

We first describe an algorithm to determine the connectivity of a graph and
then describe a simple look-ahead to determine if graphs with the desired con-
nectivity can still be generated from a given graph.

Note that cubic graphs are never 4-edge-connected since every cubic graph
has a 3-edge-cut: the three incident edges of a vertex. We call this a trivial 3-
edge-cut. To have a stronger notion of connectivity, we use the concept of cyclic
edge-connectivity (see Section 1.1). Cubic graphs with girth 3 and more than
4 vertices are never cyclically 4-edge-connected since the 3 outgoing edges of a
triangle form a non-trivial 3-edge-cut.

In general, the vertex-connectivity is less than or equal to the edge-connectivity
(for a proof see [44]). For cubic graphs it is known that they are equal (see e.g. [6]).

We use a straightforward algorithm to test if a cubic graph G is k(-edge)-
connected (it uses a standard depth-first search algorithm to find cutvertices).
This algorithm is relatively efficient for small k, but as k increases it also becomes
less efficient. For k > 3 (e.g. when it is also used for non-cubic graphs which are
4-connected), it becomes very expensive.

48 Generation of cubic graphs

We used the following algorithm to filter cyclically 4-edge-connected cubic
graphs (where d(v, w) stands for the distance between two vertices v, w ∈ V (G)
in G):

Algorithm 2.2 Procedure to test if a cubic graph is cyclically 4-edge-connected.
Input: A 3-edge-connected cubic graph G = (V,E) with girth at least 4.

for all v, w ∈ V : d(v, w) > 2 do
if G[V \ {v, w}] is not 2-connected then

return G is not cyclically 4-edge-connected.
end if

end for
return G is cyclically 4-edge-connected.

Theorem 2.9. A 3-edge-connected cubic graph G with girth at least 4 is cycli-
cally 4-edge-connected if and only if there are no two vertices of G which are at
distance at least 3 such that the graph obtained by removing these vertices is not
2-connected.

Proof. The proof is split into 2 parts:

1. The algorithm only marks cyclically 4-edge-connected graphs as cyclically
4-edge-connected.

2. Every cyclically 4-edge-connected graph is marked as cyclically 4-edge-
connected by the algorithm.

Proof of part 1:
Given a 3-edge-connected cubic graph G with girth at least 4 which is not cycli-
cally 4-edge-connected. Thus G has a 3-edge-cut which disconnects G into two
components which both contain a cycle. Call these components G1 and G2.
Suppose that this 3-edge-cut consists of the edges {a, d}, {b, e} and {c, f} where
a, b, c ∈ V (G1) and d, e, f ∈ V (G2). This is shown in Figure 2.16.

The vertices a, b, c, d, e, f are distinct, otherwise G is not 3-edge-connected.
Note that a, b, c each have exactly one neighbour which is in V (G2) and d, e, f

each have exactly one neighbour which is in V (G1), else {a, d}, {b, e}, {c, f} was
not a 3-edge-cut.

The graphs G[{a, b, c}] and G[{d, e, f}] contain at most one edge, otherwise G
would contain a 2-edge-cut, but this is not possible since G is 3-edge-connected.

2.7. Generation of graphs with connectivity requirements 49

Figure 2.16: A non-trivial 3-edge-cut

So there is a vertex x ∈ {a, b, c} such that x has no neighbour in {a, b, c} and a
vertex y ∈ {d, e, f} such that y has no neighbour in {d, e, f}.

If x and y are no neighbours in G, x and y will removed by Algorithm 2.2
and a cutvertex will be found.

If x and y are neighbours, x is at distance more than 2 from a vertex z ∈
{d, e, f} \ {y}. So x and z will be removed by Algorithm 2.2 and a cutvertex will
be found.

Thus G is marked as not being cyclically 4-edge-connected in each of the cases.

Proof of part 2:
Given a cyclically 4-edge-connected cubic graph G. Suppose that the algorithm
finds a cutvertex after the removal of 2 vertices. So G has a vertex-cut S with
|S| = 3. Consider a component Ḡ from G[V \ S]. Now we select for every
v ∈ S an edge as follows: if there is only one edge from v to Ḡ, select that edge.
Otherwise there are two edges from v to Ḡ and then the third incident edge of v
is selected. This set of three edges T is a 3-edge-cut, since all paths from V (Ḡ)
to V (G) \ (V (Ḡ) ∪ S) contain an edge from T .

However, since G is cyclically 4-edge-connected, one of the components ob-
tained by removing the edges from T in G won’t contain a cycle. We call
this component G′. So G′ is a tree with n vertices. Since G is cubic, G′ has
3n − (n − 1) = n + 2 outgoing edges in G (i.e. edges {a, b} with a ∈ V (G′) and
b ∈ V (G) \ V (G′)). Since the outgoing edges form a 3-edge-cut, n must be 1.
So G′ is an isolated vertex. This means that the vertices from the 3-cut S are
at distance at most 2, but this is not possible since Algorithm 2.2 only removes
vertices which are at distance at least 3. So G is accepted by the algorithm.

50 Generation of cubic graphs

Algorithm 2.2 is applied as a filter to the graphs generated by the generation
algorithm for all cubic graphs. Next to that, we also use a very simple look-ahead
for the connectivity:

Note that the bundled triangle insertion operation does not change the edge-
connectivity of a graph and that graphs constructed by this operation are not
cyclically 4-edge-connected. The edge insertion operation can turn one or more
k-edge-cuts into (k + 1)-edge-cuts. In our implementation of the generation al-
gorithm for all cubic graphs we maintain a list with the bridges of the graph G

which is currently being constructed. A simple lower bound minck
(G) for the

minimal number of vertices required to obtain a (cyclically) k-edge-connected
graph from G is:

minck
(G) =

{
2 · (k − 1) if G contains a bridge

0 otherwise

So in search of (cyclically) k-edge-connected cubic graphs with n vertices, we
do not have to expand graphs G for which |V (G)|+minck

(G) is larger than n.
In general, this simple look-ahead can only rarely be applied since most cubic

graphs have no bridges, as can be seen from Table 2.6. Nevertheless, this look-
ahead will be more effective when generating snarks [54] (that are cyclically
4-edge-connected cubic graphs that do not allow edge colourings with 3 colours),
since most graphs that do not allow edge colourings with 3 colours have bridges.
This is explained in more detail in Chapter 3.

Table 2.6 lists the counts for various classes of cubic graphs according to their
connectivity. All results were independently verified by minibaum (which uses a
different algorithm to determine the connectivities of a graph).

2.8 Testing and results

Our generator was used to generate all cubic graphs up to 32 vertices, with girth
at least 3, 4 or 5. All graph counts were independently confirmed by running
minibaum. They also agreed with previously published numbers (such as in [106]).

The graph counts, running times and a comparison with the fastest publicly
available generator when present research began (i.e. minibaum) are given in
Table 2.7. Our generator is called snarkhunter . The running times are for C code
compiled by gcc and run on an Intel Xeon L5520 CPU at 2.27 GHz. They include
writing the graphs to a null device. As minibaum depends more strongly on
memory performance than snarkhunter, the speedup in the last column depends

2.9. Closing remarks 51

strongly on the actual processor architecture. For other Intel Xeon processors it
was considerably larger than given in Table 2.7.

So snarkhunter is more than 4 times faster than minibaum for generating
all cubic graphs, more than 2 times faster than minibaum for generating cubic
graphs with girth at least 4 and more than 5 times faster for generating cubic
graphs with girth at least 5.

As it would take more than 3 weeks to generate all cubic graphs with 30
vertices on a single CPU, we split the generation into independent parts and
execute them on multiple CPU’s. This can be done by the method described
in [89]: each CPU generates the whole generation tree up to some level ` and
then just its own portion of the tree beyond that level. Since unrelated branches
of the tree are entirely independent, this is easily implemented. For the generation
of the cubic graphs with 30 and 32 vertices we used ` = 24 and found that the
overhead in parallelisation was a negligible portion of the total.

2.9 Closing remarks

As a measure of how much extra improvement might be possible, we note that
the mere act of copying the graphs to an output buffer (with no alteration to the
internal structure except for inserting a few null characters), and writing them
to the output, contributes 5–9% of the running time.

One of the main motivations for the new generator was the generation of
snarks [54] – that is cyclically 4-edge-connected cubic graphs that do not allow
edge colourings with 3 colours. This subclass of cubic graphs is especially inter-
esting as a source for possible counterexamples to graph theoretic conjectures.
So far, the fastest way to get complete lists was to use minibaum and filter the
output (see [35]). In our generator, the edge insertion operation allows a limited
look-ahead detecting a lot of cases where the resulting graph will be 3-edge-
colourable. This results in a speedup compared to previous methods that even
exceeds the speedup for the classes of graphs discussed here. The algorithm for
the efficient generation of snarks is discussed in Chapter 3.

The pruning techniques from Section 2.6 to generate cubic graphs with girth
at least 4 or 5 are likely to become rather less efficient for larger lower bounds on
the girth. Therefore future work could include the development of a specialised
algorithm for the generation of cubic graphs with large lower bounds on the girth.

The latest version of snarkhunter (i.e. the program implementing the algo-
rithm described here) can be downloaded from [27].

52 Generation of cubic graphs

All connected cubic graphs

|V (G)| connected 2-connected 3-connected cyc. 4-connected

4 1 1 1 1

6 2 2 2 1

8 5 5 4 2

10 19 18 14 5

12 85 81 57 18

14 509 480 341 84

16 4 060 3 874 2 828 607

18 41 301 39 866 30 468 6 100

20 510 489 497 818 396 150 78 824

22 7 319 447 7 187 627 5 909 292 1 195 280

24 117 940 535 116 349 635 98 101 019 20 297 600

26 2 094 480 864 2 072 540 352 1 782 392 646 376 940 415

Connected cubic graphs with girth at least 4

|V (G)| connected 2-connected 3-connected cyc. 4-connected

4 0 0 0 0

6 1 1 1 1

8 2 2 2 2

10 6 6 6 5

12 22 22 21 18

14 110 109 104 84

16 792 788 750 607

18 7 805 7 772 7 486 6 100

20 97 546 97 292 94 666 78 824

22 1 435 720 1 433 333 1 404 963 1 195 280

24 23 780 814 23 754 936 23 396 452 20 297 600

26 432 757 568 432 431 403 427 301 078 376 940 415

Connected cubic graphs with girth at least 5

|V (G)| connected 2-connected 3-connected cyc. 4-connected

10 1 1 1 1

12 2 2 2 2

14 9 9 9 9

16 49 49 49 49

18 455 455 455 454

20 5 783 5 783 5 782 5 775

22 90 938 90 937 90 927 90 807

24 1 620 479 1 620 471 1 620 319 1 618 266

26 31 478 584 31 478 466 31 476 211 31 438 578

28 656 783 890 656 782 262 656 745 447 656 052 352

Table 2.6: Counts for various classes of cubic graphs according to their connectivity.

Note that every cyclically 4-edge-connected cubic graph with more than 4

vertices has girth at least 4 since the 3 outgoing edges of a triangle form a

non-trivial 3-edge-cut.

2.9. Closing remarks 53

All connected cubic graphs

|V (G)| # graphs snarkhunter (s) minibaum (s) speedup

20 510 489 1.2 5.7 4.75

22 7 319 447 16 74 4.59

24 117 940 535 261 1 166 4.47

26 2 094 480 864 4 826 20 748 4.30

28 40 497 138 011 100 179 440 870 4.40

30 845 480 228 069 2 240 049

32 18 941 522 184 590 53 177 371

Connected cubic graphs with girth at least 4

|V (G)| # graphs snarkhunter (s) minibaum (s) speedup

20 97 546 0.8 2.5 3.13

22 1 435 720 11 34 2.99

24 23 780 814 191 542 2.85

26 432 757 568 3 626 10 107 2.79

28 8 542 471 494 76 218 216 837 2.84

30 181 492 137 812 1 756 557

32 4 127 077 143 862 42 288 975

Connected cubic graphs with girth at least 5

|V (G)| # graphs snarkhunter (s) minibaum (s) speedup

20 5 783 0.1 0.6 6.00

22 90 938 1.7 9.3 5.47

24 1 620 479 27 158 5.79

26 31 478 584 519 3 047 5.87

28 656 783 890 11 073 63 821 5.76

30 14 621 871 204 275 251

32 345 975 648 562 6 473 440

Table 2.7: Counts and generation times for classes of cubic graphs. The running times

for minibaum for |V (G)| > 28 were omitted as these computations were

performed on multiple heterogeneous clusters.

54 Generation of cubic graphs

Chapter 3

Generation of snarks

In this chapter we show how the generation algorithm for cubic graphs from
Chapter 2 can be extended to generate all non-isomorphic snarks and weak snarks
of a given order quite efficiently. A weak snark is a simple, cyclically 4-edge-
connected cubic graph with chromatic index 4. If the girth of a weak snark
is at least 5, it is a snark. Snarks are of interest since for several interesting
open conjectures it can be proven that if the conjecture is false, the smallest
counterexample is a snark.

Our implementation of this new algorithm is more than 14 times faster than
previous programs for generating snarks and more than 29 times faster for gen-
erating weak snarks. Using this generator we were able to generate all non-
isomorphic snarks up to 36 vertices, which was impossible with previous methods.
Previously complete lists of snarks up to 32 vertices were known.

We tested several open conjectures on these new lists of snarks. We verified
that various conjectures (such as the (Strong) Cycle Double Cover conjecture)
hold for all snarks up to 36 vertices. Next to these positive results we were
also able to refute 8 published conjectures (amongst others of Bill Jackson and
Cun-Quan Zhang) about cycle coverings and the general cycle structure of cubic
graphs.

Remark: our algorithm for the generation of snarks is also described in [24].
Various parts of this chapter were adopted from that article. The investigation
of invariants was joint work also with Jonas Hägglund and Klas Markström.

55

56 Generation of snarks

3.1 Introduction

A number of problems in graph theory can be solved in the general case if they
can be solved for cubic graphs. Examples of such problems are the four colour
problem (now a theorem), many of the problems concerning cycle double covers
and surface embeddings of graphs, coverings by matchings and the general struc-
ture of the cycle space of a graph. For most of these problems one can additionally
constrain this class of graphs to the subclass of cyclically 4-edge-connected cubic
graphs with chromatic index 4. The chromatic index χ′(G) of a graph G is the
minimum number of colours required for an edge colouring of that graph such
that no two adjacent edges have the same colour. It follows from Vizing’s famous
theorem (which states that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1) that a cubic graph has
chromatic index 3 or 4.

Isaacs [71] called cubic graphs with chromatic index 3 colourable graphs and
those with chromatic index 4 uncolourable graphs. All cubic graphs with bridges
can easily be seen to be uncolourable and are therefore considered to be trivial.
Uncolourable cubic graphs with cycle separating 2- or 3-cuts or 4-cycles can be
constructed from smaller uncolourable graphs by certain standard operations,
which also behave well with respect to most of the open problems at hand. So
this generalises the notion of trivial uncolourable cubic graphs. Often minimal
counterexamples to many problems reside, if they exist at all, among the re-
maining uncolourable cubic graphs, which are called snarks based on an article
by Gardner [54] from 1976 who used the term with weaker connectivity require-
ments. He introduced snarks as possible counterexamples for the four colour
theorem. Gardner called these graphs snarks after Lewis Caroll’s poem “The
Hunting of the Snark”. In that poem a snark is a mythical creature which is
very hard to find. Later on, stronger criteria for non-triviality have also been
proposed [96, 35], but in this thesis we focus on snarks.

For various interesting open conjectures it has been proven that if the conjec-
ture is false, there is a snark that is a counterexample and very often it has also
been proven that the smallest counterexample is a snark. This is amongst others
the case with the Cycle Double Cover conjecture [116, 114] and Tutte’s 5-flow
conjecture [119].

So far the structure of the class of all snarks is not entirely understood, there
is e.g. at present no known uniform random model for snarks, hence leaving us
without a theoretical method for studying the typical behaviour of snarks. The
only available alternatives have been to study the smallest snarks and certain
families of snarks given by specialised constructions. The Petersen graph is the

3.1. Introduction 57

smallest snark. In 1974 Isaacs [71] gave constructions for the first infinite families
of snarks (amonst others for the flower snarks, see Figure 3.1). In 1996 Kochol [79]
published a method for the construction of snarks with arbitrarily high girth.

Lists of snarks have already been given in [35, 41, 66, 39], but so far no spe-
cialised computer program for generating all snarks existed. The fastest program
was the one used in [35] which was based on the program described in [11] (i.e.
minibaum) and – just like the approach in [39] – is simply a generator for all cubic
graphs with a lower bound on the girth, combined with a filter for colourability
and cyclic connectivity at the end.

(a) (b) (c)

Figure 3.1: Isaacs flower snarks J5, J7 and J9 [71] (i.e. Figures 3.1a, 3.1b and 3.1c,

respectively). The flower snarks J2n+1 for n > 4 are defined similarly.

However, since the proportion of snarks among the cubic graphs rapidly de-
creases as the number of vertices increases (and is asymptotically zero [107]),
this approach is not feasible for sizes even a few steps beyond those previously
published. In this chapter we give a new algorithm which augments the efficient
algorithm for generating cubic graphs from Chapter 2 with look-aheads which
make it possible to avoid constructing many of the colourable cubic graphs, thus
reducing the number of graphs passed to the final filter. This algorithm is de-
scribed in Section 3.3 and 3.4.

Our implementation of this algorithm is more than 14 times faster than previ-
ous programs for generating snarks and more than 29 times faster for generating
weak snarks. This allowed us to generate all non-isomorphic snarks up to 36
vertices and all weak snarks up to 34 vertices. We tested several conjectures on
these new lists of snarks and were able to refute 8 published conjectures. This is
described in Section 3.5.

58 Generation of snarks

3.2 Definitions

This section contains some definitions which are specific to this chapter. For
definitions of more general concepts, see Section 1.1.

We call cubic graphs 3-edge-colourable or simply colourable if they have chro-
matic index 3. Those with chromatic index 4 are called uncolourable.

A weak snark is an uncolourable cyclically 4-edge-connected cubic graph (so
it has girth at least 4). A snark is an uncolourable cyclically 4-edge-connected
cubic graph with girth at least 5.

3.3 The generation algorithm

As mentioned in the introduction, the older programs for generating snarks were
built by adding a filter for graphs with the desired properties to a program which
generates all cubic graphs of a given order. The efficiency of an approach that
generates a larger class of graphs and filters the output for graphs in a smaller
class depends on one hand on the cost for the filter and on the other on the ratio
between the number of graphs in the large and small class. On both criteria the
generation of all cubic graphs with girth 4 and filtering for weak snarks scores
badly: testing for 3-edge-colourability is NP-complete [67] and already for 28
vertices only 0.00015% of the cubic graphs with girth at least 4 are weak snarks
(and only 0.00044% of the cubic graphs with girth at least 5 are snarks). In fact
the ratio is even decreasing with the number of vertices. Nevertheless no better
way to generate weak snarks was known until now. In this chapter we present
a method that – although not generating only weak snarks – at least allows a
limited look-ahead and increases the ratio of weak snarks among the graphs with
the largest number of vertices by a factor of 85 to about 0.0135% for 28 vertices
(and by a factor of 20 to about 0.0076% for snarks). But also for this approach
the ratio of (weak) snarks is decreasing with the number of vertices.

The new algorithm is based on the algorithm described in Chapter 2. Prime
graphs are never 3-connected, so they cannot be snarks. Thus the last operation
for generating a snark will always be an edge insertion operation (see Section 2.2).
Applying this operation to two vertices having a common endpoint can be seen as
that of replacing the common endpoint by a triangle. Triangles are constructed
by bundling these operations (see Section 2.4 for details), but since weak snarks
have girth at least 4, the last operation will always be a single edge insertion
operation applied to two non-adjacent edges.

3.3. The generation algorithm 59

As the number of cubic graphs grows fast with the number of vertices, just
avoiding the insertion of the last edge gives already a considerable speedup.

We use the following well-known result:

Lemma 3.1. A cubic graph is 3-edge-colourable if and only if it has a 2-factor
where all cycles have even length, also called an even 2-factor.

This gives us criteria to decide that graphs obtained by certain edge insertion
operations will be 3-edge-colourable:

Lemma 3.2. Given an even 2-factor F in a cubic graph G. All graphs G′

obtained by applying the edge insertion operation to two edges e, e′ which are part
of the same cycle in F will be 3-edge-colourable.

Replacing e respectively e′ in F with the two edges that result from the
subdivision gives an even 2-factor in G′.

Lemma 3.2 is applied by using that for any two colours a 6= b of a 3-edge-
colouring, the sets of edges coloured a or b form a 2-factor where all cycles have
even length:

Theorem 3.3. Given a cubic graph G and a 3-edge-colouring of G. If two edges
e, e′ belong to the same cycle of a 2-factor induced by two different colours, the
graph G′ obtained by applying the edge insertion operation to e, e′ will be 3-edge-
colourable.

This implies the well-known fact that if under the above circumstances e, e′

share a vertex, G′ will always be 3-edge-colourable. So if G is 3-edge-colourable,
all graphs obtained from G by the bundled triangle insertion operation will also
be colourable.

Assume that snarks on n vertices are to be constructed and a graph G on
n− 2 vertices has to be expanded. Then the algorithm first tries to construct a
3-edge-colouring of G. If G does not have a 3-edge-colouring, Theorem 3.3 cannot
be applied. However, the ratio of graphs without a 3-edge-colouring (and without
bridges) is very small. For example only 0.03% of the 2-connected graphs with
28 vertices and girth at least 4 have chromatic index 4 (and this percentage is
decreasing as the number of vertices increases). If a 3-edge-colouring is found,
then the complement of each colour class is an even 2-factor. So each 3-edge-
colouring of G gives three even 2-factors. When computing the edge pairs for
expansions, edge pairs with both edges in the same cycle of one of these 2-factors
are not considered.

60 Generation of snarks

Computing different 3-edge-colourings – that is 3-edge-colourings producing
different 2-factors – allows to detect more edge pairs that do not lead to snarks.
We compute different 3-edge-colourings in two ways: interchanging the colours
in a non-hamiltonian cycle in one of the 2-factors gives a colouring where two
of the three induced 2-factors are different. So this is an efficient way to get a
different 3-edge-colouring. We use one such modified colouring. Another way is
to compute a different colouring from scratch by forcing some initial colours in
order to guarantee a different colouring.

For 28 vertices the first colouring allows on average to discard 84% of the
edge pairs. The colour changes in the non-hamiltonian cycles discards another
11%. A second colouring discards 3.4%. These percentages are approximately
the same for generating snarks instead of only generating weak snarks. The cost
for computing a third colouring turned out to be higher than the gain. So in
total about 98.4% of the edge pairs are discarded.

Theorem 3.4 gives another criterion to avoid the generation of 3-edge-colourable
graphs. This theorem is folklore in the community studying non-triviality of
snarks, but we will give a short proof here.

Theorem 3.4. Given a 3-edge-colourable graph G, all graphs G′ obtained from
G′ by the edge insertion operation so that the edge with the two new end-vertices
is part of a 4-cycle in G′ are 3-edge-colourable.

Proof. Given a 3-edge-colourable graphG and e = {a, b}, e′′ = {c, d} with a, b, c, d
pairwise different and e′ = {a, c} with e, e′, e′′ ∈ E(G). Furthermore let c :
E(G) → {1, 2, 3} be a colouring with (w.l.o.g.) c(e) = 1 and c(e′) = 2. If
c(e′′) = 1 then e, e′′ belong to the same 1, 2-cycle in the colouring and the result
follows from Lemma 3.2. So assume c(e′′) = 3 and that e, e′′ do not belong to the
same 1, 3-cycle in the colouring (otherwise the result follows immediately). Then
we can exchange the colours in the 1, 3-cycle of e′′ and obtain a colouring with
e, e′′ of the same colour. So we are in a situation for which we already proved
the theorem.

So if we want to generate all snarks with n vertices, we do not have to apply
the edge insertion operation to 3-edge-colourable graphs with n − 2 vertices if
the inserted edge will be part of a square. The fact that such an edge pair does
not have to be expanded may also be discovered by the normal routine or by
changing colours in a non-hamiltonian cycle in the colouring, but deleting such
edge pairs in advance is much more efficient.

3.4. Optimisations 61

At first sight Theorem 3.4 looks only interesting for operations that do not
produce triangles, because in the last step we never produce triangles. But in fact
for triangles it allows an earlier look-ahead. We refer the reader to Chapter 2 for
details about the isomorphism rejection, but one fact is important in this context:
for graphs with girth at most 4, the last inserted edge is always an edge in the
smallest cycle (see Section 2.5.1). So assume that we have a graph G with n− 2
vertices with at least one triangle and that we want to construct weak snarks
with n vertices. From this graph we can only get graphs with girth at most 4, so
the last edge inserted will be in a 4-gon. It follows from Theorem 3.4 that if G
was 3-edge-colourable, all graphs with n vertices obtained from G will also be 3-
edge-colourable. Thus we do not have to construct 3-edge-colourable graphs with
triangles of size n−2. So for triangles Theorem 3.4 gives a bounding criterion that
can already be applied on level n − 4. In fact the generation algorithm bundles
triangle operations (see Section 2.4), but this is only a difference in detail.

The generator for cubic graphs from Chapter 2 also contains look-aheads to
generate cubic graphs with girth at least 5 quite efficiently (see Section 2.6 for
details). As the construction operations are the same, we can apply the look-
aheads for colourability in combination with these and generate snarks directly
instead of generating all weak snarks and filtering them for girth 5.

3.4 Optimisations

3.4.1 The order of applying filters

Snarks are very rare: e.g. for 28 vertices only 0.00044% of the cubic graphs with
girth at least 5 are snarks (and only 0.00015% of the cubic graphs with girth at
least 4 are weak snarks). However most of the cubic graphs with girth at least
4 are cyclically 4-edge-connected: e.g. more than 87% of the cubic graphs with
26 vertices and girth at least 4 are cyclically 4-edge-connected (see Table 2.6
in Section 2.7). So the requirement of having chromatic index 4 is much more
restrictive than that of being cyclically 4-edge-connected.

Therefore, when a graph with the desired number of vertices is generated, it
is first tested if it has chromatic index 4 and only if this is the case, it is tested
if it is also cyclically 4-edge-connected. Testing for 3-edge-colourability is NP-
complete, but nearly all of the tested graphs are 3-edge-colourable and usually a
colouring is found very quickly.

62 Generation of snarks

3.4.2 Postponing isomorphism rejection

Recall from Section 2.5.1 that we assign a 7-tuple (x0, . . . , x6) to every reducible
edge and choose a reducible edge with the largest 7-tuple as canonical reduction.
The values of x0, . . . , x4 are combinatorial invariants of increasing discriminating
power and cost. The computation of x5, x6 is more expensive and involves calling
nauty to compute a canonical labelling (and the automorphism group of the
graph).

Even though the discriminating power of x0, . . . , x4 is enough to avoid calling
nauty in a lot of cases, nauty is still one of the most time consuming parts of the
algorithm. (Note that nauty is also called to compute the automorphism group of
the graph which is then used to compute the equivalence classes of expansions.)

Therefore we are using another optimisation which avoids even more nauty
calls. Assume that we want to generate all non-isomorphic snarks with n vertices.
Since there are only very few snarks, we postpone calling nauty for graphs with
n− 2 vertices and only call nauty if snarks were generated from these graphs.

More specifically, when a graph with n − 2 vertices is generated and we still
have to call nauty to decide if it is canonical (i.e. the last operation was an edge
insertion operation and the graph has multiple reducible edges with maximal
value of x0, . . . , x4), we do not call nauty but act as if it was canonical. We also
do not call nauty to determine the equivalence classes of possible expansions, but
act as if the graph had a trivial automorphism group (i.e. every expansion is in
a different equivalence class).

Of course now isomorphic or non-canonical graphs may be generated. There-
fore the snarks which are generated from this parent are saved in a list. If at least
one snark was generated from this parent, we call nauty to test if the parent graph
was canonical (unless it was already known that the parent graph is canonical
– i.e. if the inserted edge was the only edge with maximal value of x0, . . . , x4 in
the parent graph). If the parent is not canonical, the snarks which were generted
from it are rejected. If the parent is canonical, the snarks which were generated
might be isomorphic, since we applied the edge insertion operation to all eligible
edge pairs instead of to only one edge pair for each orbit of eligible edge pairs.

If we had to call nauty to test if the parent graph is canonical, we already
know the automorphism group of the parent graph, else we compute it. If the
automorphism group is trivial, the graphs which were generated from this parent
will not be isomorphic. If this is not the case, we investigate the list of children
and filter the isomorphic copies. More specifically we call nauty to compute a
canonical form for each of the children, compare the canonical forms and output

3.4. Optimisations 63

the non-isomorphic children. Computing such a canonical labelling is not a bot-
tleneck for the algorithm since there are only very few snarks: most parents do
not have any children which are snarks and if they do have such children, there
are only very few of them. As can be seen from Table 3.1, parents which have
snarks as children often only have one child.

children percentage
1 95.72
2 2.26
3 0.32
4 1.21
5 0.17
6 0.15
≥ 7 0.06

Table 3.1: Percentage of graphs which have a given number of (possibly isomorphic)

children with 28 vertices which are snarks among the graphs with 26 vertices

which are generated and which have at least one child and a non-trivial

automorphism group.

For the graphs with n vertices which are generated, we also postpone calling
nauty. If there are multiple edges with maximal value of (x0, ..., x4) (and the
inserted edge is one of them), we first test if the graph is 3-edge-colourable. Only
if this is not the case, we call nauty to compute x5, x6 and test if it is canonical.

The coarse pseudocode of the algorithm for generating all non-isomorphic
snarks using this optimisation is shown in Algorithm 3.1 (cf. Algorithm 1.1 from
Section 1.3).

64 Generation of snarks

Algorithm 3.1 Construct snarks(graph G)
if G has n vertices then

if G is not 3-edge-colourable and cyclically 4-edge-connected then

if G is generated by a canonical expansion then

save in list of snarkchildren

end if

end if

else

find expansions

if G has n− 2 vertices then

clear list of snarkchildren

for each expansion X do

perform expansion X

if inserted edge has maximal value of (x0, ..., x4) then

Construct snarks(expanded graph)

end if

perform reduction X−1

end for

if list of snarkchildren is not empty and G is canonical then

output non-isomorphic snarkchildren

end if

else

compute classes of equivalent expansions

for each equivalence class do

choose one expansion X

perform expansion X

if expanded graph has n− 2 vertices then

if inserted edge has maximal value of (x0, ..., x4) then

Construct snarks(expanded graph)

end if

else

if expansion is canonical then

Construct snarks(expanded graph)

end if

end if

perform reduction X−1

end for

end if

end if

3.5. Testing and results 65

3.5 Testing and results

3.5.1 Running times and the number of snarks

Our generator (which is called snarkhunter) was used to generate all snarks up
to 36 vertices and all weak snarks up to 34 vertices. We compared all snarks
and weak snarks up to 32 vertices with the snarks which were generated by the
program minibaum [11]. The results were in complete agreement. For all snarks
which were generated, we used an independent program to check the chromatic
index, the cyclic edge-connectivity, the girth and whether they are all pairwise
non-isomorphic.

The snark counts and statistics about their girth and cyclic edge-connectivity
are listed in Table 3.2. Previously only the lists of all snarks up to 28 vertices
were published [35], but minibaum had already been used to generate all snarks
up to 32 vertices. The sizes of the automorphism group of all snarks up to 36
vertices are listed in Table 3.3.

The running times of snarkhunter up to 34 vertices and a comparison with
the fastest generator for snarks when the present research began (i.e. minibaum)
are given in Table 3.4. As can be seen in that table, snarkhunter is approximately
29 times faster than minibaum for generating weak snarks and 14 times faster
for generating snarks and the speedup seems to be increasing with the number
of vertices. The generation of snarks with more than 28 vertices was split into
multiple independent parts and was executed on multiple CPU’s. We used the
same parallelisation method as for our generator for cubic graphs from Chapter 2
(see Section 2.8 for details). Also in case of the generation of snarks the overhead
for parallelisation was only a negligible portion of the total running time. The
generation of all snarks with 36 vertices was executed on multiple heterogeneous
clusters (primarily on Intel Harpertown 2.66 GHz CPU’s). The total running time
for generating all snarks with 36 vertices was approximately 73 CPU years. An
estimate based on running a partial generation for 38 vertices is that generating
all snarks of this order would require 1100 CPU years (on the clusters used for
generating all snarks with 36 vertices).

All snarks up to 36 vertices and all weak snarks up to 34 vertices can be
downloaded from [23] and the latest version of snarkhunter can be downloaded
from [27].

66 Generation of snarks

|V (G)| # weak snarks λc(G) ≥ 4 λc(G) ≥ 5 λc(G) ≥ 6 g(G) ≥ 6

10 1 1 1 0 0

12,14,16 0 0 0 0 0

18 2 2 0 0 0

20 6 6 1 0 0

22 31 20 2 0 0

24 155 38 2 0 0

26 1 297 280 10 0 0

28 12 517 2 900 75 1 1

30 139 854 28 399 509 0 1

32 1 764 950 293 059 2953 0 0

34 25 286 953 3 833 587 19 935 0 0

36 ? 60 167 732 180 612 1 1

Table 3.2: The number of snarks. We write λc(G) for the cyclic edge-connectivity

of a graph G and g(G) for the girth. None of the snarks listed here has

g(G) ≥ 7. The programs to compute the cyclic edge-connectivity and girth

were independently developed in Belgium and Sweden and the results were

in complete agreement.

3.5.2 Testing conjectures on snarks

We tested the snarks in cooperation with Jonas Hägglund and Klas Markström
from Ume̊a University in Sweden. Together we tested a large number of conjec-
tures and properties of the new lists of snarks. All of these tests were indepen-
dently implemented and executed by the groups in Belgium and Sweden and all
results were in complete agreement.

More specifically we tested 22 published conjectures on the new lists of snarks.
For most of these conjectures it has been proven that a minimal counterexample
must be a weak snark. For some of them it has been proven that a minimal
counterexample must be a snark (i.e. have girth at least 5). This is for example
the case with the cycle double cover conjecture. A cycle double cover (in short:
CDC) of a graph G is a collection of cycles C such that every edge of G is
contained in exactly 2 cycles in C. The cycle double cover conjecture (CDCC)
is one of the most famous long-standing open problems in graph theory. It was
independently formulated by Szekeres and Seymour in 1973 and 1979 respectively.

Conjecture 3.5 (CDCC, Szekeres [116], Seymour [114]). Every bridgeless graph
has a cycle double cover.

3.5. Testing and results 67

Order 1 2 3 4 6 8 12 16 20 24 28 32 36 48 64 80 120

10 1

18 1 1

20 2 1 2 1

22 4 11 1 1 2 1

24 21 9 8

26 174 75 23 7 1

28 2536 290 62 1 6 2 2 1

30 26 214 1924 226 25 9 1

32 278 718 13 284 973 78 6

34 3 684 637 143 783 7 4798 7 329 1 20 3 1 1

36 58 191 667 1 950 129 2 24 855 3 1044 3 24 2 1 1 1

Table 3.3: Counts of all snarks according to the order of their automorphism group.

|V (G)| # weak snarks snarkhunter (s) minibaum (s) speedup

22 31 1.5 41 27.33

24 155 24 643 26.79

26 1 297 430 11 629 27.04

28 12 517 8 868 259 495 29.26

30 139 854 209 897

32 1 764 950 4 976 553

34 25 286 953 119 586 562

|V (G)| # snarks snarkhunter (s) minibaum (s) speedup

22 20 1 11 11.00

24 38 15 182 12.13

26 280 265 3 458 13.05

28 2 900 5 304 75 194 14.18

30 28 399 128 875

32 293 059 2 875 911

34 3 833 587 66 519 829

Table 3.4: Counts and generation times for snarks and weak snarks. The running

times are for C code compiled by gcc and run on an Intel Xeon L5520

CPU at 2.27 GHz. They include writing the snarks to a null device. The

running times for snarks with 36 vertices are omitted as this computation

was executed on multiple heterogeneous clusters.

68 Generation of snarks

The conjecture has been proven for some large classes of graphs such as planar
graphs. It is also well-known that if the conjecture holds for cubic graphs, then it
is true for all graphs. If a cubic graph is 3-edge-colourable, then the cover given
by each pair of colours from a given proper colouring of the edges is a CDC. It is
also well-known that a minimum counterexample must have girth at least 5 and
be cyclically 4-edge-connected (see e.g. [73]), and hence it is sufficient to prove
the CDCC for snarks. These conditions have been strengthened over the years
and we now know that a minimum counterexample must have girth at least 12
(see [68]) and must therefore be much larger than the snarks under investigation
in this thesis.

However, there are various stronger versions of the CDCC and auxiliary con-
jectures aimed at proving some version of the CDCC, which are not known to
hold for small snarks. One of those strengthenings of the CDCC is the strong
cycle double cover conjecture (SCDCC) which was formulated by Goddyn [56].

Conjecture 3.6 (SCDCC, Goddyn [56]). Let G be a bridgeless graph. Then for
every cycle C in G there is a CDC that contains C.

Using our lists of snarks, we verified that the strong cycle double cover con-
jecture has no counterexamples with 36 vertices or less.

Next to this and other positive results, we were also able to refute 8 published
conjectures about cycle coverings and the general cycle structure of cubic graphs.
These include conjectures of Bill Jackson [72] and Cun-Quan Zhang [126]. This
shows that snarks are not only theoretically a good source for counterexamples
to conjectures, but also in practice.

In [126] Zhang conjectured the following:

Refuted Conjecture 3.7 (Zhang [126]). Let G be a cubic cyclically 5-edge-
connected permutation graph. If G is a snark, then G must be the Petersen
graph.

A permutation graph is a cubic graph which has a 2-factor that consists of 2
induced cycles (i.e. they have no chords).

We tested this conjecture on all cyclically 5-edge-connected snarks with at
most 36 vertices. We found 12 cyclically 5-edge-connected permutation snarks
with 34 vertices which provide counterexamples to Conjecture 3.7. One of these
graphs can be found in Figure 3.2, where the 2-factor that consists of 2 induced
cycles is drawn in bold. There are no counterexamples with 36 vertices. The
entire set of counterexamples can be obtained from House of Graphs [15] by
searching for the keywords “counterexample * Zhang”.

3.6. Closing remarks 69

Figure 3.2: One of the twelve cyclically 5-edge-connected permutation snarks with 34

vertices. The bold cycles correspond to the 2-factor.

The following was posed as a problem in [72] and as a conjecture in [126]:

Refuted Conjecture 3.8 (Jackson [72], Zhang [126]). Let G be a cyclically 5-
edge-connected cubic graph and D be a set of pairwise disjoint cycles of G. Then
D is a subset of a CDC, unless G is the Petersen graph.

We tested this conjecture on all cyclically 5-edge-connected snarks with at
most 36 vertices. The same 12 graphs from Conjecture 3.7 are also counterex-
amples for this conjecture and there are no additional counterexamples with 34
vertices. One of the counterexamples is shown in Figure 3.2, where the set of
disjoint cycles that cannot be extended to a CDC is the bold 2-factor. The 2-
regular subgraphs of these 12 graphs that cannot be part of any CDC are 2-factors
which have exactly two induced components. There are also 44 cyclically 5-edge-
connected snarks with 36 vertices with 2-regular subgraphs, not all of which are
2-factors, that cannot be part of any CDC.

The entire set of counterexamples can be obtained from House of Graphs [15]
by searching for the keywords “counterexample * Jackson”.

More details about the properties we investigated and the conjectures we
tested can be found in [24].

3.6 Closing remarks

The results of the analysis of the snarks of order at most 36 show that some of
the intuition gained from the study of the smallest snarks has been misleading.

70 Generation of snarks

|V (G)| # snarks growth
20 6 3.00
22 20 3.33
24 38 1.90
26 280 7.37
28 2 900 10.36
30 28 399 9.79
32 293 059 10.32
34 3 833 587 13.08
36 60 167 732 15.69

Table 3.5: Growth rate of the number of snarks.

Some of the unexpected behaviour of snarks can only be found for sufficiently
large snarks. Table 3.5 shows the growth rate of the number of snarks. It shows a
change at 34 vertices. Together with the fact that most counterexamples we found
have at least 34 vertices, this could indicate that we might have just reached the
size range where the snarks display a behaviour which is more typical for large
snarks.

We believe that the results which we obtained also give a good demonstration
of the importance of large scale computer based generation and analysis as tools
for aiding our understanding of combinatorial problems.

Generating all weak snarks with 36 vertices with snarkhunter is probably
computationally still feasible. Generating all snarks with 38 vertices might be just
feasible, but it will require an excessive amount of computing time (probably 1100
CPU years). Next to that, even though only 5.22 · 10−7% of the connected cubic
graphs with 36 vertices are snarks, testing conjectures on all of the 60 167 732
snarks with 36 vertices is quite expensive and as can be seen from Table 3.5 the
growth rate is increasing. So it would be very interesting if the class of snarks
could be further restricted and still keep the property that the class contains
smallest possible counterexamples for a lot of conjectures.

Jaeger [73] for example introduced the notion of strong snarks. A snark G

is called strong if for every edge e ∈ E(G) the result of the edge reduction
(see Section 2.2) is not 3-edge-colourable. Celmins [40] proved that a minimum
counterexample to the cycle double cover conjecture must be a strong snark.

We tested our list of snarks for this property and determined that there are
7 strong snarks with 34 vertices and 25 with 36 vertices. There are no strong

3.6. Closing remarks 71

snarks of smaller order (which again indicates that 34 vertices seems to be a point
of change).

However only for a very limited number of conjectures it is proven that mini-
mal counterexamples must be strong snarks. None of the counterexamples which
enabled us to refute the 8 conjectures were strong snarks.

Other possible strengthenings of snarks include for example more restrictions
on the cyclic edge-connectivity. Future work could include the development of a
specialised generation algorithm for such a more restricted subclass of snarks.

72 Generation of snarks

Chapter 4

Generation of fullerenes

In this chapter we describe an efficient new algorithm for the generation of
fullerenes. Our implementation of this algorithm is more than 3.5 times faster
than the previously fastest generator for fullerenes – fullgen – and the first pro-
gram since fullgen to be useful for more than 100 vertices. Contradictory results
of our program and fullgen, led to the detection of a non-algorithmic error in
fullgen that caused problems for 136 vertices or more.

The new generator allowed us to generate all non-isomorphic fullerenes up to
400 vertices. We also check a conjecture of Barnette that cubic planar graphs
with maximum face size 6 are hamiltonian up to 316 vertices and prove that the
smallest counterexample to the spiral conjecture has 380 vertices.

We also develop a specialised algorithm for the generation of Isolated Pentagon
Rule (IPR) fullerenes. Our implementation of this algorithm is also significantly
faster than other generators for IPR fullerenes.

Remark: our algorithm for the generation of fullerenes is also described in [29].
This was joint work also with Brendan D. McKay and various parts of this chapter
were adopted from that article.

4.1 Introduction

4.1.1 Definitions

Fullerenes are spherical carbon molecules that can be modelled as cubic plane
graphs where all faces are pentagons or hexagons. We will refer to these mathe-
matical models also as fullerenes. Euler’s formula implies that a fullerene with n

73

74 Generation of fullerenes

vertices contains exactly 12 pentagons and n/2− 10 hexagons.
A planar graph is a graph which can be drawn in the plane (or equivalently:

on the sphere) without crossing edges. A plane graph is a planar graph together
with a crossing-free drawing (i.e. an embedding). For computer programs the
concept of crossing edges is inconvenient, therefore we use the combinatorial rep-
resentation of an embedding. Up to (combinatorial) isomorphism, an embedding
can be uniquely encoded by a combinatorial structure. In combinatorics the
embedding of a graph is represented by giving the cyclic order (say: clockwise
order) of the incident edges of each vertex. So a plane graph G = (V,E, next())
is a graph (V,E) where the function next() specifies the clockwise order of the
incident edges of each vertex. This representation for plane graphs also works
more generally for orientable surfaces. The mirror image of a plane graph G is
obtained by reversing the cyclic order at each vertex of G.

A cyclic order of a set of elements is a way of arranging these elements on a
cycle with a chosen direction. So the cyclic order (a, b, c, d) represents the orders
[a, b, c, d], [d, a, b, c], [c, d, a, b] and [b, c, d, a].

For plane graphs next to the usual notion of graph isomorphism (see Sec-
tion 1.1), also the notion of isomorphism of embedded graphs exists.

Recall from Section 1.1 that an isomorphism from a graph G to a graph G′

is a bijective function φ : V (G) → V (G′) : {v, w} ∈ E(G) ⇐⇒ {φ(v), φ(w)} ∈
E(G′). We will also call this an abstract isomorphism.

Given two plane graphs G = (V,E, next()) and G′ = (V ′, E′, next′()). An
orientation-preserving isomorphism from G to G′ is an abstract isomorphism φ

from G to G′ which preserves the embedding: if (v1, v2, ..., vk) is the cyclic order
of the neighbours of v ∈ V (G), then (φ(v1), φ(v2), ..., φ(vk)) is the cyclic order
of the neighbours of φ(v) ∈ V (G′). An orientation-reversing isomorphism from
G to G′ is an abstract isomorphism φ from G to G′ which reverses the cyclic
order at each vertex: if (v1, v2, ..., vk) is the cyclic order of the neighbours of
v ∈ V (G), then (φ(vk), φ(vk−1), ..., φ(v1)) is the cyclic order of the neighbours of
φ(v) ∈ V (G′).

We say that two plane graphs G and G′ are isomorphic as embedded graphs if
and only if there is an orientation-preserving or orientation-reversing isomorphism
from G to G′. So here we treat the mirror image as equivalent. In the remainder
of this chapter, by an isomorphism we will always mean an orientation-preserving
or orientation-reversing isomorphism.

Clearly, if two plane graphs are isomorphic as embedded graphs, they are
also isomorphic as (unembedded) graphs, but the other direction does not hold.

4.1. Introduction 75

However, Whitney proved the following:

Theorem 4.1 (Whitney [121]). Two 3-connected plane graphs G and G′ are
isomorphic if and only if they are isomorphic as embedded graphs.

Since fullerenes are 3-connected, it follows from Whitney’s theorem that the
concept of graph isomorphism and isomorphism of embedded graphs coincide for
fullerenes.

The dual of a fullerene is the plane graph obtained by exchanging the roles
of vertices and faces: the vertex set of the dual graph is the set of faces of the
original graph and two vertices in the dual graph are adjacent if and only if the
two faces share an edge in the original graph. The rotational order around the
vertices in the embedding of the dual fullerene follows the rotational order of
the faces. The dual of a fullerene with n vertices is a triangulation (i.e. a plane
graph where every face is a triangle) which contains 12 vertices with degree 5 and
n/2 − 10 vertices with degree 6. The graph with black vertices and solid edges
in Figure 4.1 is the fullerene C20 (i.e. the dodecahedron), the graph consisting of
white vertices and dashed edges is its dual graph. We will also refer to the dual
of a fullerene as a dual fullerene or a fullerene in dual representation.

Figure 4.1: The fullerene C20 (drawn with black vertices and solid edges) and its dual

graph (drawn with white vertices and dashed edges).

A fullerene patch is a connected subgraph of a fullerene where all faces except

76 Generation of fullerenes

one exterior face are also faces in the fullerene. Furthermore all boundary vertices
have degree 2 or 3 and all non-boundary vertices have degree 3. In the remainder
of this chapter we will abbreviate “fullerene patch” as “patch”.

The boundary of a patch is formed by the vertices and edges which are on the
unique unbounded face, i.e. the outer face.

Isolated Pentagon Rule (IPR) fullerenes are fullerenes where no two pentagons
share an edge. IPR fullerenes are especially interesting due to a general tendency
to be chemically more stable and thus they are more likely to occur in nature [113,
1].

4.1.2 Literature review

The first fullerene molecule was discovered in 1985 by Kroto et al. [80], namely the
famous C60 buckminsterfullerene or “buckyball”. It has the shape of a truncated
icosahedron (which looks like a soccer ball). The (combinatorial) C60 fullerene is
shown in Figure 4.2. In 1996 Kroto, Curl and Smalley were awarded the Nobel
Prize in Chemistry for this discovery. After that discovery several attempts have
been made to generate complete lists of fullerene isomers. Isomers have the
same kind and number of atoms, but a different structure, i.e. they have the
same molecular formula (e.g. C60), but a different structural formula.

(a) (b)

Figure 4.2: The C60 buckminsterfullerene drawn on the sphere (a) and in the plane

(b), respectively.

The first approach to generate complete lists of fullerenes was the spiral al-
gorithm given by Manolopoulos et al. in 1991 [86]. This algorithm is briefly
sketched in Section 4.4.2. The spiral algorithm was relatively inefficient and also

4.1. Introduction 77

incomplete in the sense that not every fullerene isomer could be generated with
it. Manolopoulos and Fowler [85] gave an example of a fullerene that cannot be
constructed by this algorithm. Using the algorithm which is described in this
chapter we were able to prove that the counterexample given by Manolopoulos
and Fowler [85] is in fact the smallest possible (see Section 4.4.2).

The spiral algorithm was later modified to make it complete, but the resulting
algorithm was not efficient [84]. In 1995 Yoshida and Osawa [125] proposed a
different algorithm using folding nets, but its completeness has not been proven.

Other methods are described by Liu et al. [83] and Sah [109], but they also
did not lead to sufficiently efficient algorithms.

The most successful approach until now dates from 1997 and is given by
Brinkmann and Dress [19]. The algorithm described there is proven to be com-
plete and has been implemented in a program called fullgen. The basic strat-
egy can be described as stitching together patches which are bounded by zigzag
(Petrie) paths. Unfortunately a simple (non-algorithmic) bug in the source code
produced an error that occurred for the first time at 136 vertices – far too many
vertices to be detectable by any of the other programs until now. Due to this
error not enough fullerenes were generated by fullgen starting from 136 vertices.
Hence the lists in the article of Brinkmann and Dress [19] contain some incorrect
numbers which we will correct in Section 4.4.

The method of patch replacement can be described as replacing a finite con-
nected region inside some fullerene with a larger patch with identical bound-
ary. For energetic reasons, patch replacement as a chemical mechanism to grow
fullerenes would need very small patches. Brinkmann et al. [20] investigated re-
placements of small patches and introduced two infinite families of operations.
These operations can generate all fullerenes up to at least 200 vertices, but – as
already shown in their paper – fail in general. In 2008 Hasheminezhad, Fleischner
and McKay [65] described a recursive structure using patch replacements for the
class of all fullerenes.

The carbon nanotubes [45] form a special subclass of fullerenes. These fullerenes
consist of two caps which contain 6 pentagons each and a tube body which only
consists of hexagons and which can become arbitrarily large. An example of such
a nanotube is shown in Figure 4.3. Carbon nanotubes were discovered by Iijima
in 1991 [69]. This subclass of fullerenes is very promising for potential applica-
tions because of their remarkable structural and electronic properties [117]. In
2002 Brinkmann et al. [36] developed a fast generator for nanotube caps.

In Section 4.2 we describe an algorithm for the efficient generation of all

78 Generation of fullerenes

Figure 4.3: A carbon nanotube with 280 vertices.

non-isomorphic fullerenes using the construction operations from Hasheminezhad
et al. [65]. In Section 4.3 we discuss the generation of IPR fullerenes. More
specifically, in Section 4.3.1 we show how to extend the generation algorithm for
all fullerenes to generate only IPR fullerenes by using some simple look-aheads.
In Section 4.3.2 we describe a specialised generation algorithm for IPR fullerenes
for which the construction stays entirely within the class of IPR fullerenes. The
results obtained by these algorithms and a comparison with fullgen are given in
Section 4.4.

4.2 Generation of fullerenes

4.2.1 The construction algorithm

We call the patch replacement operations which replace a connected fragment of
a fullerene by a larger fragment expansions and the inverse operations reductions.
If G′ is obtained from G by an expansion, we call G′ the child of G and G the
parent of G′.

It follows from the results of Brinkmann et al. [32] that no finite set of patch
replacement operations is sufficient to construct all fullerenes from smaller ones.
So each recursive structure based on patch replacement operations must neces-
sarily allow an infinite number of different expansions.

Hasheminezhad et al. [65] used two infinite families of expansions: Li and
Bi,j and a single expansion F . These expansions are sketched in Figure 4.4. The
lengths of the paths between the pentagons may vary and for operation Li the
mirror image must also be considered. All faces drawn completely in the figure

4.2. Generation of fullerenes 79

or labelled fk or gk have to be distinct. The faces labelled fk or gk can be either
pentagons or hexagons, but when we refer to the pentagons of the operation,
we always mean the two faces drawn as pentagons. For more details on the
expansions, see the article of Hasheminezhad et al. [65].

f
1

f
2

g
1

g
2

f
1

f
2

g
1 g

2

f
1

f
2

f
3

f
3

f
4

f
5

g
1

g
2

g
3 g

4
g

5

f
1

f
2

f
4 f

5

g
 g

2 g
3

g
4

g
5

f
1 f

2

f
3

g
1

g
2

g
3

g
1

g
2

g
3

f
1

f
2

f
3

f
1 f

2

f
3

f
4

f
5

f
4

f
2

f
1

f
3

f
5

L
3

L
0

B
0,0

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

g
1

g
3

g
4

g
5

g
6

g
7

g
8

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

g
1

g
2

g
2

g
3

g
4

g
5

g
6

g
7

g
8

B
3,2

F

Figure 4.4: The L, B and F expansions for fullerenes.

In Figure 4.5 the L and B expansions of Figure 4.4 are shown in dual rep-
resentation. We will refer to vertices which have degree k ∈ {5, 6} in the dual
representation of a fullerene as k-vertices. The solid white vertices in the figure
are 5-vertices, the solid black vertices are 6-vertices and the dashed vertices can
be either. The two 5-vertices which are involved in the reduction and the vertices
which must be 6-vertices in the reduction are also called the active vertices of
the reduction.

Three special fullerenes C20 (the dodecahedron), C28(Td) and C30(D5h) are
shown in Figure 4.6. The type-(5,0) nanotube fullerenes are those which can be
made from C30(D5h) by applying expansion F zero or more times. We will refer
to all fullerenes not in one of these classes as reducible. The following theorem
which was proven by Hasheminezhad et al. [65] shows that all reducible fullerenes
can be reduced using a type L or B reduction.

80 Generation of fullerenes

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

B3,2

L3

B0,0

L0

Figure 4.5: The L and B expansions in dual representation.

Theorem 4.2. Every fullerene isomer, except C28(Td) and type-(5,0) nanotube
fullerenes can be constructed by recursively applying expansions of type L and B
to C20.

Our algorithm uses this theorem by applying L and B expansions starting at
C20 and C28(Td), together with a separate (easy) computation of the type-(5,0)
nanotube fullerenes.

4.2. Generation of fullerenes 81

C28(Td) C30(D5h)C20

Figure 4.6: The irreducible fullerenes.

4.2.2 Isomorphism rejection

If the expansions are applied in all possible ways, a lot of isomorphic copies will
be generated. Similar to the other generation algorithms described in this thesis,
we only wish to output one fullerene of each equivalence class of fullerenes. We
also use the canonical construction path method for this (see Section 1.3).

The two rules of the canonical construction path method applied to dual
fullerenes are:

1. Only accept a dual fullerene if the last step in its construction was a canon-
ical expansion.

2. For each dual fullerene G to which expansions are applied, only apply one
expansion from each equivalence class of expansions.

So in order to use this method, we first have to define a canonical reduction
for every reducible dual fullerene G. This reduction must be unique up to auto-
morphisms of G. We call the dual fullerene which is obtained by applying the
canonical reduction to G the canonical parent of G and an expansion that is the
inverse of a canonical reduction in the expanded graph a canonical expansion.

We also define an equivalence relation on the set of all expansions or re-
ductions of a given dual fullerene G. An expansion is completely characterized
by the patch that is replaced with a larger patch. Two expansions are called
equivalent if there is an automorphism of G mapping the two corresponding ini-
tial patches onto each other. For reductions, the definition is similar. In the

82 Generation of fullerenes

non-dual representation, the patch of a reduction also uniquely determines the
reduction, but for the dual representation in addition to the patch, a rotational
direction is necessary to uniquely encode a reduction of type L. This direction
can be a flag describing whether the new position of the 6-vertex is in clockwise
or counterclockwise position of the central path connecting the 5-vertices. In
the remainder we will use the dual representation. Two type L reductions are
equivalent if the patches are mapped onto each other by an orientation-preserving
automorphism and the flags are the same or they are mapped onto each other by
an orientation-reversing automorphism and the flags are different.

The expansions and reductions must of course be represented in an efficient
way. Reductions are represented by a triple (e, x, d), where e is a directed edge
that is the first edge on the central path between the two 5-vertices, x is the
parameter set for the reduction (such as “(2,3)” for B2,3) and d is a direction.
For B reductions, d indicates whether the turn in the path is to the left or the
right. For L reductions, d distinguishes between this reduction and its mirror
image. Since e can be at either end of the path, there are two equivalent triples
for the same reduction, as illustrated in Figure 4.7. We call these triples the
representing triples of the reduction. Expansions are also represented by triples
in a similar fashion.

When we translate the notion of equivalent reductions or expansions to repre-
senting triples, the equivalence relation is generated by two relations. The first is
that two triples are equivalent if they represent the same reduction. The second
is that (e, x, d) and (e′, x′, d′) are equivalent if x = x′ and in case d = d′ the edge
e can be mapped to e′ by an orientation-preserving automorphism and in case
d 6= d′ the edge e can be mapped to e′ by an orientation-reversing automorphism.

For an efficient implementation of the canonicity criteria, it is important that
in many cases simple and easily computable criteria can decide on the canonical
reduction or at least reduce the list of possible reductions. To this end we assign a
6-tuple (x0, . . . , x5) to every triple (e, p, f) representing a possible reduction. We
then choose the canonical reduction to be a reduction which has a representing
triple with the smallest 6-tuple.

The values of x0, ..., x4 are combinatorial invariants of increasing discriminat-
ing power and cost. The value of x0 is the length of the reduction represented by
(e, p, f). The length of the reduction is the distance between the two 5-vertices of
the reduction before actually applying the reduction. So in case of a Bx,y reduc-
tion (2 parameters) it is x+y+ 2 and in case of an Lx reduction (1 parameter) it
is x+1. Thus we give priority to short reductions. These are easier to detect and

4.2. Generation of fullerenes 83

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

e0

e1

Figure 4.7: An example of two triples (e0, (3, 2), 1) and (e1, (2, 3), 0) representing the

same B reduction.

allow some look-ahead. The entry x1 is the negative of the length of the longest
straight path in the reduction. For an L reduction, the value of x1 is −x0, which
does not distinguish between two reductions with the same value of x0. For a
Bx,y reduction it is −max{x, y} − 1, which sometimes distinguishes between B

reductions with the same value of x0 and always distinguishes between an L and
a B reduction with the same x0.

The entries x2, x3 and x4 are strings which contain the degrees of the vertices
in well-defined neighbourhoods of the edge in the triple. These neighbourhoods
are of increasing (constant) size.

In each case the value xi is only computed for those representing triples that
have the smallest value of (x0, ..., xi−1). As our main interest is whether an
expansion we applied is canonical, we can also stop as soon as we have found a
smaller 6-tuple, which may just mean a reduction with smaller value of x0. In
case of a unique triple with minimal value of (x0, ..., xi−1) or two such triples
representing the same reduction, we have found the canonical reduction and can
stop the computation of the remaining values.

If after the computation of (x0, ..., x4) there is still more than one possibly
canonical triple, we define x5 as a string encoding the whole structure of the
graph relative to the edge and the direction in the representing triple. We could
use nauty [88] to compute a canonical labelling (like we did for the other gener-
ation algorithms which are described in this thesis), but for fullerenes there are
algorithms which can compute a canonical labelling in linear time. Therefore we
use such a specialised algorithm to compute the string x5. The details of this
string can be found in the article of Brinkmann and McKay [33], but it can in

84 Generation of fullerenes

short be described as the code of a BFS-numbering starting at the edge of the
representing triple and evaluating the neighbours of a vertex in the rotational or-
der (clockwise/counterclockwise) given by the direction of the representing triple.
Two triples coding patches in two graphs (that may be identical or not) contain-
ing the same directions are assigned the same value x5 if and only if there is
an orientation-preserving isomorphism of the graphs mapping the edges in the
triples onto each other. In case of different directions, the same value of x5 is
assigned if and only if there is such an orientation-reversing automorphism. This
final value x5 makes sure that two patches (in the same or different graphs) with
the same value of (x0, ..., x5) can be mapped onto each other by an isomorphism
φ() of the graphs. When performing the corresponding reductions, the patches
are replaced by smaller patches and replacing the images φ(v) of vertices inside
the patch appropriately, one gets an isomorphism of the reduced graphs that
maps the reduced patches onto each other.

When x5 is computed and the graphG that is tested for canonicity is accepted,
as a byproduct we also have the automorphism group of G. For a given triple,
each of x0, ..., x4 can be computed in constant time and x5 can be computed in
linear time, so the canonicity test can be done in linear time.

Even though it is a nice feature that deciding canonicity of a given set of
possible reductions can be done in linear time, for practical performance it is
more important that computing the combinatorial invariants (x0, ..., x4) for a
given reduction is of a small constant cost. For dual fullerenes with 152 vertices
(fullerenes with 2.(152−2) = 300 vertices), the discriminating power of (x0, ..., x4)
is enough to decide whether or not the last expansion was canonical in more than
99.9% of the cases.

In some cases these cheap invariants also allow look-aheads for deciding whether
or not an expansion can be canonical before actually performing it. When making
the lists of possible expansions, we can often already tell that a certain expansion
cannot be canonical since it will not destroy all shorter reductions or since there
will still be a reduction of the same length but with a smaller value of x2. This
avoids the application of a lot of non-canonical expansions. Counting only expan-
sions passing this look-ahead, for dual fullerenes with 152 vertices still in 95.6%
of the expansions a final decision can be found by only computing (x0, ..., x4).

If there is only one representing triple with minimal value of (x0, ..., xi) (i ≤ 4),
the automorphism group of G is trivial, so no extra computations are necessary.
For dual fullerenes with 152 vertices, there is only one representing triple with
minimal value of (x0, ..., xi) (i ≤ 4) in 80.9% of the cases. The ratio is decreasing

4.2. Generation of fullerenes 85

with the number of vertices: for 102 vertices of the dual fullerene it is 93.3% and
for 127 vertices it is 86.9%.

Theorem 4.3. Assume that exactly one representative of each isomorphism class
of dual fullerenes up to n− 2 vertices is given. Suppose we perform the following
steps (cf. Algorithm 1.1 from Section 1.3):

1. Perform one expansion of each equivalence class of L and B expansions
which lead to a dual fullerene with n vertices.

2. Accept each new dual fullerene if and only if a triple representing the inverse
of the last expansion has the minimal value of (x0, ..., x5) among all possible
reductions.

Then exactly one representative of each isomorphism class of reducible dual
fullerenes with n vertices is accepted.

Proof. Let G be a reducible dual fullerene with n vertices. Since G is reducible,
there is at least one reduction, thus also a canonical reduction ρ, that applies to
G. The graph resulting from ρ is isomorphic to a graph in the input set, which
has an expansion which is equivalent to the inverse of ρ. But this expansion
produces a graph isomorphic to G and the parameters of its inverse reduction are
the same as those of ρ, so the result of the expansion is accepted.

This implies that at least one representative of each isomorphism class in
question is generated. It remains to be shown that at most one is generated.

Suppose that the algorithm accepts two isomorphic fullerenes G and G′ with
n vertices. As they are isomorphic, the canonical reductions have the same pa-
rameter set (x0, ..., x5). As they were both accepted, they were constructed by a
canonical expansion, so – as mentioned before – the two parents G0 and G′0 are
isomorphic and there is an isomorphism that maps the corresponding expansions
onto each other. By our assumption this means that G0 and G′0 are identical
and that the two expansions are equivalent, but our procedure only performs
one expansion of each equivalence class of expansions (i.e. step 1). So at most
one representative of each isomorphism class of reducible dual fullerenes with n

vertices is accepted.

By recursively applying expansion F to C20, all type-(5,0) fullerenes are con-
structed. As this constructs all type-(5,0) fullerenes exactly once and these
fullerenes cannot be constructed by L or B expansions, this completes the al-
gorithm.

86 Generation of fullerenes

4.2.3 Optimisations

It turned out that most fullerenes contain short reductions. As we give priority to
short reductions, the overwhelming majority of long expansions are not canonical.
For example 80.5% of the dual fullerenes with 152 vertices have an L0 reduction
and for 19.3% of the dual fullerenes with 152 vertices the shortest reduction has
length 2. For efficiency reasons it is interesting to determine an upper bound on
the length of a canonical expansion.

Lemma 4.4. Reducible dual fullerenes which contain adjacent 5-vertices have an
L0, L1 or B0,0 reduction.

Proof. For a proof, see the article of Hasheminezhad et al. [65].

So each reducible dual non-IPR fullerene has a reduction with length at
most 2. In dual IPR fullerenes the shortest reduction is a reduction with the
same length as the minimum distance of two 5-vertices in the dual fullerene.

Consider a 5-vertex with k rings of 6-vertices. The first ring contains 5 6-
vertices, the second one 10 and the k-th ring contains 5k 6-vertices. So a 5-vertex
with k rings of 6-vertices contains f(k) = 1+ 5

2 (k+1)k vertices. Figure 4.8 depicts
a 5-vertex with 2 rings of 6-vertices. In dual fullerenes where the shortest distance
between two 5-vertices is at least d, the sets of vertices at distance at most bd−1

2 c
of different vertices are disjoint. This gives us a lower bound of 12 f(bd−1

2 c) for
the number of vertices in the dual fullerene.

Figure 4.8: A 5-vertex with 2 rings of 6-vertices.

So expansions of length d cannot be canonical if the expanded graph contains
fewer than 12 f(bd−1

2 c) vertices. This result does not only help to avoid the
application of non-canonical expansions, but also avoids the need to search for
long expansions.

4.2. Generation of fullerenes 87

We can often determine even sharper upper bounds for the maximum length
of a canonical expansion:

Lemma 4.5. If a dual fullerene G has a reduction of length d ≤ 2, all children
G′ of G have a reduction of length at most d+ 2.

Proof. If G′ is not IPR, this follows from Lemma 4.4, so assume that G′ is IPR.
The length of the shortest reduction is then the shortest distance between two
5-vertices. Let us look at the shortest path W between two 5-vertices allowing a
reduction of length d in G.

As d ≤ 2 and as all vertices in the patch P used for expansion must be distinct,
W can contain at most 2 maximal subpaths entering P and ending there, starting
in P and leaving it or crossing P .

The distance between a 5-vertex in P from vertices on the boundary grows
at most by 1. The same is true for each pair of vertices on the boundary. So
the path W can grow in two places by at most 1, proving the result. Figure 4.9
shows an example of an L expansion which can turn a reduction of length 2 into
a reduction of length 4.

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

Figure 4.9: L expansion which can turn a reduction of length 2 into a reduction of

length 4. The solid white vertices are 5-vertices, the solid black vertices

are 6-vertices and the dashed ones can be either.

This lemma could be proven for larger d if one required the child to be canon-
ical, but as 12 f(5−1

2) = 192, all dual fullerenes with less than 192 vertices (or

88 Generation of fullerenes

fullerenes with 380 vertices) have a reduction of length at most 4. Therefore,
even for d = 2, Lemma 4.5 is only useful for fullerenes with at least 380 vertices.

We state the following theorem in terms of fullerenes instead of dual fullerenes
since the proof relies on results which were proven for fullerenes (so this avoids
translating these results into results for dual fullerenes).

Lemma 4.6. If a fullerene G has an L0 reduction, all canonical children G′ of
G have a reduction of length at most 2.

Proof. If G′ is not IPR, this follows from Lemma 4.4, so assume that G′ is IPR.
By Lemma 4.5, G′ has a reduction of length at most 3, so a canonical child was
constructed by an expansion of length at most 3. If G′ was constructed by an
L0, L1 or B0,0 expansion, the statement follows immediately.

Figure 4.10 and Figure 4.11 show the only ways that an L2 (respectively
B1,0) expansion can destroy an L0 reduction which involves two pentagons p1 and
p2 such that the expanded fullerene G′ contains no reduction of length shorter
than 3. The faces fi and gi (1 ≤ i ≤ 4) which are on the boundary of the L2

or B1,0 expansion have to be hexagons otherwise the dual of G′ would contain
5-vertices which are at distance at most 2. Since p1 and p2 are involved in the L0

reduction, they must share an edge. So there is an edge a ∈ {e1, e2, e3} which is
equal to an edge b ∈ {e4, e5, e6} and as the pentagons share an edge, they must
also share two faces each containing an endpoint of this common edge.

In Figure 4.12 the case of Figure 4.10 where a = e2 and b = e5 is shown. This
patch contains a non-trivial cyclic 5-edge-cut. Also for all other possible choices
of a and b this implies that a fullerene containing a patch from Figure 4.10 or
Figure 4.11 must have a cyclic 4-edge-cut or a cyclic 5-edge-cut. However it
follows from the results of Bornhöft et al. [7] that fullerenes are cyclically 5-edge-
connected, so cyclic 4-edge-cuts do not exist. Kardos̆ and S̆krekovski [76] showed
that the type-(5,0) nanotubes are the only fullerenes which have a non-trivial
5-edge-cut.

So there is no expansion which can be applied to G such that the shortest
reduction of the expanded fullerene has length 3. Thus all canonical children of
G have a reduction of length at most 2.

For the next lemmas the following observation is useful:

Observation 4.7. If the set of vertices contained in the initial patch of an ex-
pansion of length l contains at least three 5-vertices (so in addition to the two
5-vertices of the expansion there is at least one more 5-vertex in the boundary),
then in the extended patch there are two 5-vertices at distance at most l/2 + 1.

4.2. Generation of fullerenes 89

p1

p2g2 g3g1

f1 f2 f3 f4

g4

e1

e3

e6
e5

e4

e2

Figure 4.10: The initial patch of an L2 expansion involving two neighbouring pen-

tagons p1 and p2. One of the edges from {e1, e2, e3} is equal to an edge

in {e4, e5, e6}.

g3

g1

g2 g4

f3

f4

f1

p1

p2

f2e2

e3

e1

e4

e5

e6

Figure 4.11: The initial patch of a B1,0 expansion involving two neighbouring pen-

tagons p1 and p2. One of the edges from {e1, e2, e3} is equal to an edge

in {e4, e5, e6}.

Lemma 4.8. If a dual fullerene G has at least two reductions of length 2 which
do not have the same set of 5-vertices of the reduction, all canonical children G′

have a reduction of length at most 3.

Proof. If G′ is not a dual IPR fullerene, the result follows immediately, so assume
the opposite. In order to prove the lemma, we have to find a bound for the
minimum distance of two 5-vertices. By Lemma 4.5 each child has a reduction
of length 4. So each canonical child was constructed by an expansion of length
at most 4. If there were three 5-vertices in the initial patch of the expansion,
the result follows from Observation 4.7. So assume this is not the case and one
5-vertex of a reduction of length 2 is not contained in the initial patch. However
then the distance to the other 5-vertex in the reduction can grow by at most 1,
proving the lemma.

Lemma 4.9. If a dual fullerene G has at least three reductions of length 2 with
pairwise disjoint sets of 5-vertices of the reduction, all canonical children G′ of

90 Generation of fullerenes

g2 g3g1

f1 f2 f3 f4

g4

e4

p1

e1

x

e3

p2

e6
e5

Figure 4.12: The initial patch of an L2 expansion involving two neighbouring pen-

tagons p1 and p2. This is the case of Figure 4.10 where e2 = e5. Since p1

and p2 share an edge, they must also share a face x. However this patch

has a non-trivial cyclic 5-edge-cut (which is drawn in red), so it cannot

be part of a reducible fullerene.

G have a reduction of length at most 2.

Proof. We may again assume that G′ is IPR. It follows from Lemma 4.8 that G′

has a reduction of length at most 3, so each canonical expansion has length at
most 3. If there are three 5-vertices in the initial patch of the expansion, the
result follows directly from Observation 4.7. So there is (at least) one reduction
of length 2 so that none of its 5-vertices is contained in that initial patch. But
then the path of length 2 between these 5-vertices still exists in the expanded
graph and allows a reduction of length 2.

Note that Lemma 4.9 does not hold if the sets of 5-vertices of the reductions
of length 2 are not pairwise disjoint. This is illustrated in Figure 4.13 where the
L2 expansion from p1 to p2 destroys 4 reductions of length 2.

For two reductions R1 and R2 in a dual fullerene G we define the distance
d(R1, R2) to be min{d(a1, a2) | ai is a 5-vertex of Ri}.

Lemma 4.10. If a dual fullerene G has L0 reductions R1 and R2 with d(R1, R2) >
4, all canonical children G′ of G have an L0 reduction.

Proof. It follows from Lemma 4.6 that there is a reduction of length at most 2 in
G′. The distance between vertices which are in the initial patch of an expansion
of length 2 is at most 4. Therefore at least one of the two neighbouring 5-vertex
pairs was not modified by the expansion and the neighbouring vertices are either

4.3. Generation of IPR fullerenes 91

p1

p2

Figure 4.13: An L2 expansion which destroys 4 reductions of length 2. The white

vertices are 5-vertices and the black ones are 6-vertices.

unchanged or changed to 6-vertices. In either case the reduction will still be
possible.

For dual fullerenes with 152 vertices, Lemmas 4.5, 4.6, 4.8, 4.9 and 4.10 can
be used to determine a bound on the length of canonical expansions in 93.9% of
the cases.

In Section 4.4 we compare the performance of our algorithm with fullgen.

4.3 Generation of IPR fullerenes

Recall from Section 4.1.1 that IPR fullerenes are fullerenes where no two pen-
tagons share an edge (or when using the dual representation: dual IPR fullerenes
are dual fullerenes with no adjacent 5-vertices). IPR fullerenes tend to be chem-
ically more stable and thus more likely to occur in nature [113, 1]. Therefore
we also developed specialised algorithms for the generation of IPR fullerenes. In
Section 4.3.1 we extend the generation algorithm for all fullerenes with some sim-
ple look-aheads and a filter to generate only IPR fullerenes. In Section 4.3.2 we
describe a specialised generation algorithm for IPR fullerenes which recursively
generates IPR fullerenes from smaller IPR fullerenes. The results obtained by
these algorithms and a comparison with fullgen are given in Section 4.4.

4.3.1 Generator for all fullerenes with filter and look-aheads

The generation algorithm from Section 4.2 was developed for generating all
fullerenes, but it can also be used to generate only IPR fullerenes by using a
filter and some simple look-aheads:

92 Generation of fullerenes

When generating dual IPR fullerenes with n vertices one should obviously not
perform expansions which lead to dual fullerenes with n vertices which contain
adjacent 5-vertices. Figure 4.14 shows some examples of expansions which can
lead to dual IPR fullerenes (cf. Figure 4.4 from Section 4.2). The solid white
vertices are 5-vertices, the solid black vertices are 6-vertices and the dashed ones
can be either. If any of the black vertices in the initial patch of the expansion
would be a 5-vertex, the expanded dual fullerene would not be IPR.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

B3,2

L3

Figure 4.14: Examples of expansions which can lead to dual IPR fullerenes.

An L0 expansion is the only expansion that increases the number of vertices
in a dual fullerene by just 2 vertices, but the result of an L0 expansion is never
a dual IPR fullerene. So when constructing dual IPR fullerenes with n vertices,
dual IPR fullerenes with n−2 vertices do not have to be constructed. The largest
dual fullerenes to which an expansion is applied have n− 3 vertices.

For a dual fullerene with n − 4 vertices only expansions of length 3 (i.e. L2

or B1,0 expansions) can lead to dual IPR fullerenes with n vertices. However
if a dual fullerene with n − 4 vertices contains an L0 reduction, it follows from
Lemma 4.6 that expansions of length 3 are not canonical. Thus we can reject all
dual fullerenes with n − 4 vertices that contain an L0 reduction and also avoid
applying L0 expansions to dual fullerenes with n− 6 vertices.

As can be seen in Table 4.3 from Section 4.4, these simple look-aheads al-
ready result in a relatively efficient program (especially for fullerenes with a large
number of vertices or when generating fullerenes for a range of vertices). More
details can be found in Section 4.4.

4.3. Generation of IPR fullerenes 93

4.3.2 Recursive generation of IPR fullerenes

We also developed a specialised algorithm for the recursive generation of IPR
fullerenes. This generation algorithm stays entirely within the class of IPR
fullerenes, that is: IPR fullerenes are constructed from smaller IPR fullerenes.

The construction operations are the same as the operations for the generation
of all dual fullerenes from Section 4.2, but here only expansions for which the
expanded dual fullerene is also IPR are performed.

We first classify the class of irreducible IPR fullerenes. These are IPR fullerenes
which cannot be reduced to a smaller IPR fullerene by our reduction operations.
We will show that this class consists of 36 fullerenes with up to 112 vertices and
4 infinite families of nanotube fullerenes. The generation then recursively applies
the expansions to the irreducible IPR fullerenes using an adapted version for IPR
fullerenes of the isomorphism rejection method from Section 4.2.2.

Definitions and preliminaries

Definition 4.1 (Cluster). A k-cluster C is a plane graph where all faces except
one exterior face are triangles and has the following properties:

• All vertices of C have degree at most 6.

• Vertices which are not on the boundary of C have degree 5 or 6.

• C contains exactly k vertices with degree 5 which are not on the boundary.

• No two vertices with degree 5 which are not on the boundary are adjacent.

• Vertices with degree 5 which are not on the boundary are at distance at least
2 from the boundary.

• Between any two vertices a, b of C which have degree 5 and which are not
on the boundary, there is a path P from a to b so that each edge on P

contains exactly one vertex with degree 5 which is not in the boundary.

• No subgraph of C is a k-cluster.

A k-cluster for which k is not specified is sometimes just called a cluster.
We also assign a colour to the vertices of a cluster: vertices which are on the
boundary of the cluster have colour 6 and the colour of the vertices which are
not on the boundary is equal to their degree. We also call a vertex with colour 5
a 5-vertex and a vertex with colour 6 a 6-vertex.

94 Generation of fullerenes

We say that a dual fullerene G contains a cluster C if and only if C is a
subgraph of G and every vertex on the boundary of C has degree 6 in G.

Definition 4.2 (Locally reducible cluster). A cluster is locally reducible if there
exists an L or B-reduction where the active vertices of the reduction are part of
the cluster such that the reduced cluster does not contain any adjacent 5-vertices.

Note that the reduced cluster is not necessarily a cluster. Clusters which are
not locally reducible are called irreducible.

Lemmas 4.11 and 4.12 are useful for the proof of Lemma 4.13.

Lemma 4.11. Given a dual fullerene G and a reduction. If v, w ∈ V (G) are at
distance d in G and v nor w are active vertices of the reduction, then v and w

are at distance at least d− bd+1
3 c in the reduced dual fullerene.

Proof. Each time the reduction crosses the shortest path P between v and w, the
distance between v and w decreases by at most one. All vertices involved in a
reduction of a dual fullerene have to be distinct. Thus each time the reduction
crosses P , 3 vertices of P become part of the reduction patch as can be seen in
Figure 4.15. So if the reduction crosses P k times, P must contain at least 3k
vertices. So a reduction can cross, enter or leave a path of length d at most bd+1

3 c
times. An example for d = 5 is given in Figure 4.15.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

wv

Figure 4.15: Example for Lemma 4.11 with d = 5. The black vertices are 6-vertices

and the dashed vertices can be either 5- or 6-vertices. Here the reduction

crosses the shortest path between v and w two times.

4.3. Generation of IPR fullerenes 95

Lemma 4.12. Given a dual fullerene G and a reduction. If v, w ∈ V (G) are at
distance d in G and v is a 6-vertex which becomes a 5-vertex after reduction and
w is not an active vertex of the reduction, then v and w are at distance at least
d− bd3c in the reduced dual fullerene.

Proof. Each time the reduction crosses the shortest path between v and w the
distance between v and w decreases by at most one. Since all vertices involved
in a reduction of a dual fullerene have to be distinct and since v is involved in
the reduction, it can cross a path of length d from v to w at most bd3c times. An
example for d = 3 is given in Figure 4.16.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

wv

Figure 4.16: Example for Lemma 4.12 with d = 3. The white vertices are 5-vertices,

the black vertices are 6-vertices and the dashed vertices can be either.

Here the reduction crosses the shortest path between v and w once.

Lemma 4.13. A dual IPR fullerene which contains a locally reducible cluster is
reducible to a smaller dual IPR fullerene.

Proof. Given a dual IPR fullerene G which contains a locally reducible cluster
C. Let G′ be the dual fullerene obtained by applying a reduction from C. The
only possibility such that G′ would not be IPR is that a 5-vertex which is part of
C or a 6-vertex of C which becomes a 5-vertex after reduction would be adjacent
to a 5-vertex which is not part of the cluster.

Let v be a 5-vertex of G which is not part of C. It follows from Definition 4.1
that 5-vertices which are not part of the cluster, are at distance at least 3 from
5-vertices which are part of the cluster.

96 Generation of fullerenes

Let w be a 5-vertex which is in C and which is not an active vertex of the
reduction. It follows from Lemma 4.11 that v and w are at distance at least 2 in
G′.

Now let w be a 6-vertex which becomes a 5-vertex after reduction. Since w
is adjacent to a 5-vertex in C, it follows from Definition 4.1 that v and w are at
distance at least 2 in G. Thus it follows from Lemma 4.12 that v and w are at
distance at least 2 in G′.

Thus G′ does not contain any adjacent 5-vertices.

Note that if a dual fullerene contains multiple clusters, they are distinct in
the sense that for every two clusters in a dual fullerene the set of 5-vertices is
disjoint, but they may have some 6-vertices in common.

Generation of clusters

In this section we describe an algorithm to generate all k-clusters (k > 0). A
vertex of a cluster-tree TC of a cluster C is a k-vertex if it is a k-vertex in C.

Definition 4.3 (Cluster-tree). A cluster-tree TC of a k-cluster C is a subgraph
of C with the following properties:

• TC is an unembedded tree.

• TC contains k 5-vertices.

• Every e ∈ E(TC) contains exactly one 5-vertex.

• All vertices with degree 1 in TC are 5-vertices

Every k-cluster C contains a cluster-tree TC , since such a cluster-tree can be
obtained from C as follows:

• Let G be the graph consisting of all paths between any two 5-vertices of C
such that each edge e ∈ E(G) contains exactly one 5-vertex.

• Let SG be a spanning tree of G.

• Remove all 6-vertices with degree 1 from SG.

Cluster-trees are constructed by recursively applying construction operations
I and II from Figure 4.17 to a single 5-vertex. The white vertices represent 5-
vertices and the black ones are 6-vertices. These colour codes are also used in the

4.3. Generation of IPR fullerenes 97

other figures in the remainder of this chapter. The operations are only applied
to 5-vertices (respectively 6-vertices) which have degree less than 5 (respectively
6).

Operation I Operation II

Figure 4.17: The construction operations for cluster-trees.

Lemma 4.14. Every cluster-tree can be generated by recursively applying oper-
ations I and II to a single 5-vertex.

Proof. We will prove this by showing that every cluster-tree can be reduced to a
smaller cluster-tree by the inverse of the construction operations.

Given a cluster-tree T . Assume that |V (T)| > 1 as the tree with one vertex
is clearly constructed. Take an arbitrary degree 1 vertex of T and call it v. It
follows from Definition 4.3 that v is a 5-vertex and that its only neighbour w
is a 6-vertex, so the degree of w is at least 2. If w has degree 2, the inverse
of operation II can be applied and if its degree is larger than 2, the inverse of
operation I can be applied. So T is reducible to a smaller cluster-tree.

If 6-vertices have degree less than 6 in a cluster, we represent the remaining
incident edges of those 6-vertices by semiedges. We will describe the generation
algorithm for clusters in terms of the reduction. The reduction operations are
shown in Figure 4.18 and are performed on embedded graphs. Vertices which can
be either 5- or 6-vertices are drawn as dashed white vertices and the small white
triangles represent one or more edges. The reduction procedure of a cluster C is
as follows: every cluster contains a cluster-tree, so choose an arbitrary cluster-tree
TC of C and then recursively apply reduction operations (a) and (b). When the
graph can no longer be reduced, all semiedges are removed. Reduction operation
(a) is only applied if the edge e which is replaced by 2 semiedges is not in E(TC)
and if it is part of the boundary of the current plane graph. Reduction (a) replaces
an edge of a triangle by 2 semiedges. The vertices shown in reduction (a) from
Figure 4.18 can be 5-vertices or 6-vertices, but the graph should not contain
adjacent 5-vertices (so a triangle can contain at most one 5-vertex). Reduction
(b) replaces a 6-vertex with 5 semiedges by a semiedge.

98 Generation of fullerenes

construction

reduction

Operation (b)

construction

reduction

Operation (a)

boundary

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

Figure 4.18: The operations for clusters.

Lemma 4.15. The reduction procedure reduces C to TC .

Proof. The reduction procedure recursively applies operations (a) and (b) to C
until the graph can no longer be reduced. We then remove all semiedges and call
this irreducible graph G. We will show that G is TC .

Since the reduction does not remove edges e ∈ E(TC), TC is a subgraph of G.
If G contains cycles, it contains triangles since operation (a) only reduces

edges which are part of the boundary. But if G contains triangles, it can be
reduced by operation (a). Thus G does not contain cycles.

Let V ′ = V (G) \ V (TC). All vertices v ∈ V ′ are 6-vertices and G does not
contain 6-vertices of degree 1, else it would be reducible by operation (b). Since
G and TC are trees we have:

|E(G)| = |V (G)| − 1

= |V (TC)|+ |V ′| − 1

= |E(TC)|+ |V ′| (4.1)

Let E′ = E(G) \ E(TC). If |V ′| > 0 and since all vertices in V ′ have degree
at least 2, |E′| is minimal if all vertices in V ′ have degree 2, so |E′| is at least
2|V ′|+2

2 . Thus we have: |E(G)| ≥ |E(TC)|+ 2|V ′|+2
2 = |E(TC)|+ |V ′|+1. But this

is a contradiction to equation 4.1, so V ′ has to be emty and thus V (G) = V (TC).
We also have |V (G)| = |E(G)| + 1 = |E(TC)| + |E′| + 1. Since |V (G)| =

|V (TC)|, we have |V (TC)| = |E(TC)| + |E′| + 1. So |E′| = 0 since TC is a tree.
Thus G is TC .

The construction algorithm for k-clusters is the inverse of the reduction pro-
cedure and is as follows:

• Generate all non-isomorphic k-cluster-trees.

4.3. Generation of IPR fullerenes 99

• Given a k-cluster-tree T . Add semiedges to T such that every 5-vertex
(respectively 6-vertex) of T has degree 5 (respectively degree 6).

• Embed T in all possible ways.

• Given an embedding of T . Recursively apply the inverse of reduction opera-
tions (a) and (b) from Figure 4.18 to T . The inverse of reduction operation
(b) is only applied to vertices at distance at most 1 from a 5-vertex, such
that the new 6-vertex is at distance at most 2 from a 5-vertex.

Since there are only a small number of k-cluster-trees, we use isomorphism
rejection by lists to avoid isomorphic copies (see Section 1.3). More specifically
we compute a canonical labelling of each generated cluster-tree and keep a list
of the canonical labellings of the cluster-trees which were generated so far. The
recursion is only continued for cluster-trees which were not generated before.

The construction algorithm only outputs clusters which do not contain ad-
jacent 5-vertices. The generated k-clusters are then tested for local reducibility
and only the irreducible ones are output. Since there are only few irreducible
clusters, we apply isomorphism rejection by lists to avoid isomorphic copies.

Irreducibility of k-clusters (1 ≤ k ≤ 6)

Lemma 4.16. All dual IPR fullerenes which contain only 1-clusters are reducible
to a smaller dual IPR fullerene.

Proof. In [65] it was proven that in a dual IPR fullerene, the shortest path be-
tween two 5-vertices forms a valid L or B-reduction (not necessarily to a dual
IPR fullerene). Each cluster contains one 5-vertex, thus all vertices at distance
at most 2 from each 5-vertex are 6-vertices.

Given a dual IPR fullerene G. Let G′ be the graph obtained by applying the
shortest reduction between two 5-vertices a, b ∈ V (G). Let a′ (respectively b′)
be the 6-vertex in G which is adjacent to a (respectively b) which is transformed
into a 5-vertex by the reduction. It follows from Lemma 4.11 that the distance
in G′ between 5-vertices which were not involved in the reduction is at least 2. It
follows from Lemma 4.12 that the distance in G′ between a′ (or b′) and a 5-vertex
which is not modified by the reduction is at least 2.

Suppose a and b are at distance d in G. Note that d is at least 3 since a
and b are part of a different cluster. Since we performed the shortest reduction
between a and b, a′ and b′ are at distance at least d − 2 in G′. If d > 3 there is
not a problem. If d = 3, a′ and b′ could be at distance 1 in G′. However by using

100 Generation of fullerenes

a similar argument as in the proof of Lemma 4.6 from Section 4.2.3 this would
imply that G has a non-trivial cyclic 5-edge-cut and is thus a type-(5,0) nanotube.
But this is not possible since G is IPR. Thus G′ is a dual IPR fullerene.

Using a program based on the algorithm from Section 4.3.2 we generated all
k-clusters (for a given k) and tested the generated clusters for reducibility. Later
in this section, we will describe how we tested the correctness of our programs.
We obtained the following results:

Observation 4.17. All k-clusters with k ∈ {2, 3, 5} are locally reducible.

Applying Lemma 4.13 to Observation 4.17 gives us the following corollary:

Corollary 4.18. Every dual IPR fullerene which contains a k-cluster (k ∈
{2, 3, 5}) is reducible to a smaller dual IPR fullerene.

Observation 4.19. There is exactly one 4-cluster which is not locally reducible.

Figure 4.19: A locally irreducible 4-cluster.

This cluster is depicted in Figure 4.19. The four 5-vertices are white and the
other vertices are 6-vertices. Every dual IPR fullerene which contains this cluster
has a B2,2-reduction to a smaller dual IPR fullerene unless the vertex x displayed
in Figure 4.20a is a 5-vertex. The path of vertices which is going to be reduced by
the B2,2-reduction is drawn with dashed edges (assuming x is not a 5-vertex). In
principle x can be a vertex which is part of the cluster, but this is not a problem
for the reduction. If x is a 5-vertex, there is an L2-reduction which yields a dual
IPR fullerene. This is shown in Figure 4.20b. The reduced dual fullerene is IPR
since y is a 6-vertex, otherwise the dual fullerene before reduction was not IPR.
In principle y might be identical to one of the vertices which is part of the cluster.
This gives us the following corollary:

4.3. Generation of IPR fullerenes 101

Corollary 4.20. Every dual IPR fullerene which contains a 4-cluster is reducible
to a smaller dual IPR fullerene.

x

(a)

x y

(b)

Figure 4.20: A locally irreducible 4-cluster which has a B2,2-reduction (i.e. Fig-

ure 4.20a) or an L2-reduction (i.e. Figure 4.20b).

Using the generator for k-clusters we also obtained the following result:

Observation 4.21. There are exactly six 6-clusters which are not locally re-
ducible.

Figure 4.21: A locally irreducible 6-cluster, called straight-cluster.

The first cluster is depicted in Figure 4.21. The six 5-vertices are white and
the other vertices are 6-vertices. We call this a straight-cluster. Every dual IPR
fullerene which contains this cluster has an L6-reduction to a smaller dual IPR

102 Generation of fullerenes

fullerene unless vertex a or b displayed in Figure 4.22a is a 5-vertex. This is shown
in Figure 4.22a. Also here a and b may be part of the cluster. The path of vertices
which is going to be reduced by the L6-reduction is drawn with dashed edges. If
a or b is a 5-vertex, there is an L2-reduction which yields an IPR fullerene. This
is shown in Figure 4.22b where it is assumed that a is a 5-vertex. The reduced
dual fullerene is IPR since b is a 6-vertex, otherwise the original dual fullerene
was not IPR. This gives us the following corollary:

Corollary 4.22. Every dual IPR fullerene which contains a straight-cluster is
reducible to a smaller IPR fullerene.

a b

(a)

a b

(b)

Figure 4.22: Straight-cluster which has an L6-reduction (i.e. Figure 4.22a) or an L2-

reduction (i.e. Figure 4.22b).

We call the cyclic sequence of the degrees of the vertices in the boundary of
a patch in clockwise or counterclockwise order the boundary sequence of a patch.

A cap is a fullerene patch which contains 6 pentagons and has a boundary
sequence of the form (23)l(32)m. Such a boundary is represented by the param-
eters (l,m). In the literature, the vector (l,m) is also called the chiral vector
(see [45]). When we speak about caps in the remainder of this text, we more
specifically mean caps with a boundary sequence of the form (23)l(32)m. Not
every patch of 6 pentagons can be completed with hexagons to a patch with a
boundary sequence of the form (23)l(32)m. An example of such a patch is given
in Figure 4.23a (this example comes from [74]): every way to complete this patch
with hexagons leads to a conflict. Figure 4.23b gives an example of a partial filling
which cannot be completed because the dashed edge (which is enforced) leads to
an octagon while only hexagons are allowed. But the patches with 6 pentagons

4.3. Generation of IPR fullerenes 103

which we will discuss in the remainder of this section all can be completed with
hexagons to a boundary of the form (23)l(32)m.

(a) (b)

Figure 4.23: A patch with 6 pentagons which cannot be completed with hexagons

to a patch with a boundary sequence of the form (23)l(32)m (i.e. Fig-

ure 4.23a). Figure 4.23b gives an example of a partial filling which cannot

be completed because there would be an octagon.

It follows from the results of Brinkmann [10] that a (fullerene) patch which
contains 6 pentagons and which can be completed with hexagons to a boundary of
the form (23)l(32)m has unique boundary parameters, i.e. it cannot be completed
to a boundary with parameters (l′,m′) where l′ is different from l or m′ is different
from m. A cap with boundary parameters (m, l) is the mirror image of a cap
with boundary (l,m). A cap has a valid reduction if and only if its mirror image
is also reducible. Therefore we will assume that l ≥ m.

The second irreducible 6-cluster is depicted in Figure 4.24. We call this a
distorted star-cluster. By checking all possible reductions, it can be seen that
for any dual IPR fullerene which contains this cluster there are no reductions to
a smaller dual IPR fullerene where both 5-vertices of the reduction are in the
distorted star-cluster.

Caps which contain the dual of a distorted star-cluster as a subgraph, have
boundary parameters (6,5). Adding a ring of hexagons (or a ring of 6-vertices
in the dual) to a cap does not change the boundary parameters of the cap (see
Figure 4.25). Note that there are multiple ways of gluing together two caps with
boundary parameters (l, 0) to a fullerene. We call an (l,m) ring of hexagons of
an IPR fullerene reducible if there is a way of removing that ring of hexagons

104 Generation of fullerenes

a

c

b

��
��
��

��
��
��

Figure 4.24: A locally irreducible 6-cluster, called distorted star-cluster.

such that the reduced fullerene is still IPR.
We call a cap which contains at least one pentagon in its boundary a kernel .

Clearly, every cap has a kernel.

Figure 4.25: Adding a ring of hexagons to an IPR cap with boundary parame-

ters (6,5).

The program from Brinkmann et al. described in [36] generates all nanotube
caps which are non-isomorphic as infinite half-tubes. This is done by first gener-
ating all non-isomorphic nanotube caps and then filtering out the ones which are
non-isomorphic as infinite half-tubes. We modified the program so it outputs all
non-isomorphic nanotubes (thus also the ones which are isomorphic as infinite
half-tubes). By using this modified version of the generator, we were able to gen-

4.3. Generation of IPR fullerenes 105

erate all IPR (6,5) kernels. The largest one has 73 vertices, so an IPR fullerene
which contains a (6,5) cap and has no reducible (6,5) hexagon rings has at most
2 · 73 + 2 · (6 + 5) = 168 vertices. The 2 · (6 + 5) represents a ring of hexagons,
since the fullerene consisting of 2 IPR kernels may not be IPR.

Using the corrected version of fullgen (see Section 4.4), we determined all IPR
fullerenes up to 168 vertices which have a (6,5) boundary and do not have any
reducible (6,5) hexagon rings. There are 11 such fullerenes and each of them is
reducible to a smaller IPR fullerene. The largest one has 106 vertices. These
results have been independently confirmed by our generator for IPR fullerenes
which uses a filter (see Section 4.3.1). All of the dual (6,5) caps in these 11
dual IPR fullerenes contain a connected subgraph with six 5-vertices which is
isomorphic to a subgraph of the distorted star-cluster.

Consider the directed edge (a, b) from the distorted star-cluster from Fig-
ure 4.24. If a ring of 6-vertices is added to a dual (6,5) cap which contains (a, b),
the straight path starting from (a, b) still exits the cap at the same relative po-
sition in the larger dual cap. Given a dual IPR fullerene F which has a (6,5)
boundary. If there is an L or B-reduction which starts from (a, b) and where the
second 5-vertex of the reduction is part of the other dual cap of F , then the dual
fullerene F ′ obtained by adding a (6,5) ring of 6-vertices to F is still reducible
by the same reduction (but which now has one additional 6-vertex). So if the re-
duction in F was an Lx reduction, it will be an Lx+1 reduction in F ′. (Note that
a reduction where a is one of the 5-vertices involved in the reduction and where
b is part of the reduction path can only produce a smaller dual IPR fullerene if
vertex c (from Figure 4.24) is the 6-vertex which is transformed into a 5-vertex
by the reduction.)

We then added (6,5) rings of 6-vertices to these 11 dual fullerenes which have
a (6,5) boundary and do not have any reducible (6,5) rings of 6-vertices. When 5
rings of 6-vertices have been added, there is a reduction from (a, b) to the other
dual cap in each of the 11 cases. So all dual fullerenes of these 11 types with at
least 5 (6,5) rings of 6-vertices are reducible to a smaller dual IPR fullerene. We
also verified that each of these 11 types of dual fullerenes with less than 5 rings
of 6-vertices are reducible as well.

This gives us the following corollary:

Corollary 4.23. Every dual IPR fullerene which contains a (6,5) boundary is
reducible to a smaller dual IPR fullerene.

There is a dual (6,5) kernel which is a subgraph of the distorted star-cluster.
So if a dual fullerene contains a distorted star-cluster, it also has a dual (6,5)

106 Generation of fullerenes

kernel and thus also a (6,5) boundary. This gives us:

Corollary 4.24. Every dual IPR fullerene which contains a distorted star-cluster
is reducible to a smaller dual IPR fullerene.

The remaining 4 locally irreducible 6-clusters are depicted in Figure 4.26. We
call them cluster I, II, III and IV respectively. Dual caps which contain cluster
I, II, III or IV as a subgraph have boundary parameters (5,5), (8,2), (9,0) and
(10,0) respectively.

(a) cluster I (b) cluster II

(c) cluster III (d) cluster IV

Figure 4.26: Four irreducible 6-clusters.

By checking all possible reductions which involve a 5-vertex which is part of
one of these four clusters, it can be seen that dual IPR fullerenes which contain

4.3. Generation of IPR fullerenes 107

one of these clusters do not have a reduction to a smaller dual IPR fullerene
where at least one of the 5-vertices involved in the reduction is in one of these
four clusters. We call clusters with this property globally irreducible. This gives
us:

Corollary 4.25. Every dual IPR fullerene which contains two 6-clusters c and
d with c, d ∈ {I, II, III, IV } is not reducible to a smaller dual IPR fullerene.

Also note that dual caps which contain a connected subgraph of six 5-vertices
which is isomorphic to a subgraph of a cluster c ∈ {I, II, III, IV } have different
boundary parameters for each different c. Therefore dual IPR fullerenes which
contain two 6-clusters c and d with c ∈ {I, II, III, IV } and d ∈ {I, II, III, IV }\
{c} do not exist.

All dual caps which contain a connected subgraph with six 5-vertices which
is isomorphic to a subgraph of cluster I-IV are globally irreducible as well. So all
IPR fullerenes which can be decomposed into 2 caps where both caps are globally
irreducible are not reducible to a smaller IPR fullerene.

By using the generator for caps from Brinkmann et al. [36], we were able to
determine that all dual IPR caps with boundary parameters (5,5) (respectively
(8,2) and (9,0)) contain a connected subgraph with six 5-vertices which is isomor-
phic to a subgraph of cluster I (respectively II and III). However there are caps
with boundary parameters (10,0) which do not contain a connected subgraph
with six 5-vertices which is isomorphic to a subgraph of cluster IV. This gives us
the following corollary:

Corollary 4.26. Every IPR fullerene which contains a (5,5), (8,2) or (9,0)
boundary is not reducible to a smaller IPR fullerene.

We will now show that all dual IPR fullerenes which have a (10,0) boundary
are reducible, except for dual fullerenes where both caps contain a connected
subgraph with six 5-vertices which is isomorphic to a subgraph of cluster IV and
for a limited number of dual fullerenes which contain a 12-cluster.

By using the modified version of the generator for caps from Brinkmann et
al. [36], we were able to generate all IPR (10,0) kernels. The largest one has 60
vertices, so an IPR fullerene which contains a (10,0) cap and has no reducible
(10,0) hexagon rings has at most 2 · 60 + 2 · 10 = 140 vertices. Using fullgen
we determined all of these fullerenes. These results were also independently
confirmed by our generator for IPR fullerenes which uses a filter.

All of these dual fullerenes are reducible, except the ones where both dual
caps contain a connected subgraph with six 5-vertices isomorphic to a subgraph

108 Generation of fullerenes

of cluster IV and a limited number of dual fullerenes which contain a 12-cluster.
Later in this section, we will show which dual fullerenes containing a 12-cluster
are irreducible.

We verified that for each of these reducible fullerenes F there is an r such
that the fullerenes obtained by adding r (10, 0) rings of hexagons to F have a
reduction which is entirely within one cap. We also verified that all fullerenes
obtained from F by adding less than r (10, 0) rings of hexagons are reducible as
well. The irreducible dual fullerenes which contain a 12-cluster where the dual
caps do not contain a connected subgraph with six 5-vertices which is isomorphic
to a subgraph of cluster IV also become reducible if a (10, 0) ring of 6-vertices is
added. Also for these dual fullerenes there is an r such that the dual fullerenes
obtained by adding r (10, 0) rings of 6-vertices have a reduction which is entirely
within one dual cap (and all of these dual fullerenes obtained by adding less than
r (10, 0) rings of 6-vertices are reducible as well).

This gives us the following corollary:

Corollary 4.27. Every dual IPR fullerene which contains a (10,0) boundary is
reducible to a smaller dual IPR fullerene, except for dual fullerenes where both
dual caps contain a connected subgraph with six 5-vertices which is isomorphic to
a subgraph of cluster IV and for a limited number of dual fullerenes which contain
a 12-cluster.

Together with the other corollaries from this section, this gives us:

Corollary 4.28. All dual IPR fullerenes which contain a 6-cluster are reducible
to a smaller dual IPR fullerene, unless the dual fullerene contains 2 clusters c
with c ∈ {I, II, III, IV }

Irreducibility of k-clusters (7 ≤ k ≤ 12)

Now we will prove that all dual IPR fullerenes which contain a k-cluster with
7 ≤ k ≤ 11 are reducible to a smaller dual IPR fullerene. We will also prove
that there are only a limited number of dual fullerenes which contain a 12-cluster
which are not reducible to a smaller dual IPR fullerene and determine them.

For a given patch with k pentagons (7 ≤ k ≤ 12), we can compute an upper
bound for the number of vertices of a fullerene which contains this patch by
using the results from [7]. Suppose for example that we have a patch P with
7 pentagons, hP hexagons and boundary length l. We can determine an upper
bound for the number of hexagons h in a patch with the same boundary length
and 5 pentagons by using Theorem 12 of [7] as follows:

4.3. Generation of IPR fullerenes 109

l + 1
2

≥ d
√

2h+
113
4

+
1
2
e

l

2
≥

√
2h+

113
4

h ≤ l2 − 113
8

So the number of faces in a fullerene containing P is at most 7+hP+5+ l2−113
8 .

For patches with k (8 ≤ k ≤ 12) pentagons, an upper bound for the number of
faces of a fullerene which contains such a patch is obtained in a similar way. For
a patch with a given number of pentagons, the upper bound increases as the
number of hexagons in the patch and its boundary length increases.

Earlier in this section, we have proven that every cluster has a cluster-tree.
For a k-cluster C and a cluster-tree TC of C, let degC : V (C)→ N stand for the
degree of a vertex in C and degTC

: V (TC)→ N for the degree of a vertex in TC .
In a patch which is the dual of TC , a face corresponding with a vertex v from TC
has degC(v) − degTC

(v) edges on the boundary. When induced edges are added
between vertices of TC , the boundary length with never increase. Therefore an
upper bound for the boundary length bTC

of the dual of such a cluster-tree TC
of a k-cluster C is given by:

bTC
≤

∑
v∈V (TC)

(degC(v)− degTC
(v))

= 5k + 6(V (TC)− k)−
∑

v∈V (TC)

degTC
(v)

= 5k + 6(V (TC)− k)− 2(V (TC)− 1)

= 4V (TC)− k + 2

Thus the boundary length is maximal if V (TC) is maximal.

Lemma 4.29. A cluster-tree of a k-cluster has at most 2k − 1 vertices.

Proof. Given a k-cluster-tree T . Let n6 stand for the number of 6-vertices in
T , so |V (T)| = k + n6. Since T is a tree, we have |E(T)| = k + n6 − 1. Since
6-vertices have degree at least 2 and since there are no adjacent 6-vertices, |E(T)|
is at least 2n6. This gives us:

110 Generation of fullerenes

2n6 ≤ k + n6 − 1

⇐⇒ n6 ≤ k − 1

⇐⇒ k + n6 ≤ 2k − 1

So the boundary length of a cluster-tree of a k-cluster is at most 4(2k − 1)−
k + 2 = 7k − 2. Using the results from [7], we can now determine an upper
bound for the number of vertices of a fullerene which contains the dual of a given
cluster-tree TC of a 7-cluster C.

We already determined that a patch with 5 pentagons and boundary length
l has at most l2−113

8 hexagons. So a fullerene containing the dual of TC has

at most |V (TC)| + 5 +
b2TC
−113

8 faces. The fact that TC is a cluster-tree allows

us to improve the upper bound of
b2TC
−113

8 on the number of hexagons h in a
patch with 5 pentagons which has the same boundary as TC . Since the leafs of a
cluster-tree are 5-vertices and the neighbour of a leaf is a 6-vertex, a part of the
boundary of TC has the shape of Figure 4.27a. The complement P̄ of this patch
in a fullerene (i.e. the shaded region in Figure 4.27a) contains 5 pentagons and
h hexagons. If P̄ exists, a patch with one additional face as in Figure 4.27b also
exists. The pentagon in the boundary of this patch can be modified to a hexagon
as in Figure 4.27c. This patch P̄ ′ contains 5 pentagons and h+1 hexagons and its
boundary length is bTC

−2. So an upper bound for the number of hexagons in P̄ ′

is given by: h+ 1 ≤ (bTC
−2)2−113

8 (which improves the old bound h ≤ b2TC
−113

8).
Since TC is a cluster-tree, all leafs are 5-vertices and since TC contains at

least 3 vertices, there are at least 2 leafs. So there are at least two parts of
the boundary which have the shape of Figure 4.27a. This second place can also
be modified as in Figure 4.27c, which gives us: h + 2 ≤ (bTC

−4)2−113

8 . Thus a

fullerene containing the dual of TC has at most |V (TC)| + 5 + (bTC
−4)2−113

8 − 2
faces.

Since |V (TC)| ≤ 2k − 1 and bTC
≤ 7k − 2, such a fullerene has at most

2 · 7− 1 + 5 + (7·7−2−4)2−113
8 − 2 = 233 faces or 2 · (233− 2) = 462 vertices. We

computed the maximal number of vertices of a fullerene containing a k-cluster
(8 ≤ k ≤ 12) in a similar way. The results are shown in Table 4.1.

Note that this upper bound is very coarse since the patches with the largest
number of hexagons given in [7] for a given number of pentagons and boundary

4.3. Generation of IPR fullerenes 111

(a) (b) (c)

Figure 4.27: Part of the boundary of a k-cluster tree (i.e. Figure 4.27a) and how it

can be modified to obtain a better bound on the number of faces in the

complementary part (i.e. Figures 4.27b and 4.27c).

k max nv
7 462
8 330
9 296
10 286
11 286
12 292

Table 4.1: Upper bound for the number of vertices of a fullerene containing the dual

of a k-cluster.

length are not IPR if the patch contains at least 2 pentagons.
Using fullgen we generated all IPR fullerenes up to 330 vertices and tested

them for reducibility. This was independently verified by our generator for IPR
fullerenes from Section 4.3.1. We obtained the following results:

Observation 4.30. All dual IPR fullerenes which contain a k-cluster (8 ≤ k ≤
11) are reducible to a smaller dual IPR fullerene.

Observation 4.31. There are exactly 56 irreducible dual IPR fullerenes which
contain a 12-cluster. The largest one has 58 vertices or 2 · (58− 2) = 112 faces.

Observation 4.32. There are exactly 36 irreducible dual IPR fullerenes which
contain a 12-cluster and which do not have a dual cap which contains a connected
subgraph with six 5-vertices which is isomorphic to a subgraph of cluster I, II, III
or IV.

112 Generation of fullerenes

It was not feasible to generate all IPR fullerenes up to 462 vertices with fullgen.
However, our generator for locally irreducible clusters was still fast enough to
generate all locally irreducible 7-clusters. By using the dual patches P of these
specific 7-clusters which have boundary length bP in the formula |V (P)| + 5 +
b2P−113

8 , we were able to determine that fullerenes which contain the dual of one
of these locally irreducible 7-clusters have at most 166 vertices. Using fullgen we
generated all these fullerenes and tested them for reducibility. We obtained the
following result (which was independently confirmed by our generator for IPR
fullerenes which uses a filter):

Corollary 4.33. All dual IPR fullerenes which contain a 7-cluster are reducible
to a smaller dual IPR fullerene.

Actually we only had to prove that dual IPR fullerenes which contain one 7-
cluster and five 1-clusters (or one 8-cluster and four 1-clusters etc.) are reducible.
Since e.g. a dual fullerene consisting of a 7-cluster and a 5-cluster is always
reducible since all 5-clusters are locally reducible (see Observation 4.17).

Together, Corollaries 4.16, 4.17, 4.20, 4.28, 4.30, 4.31 and 4.33 give the fol-
lowing theorem:

Theorem 4.34. The class of irreducible dual IPR fullerenes consists of an in-
finite family of dual IPR fullerenes which contain two 6-clusters c with c ∈
{I, II, III, IV } and 36 dual fullerenes which contain a 12-cluster.

Generation algorithm

In order to generate all IPR fullerenes with n vertices, the generation algorithm
recursively applies the construction operations to all irreducible IPR fullerenes
with at most n vertices. The construction operations are the same as the op-
erations for the generation of all dual fullerenes from Section 4.2, but here only
expansions for which the expanded dual fullerene is also IPR are performed.
Unfortunately the lemmas from Section 4.2.3 which allow to determine a good
bound on the length of the shortest reduction cannot be applied for the recursive
generation of IPR fullerenes. The isomorphism rejection routines are also the
same as in Section 4.2, but here only reductions to smaller IPR fullerenes are
considered.

The four infinity families of irreducible dual IPR nanotube fullerenes which
contain two 6-clusters c with c ∈ {I, II, III, IV } consist of dual caps with bound-
ary parameters (5, 5), (8, 2), (9, 0) or (10, 0), respectively. They are generated by

4.4. Testing and results 113

adding rings of 6-vertices with the respective parameters in all possible ways.
Since there are only a small number of irreducible IPR fullerenes, we use iso-
morphism rejection by lists (see Section 1.3) to make sure that no isomorphic
irreducible IPR fullerenes are output. For example there are 23 098 573 580 IPR
fullerenes with up to 300 vertices while only 162 of them are irreducible.

In Section 4.4, we compare the running time of this generator with fullgen
and the generator which uses a filter from Section 4.3.1.

Open questions

When classifying these irreducible IPR fullerenes we encountered some open ques-
tions. Future work might include solving these open questions:

• Can every fullerene be split into two caps? By performing a computer
search, we verified that all fullerenes up to 200 vertices can be split into
two caps.

• Does a 12-cluster uniquely determine a dual fullerene? Or equivalently:
does a boundary sequence uniquely describe the interior of a subpatch of a
fullerene which only consists of hexagons?

It is known [18, 64] that the boundary of a hexagon patch determines the
number of faces of the patch. It is also known that the boundary sequence
uniquely describes the interior of a hexagonal patch if it is a subgraph of the
hexagonal lattice and it has been shown by Guo et al. [64] that this is not
the case if the patch is not necessarily a subgraph of the hexagon lattice.
For hexagon patches which are subgraphs of fullerenes, it is unknown.

4.4 Testing and results

4.4.1 Running times and the number of fullerenes

The running times and a comparison with fullgen are given in Table 4.2. Our
generator is called buckygen. The programs were compiled with gcc and executed
on an Intel Xeon L5520 CPU at 2.27 GHz. The running times include writing
the fullerenes to a null device.

As can be seen from that table, buckygen is significantly faster than full-
gen. Our generator constructs larger fullerenes from smaller ones, so in order to
generate all fullerenes with n vertices, all fullerenes with at most n − 4 vertices

114 Generation of fullerenes

number of time (s) fullerenes/s fullgen (s) /
vertices (buckygen) (buckygen) buckygen (s)

100 6.8 42 358 7.30
140 220 33 369 7.39
170 2 167 21 268 5.63
200 12 631 16 953 5.49
230 62 520 12 597 5.13
260 263 278 9 408 4.59
280 636 944 7 735 4.43
300 1 436 972 6 494 4.07
320 3 078 995 5 502 3.67

20–100 9.1 159 365 24.96
102–150 671 157 736 33.04
152–200 17 733 115 625 32.08
202–250 235 108 82 813 32.08

Table 4.2: Running times and generation rates for fullerenes.

have to be generated as well (recall that an L0 expansion increases the number
of vertices by 4). Fullgen does not construct fullerenes from smaller ones and
therefore the speedup of buckygen is decreasing. For an extremely large number
of vertices (more than 600 vertices), fullgen would probably be faster than our
generator. However generating all fullerenes with 600 vertices is certainly far out-
side the scope of what is computationally feasible as e.g. generating all fullerenes
with 300 vertices takes more than 1 CPU year with buckygen and generating all
fullerenes with 320 vertices already requires more than 2 CPU years. So for the
sizes which are computationally feasible, our generator is at least 3 times faster
than fullgen.

Since buckygen constructs larger fullerenes from smaller ones, generating all
fullerenes with at most n vertices gives only a small overhead compared to gener-
ating all fullerenes with exactly n vertices. In fullgen the overhead is considerably
larger as it does not construct fullerenes from smaller fullerenes. For example,
buckygen can generate all fullerenes with n ∈ [290, 300] vertices more than 15
times faster than fullgen. More comparisons can be found in the bottom part of
Table 4.2.

A comparison of the running times for generating IPR fullerenes is given in
Table 4.3. Buckygen IPR is the specialised algorithm from Section 4.3.2 which re-

4.4. Testing and results 115

number of time (s) fullerenes/s fg IPR (s) / fg IPR (s) / bg filter (s) /

vertices (bg IPR) (bg IPR) bg IPR (s) bg filter (s) bg IPR (s)

200 4 110 3 809 1.88 0.80 2.34

230 22 481 3 836 2.14 0.96 2.23

260 104 831 3 456 2.18 1.03 2.21

280 274 748 3 066 2.19 1.10 2.00

300 678 331 2 686 2.19 1.16 1.88

320 1 591 041 2 329 1.99 1.14 1.75

340 3 613 915 1 981 1.73 1.09 1.60

360 8 135 063 1 625 1.51 1.05 1.43

0–140 17.5 33 055 19.62 1.99 9.85

290–300 776 910 11 753 7.83 4.11 1.91

Table 4.3: Running times and generation rates for IPR fullerenes. Bg stands for

buckygen and fg stands for fullgen.

cursively generates IPR fullerenes from smaller fullerenes. Buckygen filter is the
algorithm from Section 4.3.1 which generates all fullerenes with some look-aheads
and a filter for IPR fullerenes. Buckygen IPR is considerably faster than fullgen
for generating IPR fullerenes, but also in this case the speedup is decreasing.
This is again because fullgen constructs fullerenes directly instead of construct-
ing them from smaller fullerenes as in buckygen. On the other hand, generating
all fullerenes for a range of vertices is much more efficient with buckygen. For ex-
ample, buckygen IPR can generate all IPR fullerenes with n ∈ [290, 300] vertices
more than 7 times faster than fullgen. The reason that the speedup of buckygen
IPR compared to buckygen filter is decreasing, is because the lemmas from Sec-
tion 4.2.3 which allow to determine a good bound on the length of the shortest
reduction cannot be applied to the specialised generation algorithm which re-
cursively generates IPR fullerenes from smaller ones. Furthermore the ratio of
IPR fullerenes among all fullerenes is increasing (see Table 4.4), thus the ratio
of fullerenes which are rejected by buckygen filter because they are not IPR is
decreasing. So for generating IPR fullerenes with an extremely large number of
vertices, buckygen filter would be most efficient.

Buckygen was used to generate all fullerenes up to 400 vertices. Contradicting
results with fullgen led to the detection of a programming error in fullgen. Due
to this error some fullerenes were missed starting from 136 vertices and IPR
fullerenes starting from 254 vertices. In the meantime this bug has been fixed
and now the results of the two programs are in complete agreement up to at least

116 Generation of fullerenes

nv fullerenes IPR fullerenes percentage IPR
60 1 812 1 0.06
100 285 914 450 0.16
150 14 059 174 335 569 2.39
200 214 127 742 15 655 672 7.31
250 1 712 934 069 230 272 559 13.44
300 9 332 065 811 1 821 766 896 19.52
350 38 580 626 759 9 768 511 147 25.32
400 132 247 999 328 40 286 153 024 30.46

Table 4.4: Percentage of IPR fullerenes. nv stands for the number of vertices.

380 vertices, which is a good check of both. We also generated all IPR fullerenes
up to 400 vertices by using buckygen IPR. These results were independently
confirmed by buckygen filter and fullgen IPR up to 380 vertices. We give the
counts in Tables 4.5–4.9, which correct those in the article of Brinkmann and
Dress [19] where they overlap. By applying the program plantri md6 from [34]
to the generated fullerenes, we were also able to generate all cubic plane graphs
with maximum face size 6 and minimum face size 3 up to 176 vertices and all
cubic plane graphs with maximum face size 6 and minimum face size 4 up to 316
vertices. Thurston [118] proved that the number of fullerenes with 2n vertices
grows at the rate of n9. The fullerenes themselves can be downloaded from [26] for
small sizes. We decided to run independent tests up to 380 vertices with fullgen in
order to also have an independent check of the minimality of the counterexample
to the spiral conjecture (see Section 4.4.2). Independent computations for more
than 380 vertices or using buckygen for more than 400 vertices would be possible,
but would require an enormous amount of computing time.

4.4. Testing and results 117

nv nf min. face 3 min. face 4 fullerenes IPR fullerenes

4 4 1 0 0 0
6 5 1 0 0 0
8 6 1 1 0 0
10 7 4 1 0 0
12 8 8 2 0 0
14 9 11 4 0 0
16 10 23 7 0 0
18 11 34 10 0 0
20 12 54 22 1 0
22 13 83 32 0 0
24 14 125 58 1 0
26 15 174 92 1 0
28 16 267 151 2 0
30 17 365 227 3 0
32 18 509 368 6 0
34 19 706 530 6 0
36 20 963 805 15 0
38 21 1 270 1 158 17 0
40 22 1 708 1 695 40 0
42 23 2 204 2 373 45 0
44 24 2 876 3 354 89 0
46 25 3 695 4 595 116 0
48 26 4 708 6 340 199 0
50 27 5 925 8 480 271 0
52 28 7 491 11 417 437 0
54 29 9 255 15 049 580 0
56 30 11 463 19 832 924 0
58 31 14 083 25 719 1 205 0
60 32 17 223 33 258 1 812 1
62 33 20 857 42 482 2 385 0
64 34 25 304 54 184 3 465 0
66 35 30 273 68 271 4 478 0
68 36 36 347 85 664 6 332 0
70 37 43 225 106 817 8 149 1
72 38 51 229 132 535 11 190 1
74 39 60 426 163 194 14 246 1
76 40 71 326 200 251 19 151 2
78 41 83 182 244 387 24 109 5
80 42 97 426 296 648 31 924 7
82 43 113 239 358 860 39 718 9
84 44 131 425 431 578 51 592 24
86 45 151 826 517 533 63 761 19
88 46 175 302 617 832 81 738 35

Table 4.5: Cubic plane graphs with maximum face size 6 listed with respect to their
minimum face size. Cubic plane graphs with maximum face size 6 and with
minimum face size 5 are fullerenes. nv is the number of vertices and nf is
the number of faces.

118 Generation of fullerenes

nv nf min. face 3 min. face 4 fullerenes IPR fullerenes

90 47 200 829 735 257 99 918 46
92 48 231 042 870 060 126 409 86
94 49 263 553 1 029 114 153 493 134
96 50 300 602 1 209 783 191 839 187
98 51 341 960 1 420 472 231 017 259
100 52 388 673 1 659 473 285 914 450
102 53 438 795 1 937 509 341 658 616
104 54 496 961 2 249 285 419 013 823
106 55 559 348 2 612 410 497 529 1 233
108 56 629 807 3 015 386 604 217 1 799
110 57 706 930 3 483 289 713 319 2 355
112 58 792 703 4 002 504 860 161 3 342
114 59 885 137 4 600 343 1 008 444 4 468
116 60 990 929 5 257 856 1 207 119 6 063
118 61 1 102 609 6 019 580 1 408 553 8 148
120 62 1 227 043 6 849 385 1 674 171 10 774
122 63 1 363 825 7 805 813 1 942 929 13 977
124 64 1 513 612 8 846 570 2 295 721 18 769
126 65 1 673 568 10 041 875 2 650 866 23 589
128 66 1 853 928 11 335 288 3 114 236 30 683
130 67 2 045 154 12 821 597 3 580 637 39 393
132 68 2 255 972 14 415 241 4 182 071 49 878
134 69 2 485 363 16 248 586 4 787 715 62 372
136 70 2 732 106 18 211 371 5 566 949 79 362
138 71 2 998 850 20 454 114 6 344 698 98 541
140 72 3 295 090 22 845 387 7 341 204 121 354
142 73 3 606 102 25 587 469 8 339 033 151 201
144 74 3 944 923 28 486 985 9 604 411 186 611
146 75 4 316 999 31 808 776 10 867 631 225 245
148 76 4 711 038 35 313 026 12 469 092 277 930
150 77 5 135 794 39 315 258 14 059 174 335 569
152 78 5 599 065 43 529 295 16 066 025 404 667
154 79 6 091 434 48 339 505 18 060 979 489 646
156 80 6 621 013 53 361 979 20 558 767 586 264
158 81 7 198 926 59 117 693 23 037 594 697 720
160 82 7 800 960 65 110 208 26 142 839 836 497
162 83 8 460 776 71 938 170 29 202 543 989 495
164 84 9 168 333 79 041 733 33 022 573 1 170 157
166 85 9 917 772 87 147 815 36 798 433 1 382 953
168 86 10 711 603 95 517 631 41 478 344 1 628 029
170 87 11 590 680 105 090 752 46 088 157 1 902 265
172 88 12 491 734 114 936 807 51 809 031 2 234 133
174 89 13 479 003 126 169 808 57 417 264 2 601 868
176 90 14 518 882 137 732 548 64 353 269 3 024 383

Table 4.6: Cubic plane graphs with maximum face size 6 listed with respect to their
minimum face size (continued). nv is the number of vertices and nf is the
number of faces.

4.4. Testing and results 119

nv nf min. face 4 fullerenes IPR fullerenes

178 91 150 895 768 71 163 452 3 516 365
180 92 164 343 840 79 538 751 4 071 832
182 93 179 752 024 87 738 311 4 690 880
184 94 195 420 760 97 841 183 5 424 777
186 95 213 287 269 107 679 717 6 229 550
188 96 231 489 614 119 761 075 7 144 091
190 97 252 233 869 131 561 744 8 187 581
192 98 273 226 069 145 976 674 9 364 975
194 99 297 264 792 159 999 462 10 659 863
196 100 321 450 554 177 175 687 12 163 298
198 101 349 098 672 193 814 658 13 809 901
200 102 376 999 869 214 127 742 15 655 672
202 103 408 774 872 233 846 463 17 749 388
204 104 440 627 726 257 815 889 20 070 486
206 105 477 200 827 281 006 325 22 606 939
208 106 513 632 380 309 273 526 25 536 557
210 107 555 304 108 336 500 830 28 700 677
212 108 596 974 072 369 580 714 32 230 861
214 109 644 526 803 401 535 955 36 173 081
216 110 691 786 828 440 216 206 40 536 922
218 111 746 085 995 477 420 176 45 278 722
220 112 799 648 739 522 599 564 50 651 799
222 113 861 133 064 565 900 181 56 463 948
224 114 922 082 216 618 309 598 62 887 775
226 115 991 650 902 668 662 698 69 995 887
228 116 1 060 208 550 729 414 880 77 831 323
230 117 1 139 239 947 787 556 069 86 238 206
232 118 1 216 496 915 857 934 016 95 758 929
234 119 1 305 306 936 925 042 498 105 965 373
236 120 1 392 596 607 1 006 016 526 117 166 528
238 121 1 492 525 091 1 083 451 816 129 476 607
240 122 1 590 214 959 1 176 632 247 142 960 479
242 123 1 702 998 124 1 265 323 971 157 402 781
244 124 1 812 247 954 1 372 440 782 173 577 766
246 125 1 938 356 975 1 474 111 053 190 809 628

Table 4.7: Triangle-free cubic plane graphs with maximum face size 6 listed with re-
spect to their minimum face size. nv is the number of vertices and nf is the
number of faces.

120 Generation of fullerenes

nv nf min. face 4 fullerenes IPR fullerenes

248 126 2 061 311 003 1 596 482 232 209 715 141
250 127 2 202 202 308 1 712 934 069 230 272 559
252 128 2 338 869 735 1 852 762 875 252 745 513
254 129 2 497 257 527 1 985 250 572 276 599 787
256 130 2 649 382 974 2 144 943 655 303 235 792
258 131 2 825 361 014 2 295 793 276 331 516 984
260 132 2 995 557 818 2 477 017 558 362 302 637
262 133 3 191 292 821 2 648 697 036 395 600 325
264 134 3 379 722 482 2 854 536 850 431 894 257
266 135 3 598 542 661 3 048 609 900 470 256 444
268 136 3 806 922 124 3 282 202 941 512 858 451
270 137 4 049 087 424 3 501 931 260 557 745 670
272 138 4 281 540 754 3 765 465 341 606 668 511
274 139 4 549 259 510 4 014 007 928 659 140 287
276 140 4 805 073 991 4 311 652 376 716 217 922
278 141 5 103 457 703 4 591 045 471 776 165 188
280 142 5 385 296 261 4 926 987 377 842 498 881
282 143 5 713 728 893 5 241 548 270 912 274 540
284 144 6 026 548 238 5 618 445 787 987 874 095
286 145 6 388 285 729 5 972 426 835 1 068 507 788
288 146 6 731 485 975 6 395 981 131 1 156 161 307
290 147 7 132 734 985 6 791 769 082 1 247 686 189
292 148 7 508 699 038 7 267 283 603 1 348 832 364
294 149 7 948 994 131 7 710 782 991 1 454 359 806
296 150 8 365 304 423 8 241 719 706 1 568 768 524
298 151 8 847 679 520 8 738 236 515 1 690 214 836
300 152 9 302 042 370 9 332 065 811 1 821 766 896
302 153 9 835 862 103 9 884 604 767 1 958 581 588
304 154 10 332 102 625 10 548 218 751 2 109 271 290
306 155 10 915 020 041 11 164 542 762 2 266 138 871
308 156 11 462 133 758 11 902 015 724 2 435 848 971
310 157 12 098 825 145 12 588 998 862 2 614 544 391
312 158 12 694 519 224 13 410 330 482 2 808 510 141
314 159 13 396 207 247 14 171 344 797 3 009 120 113
316 160 14 043 402 497 15 085 164 571 3 229 731 630

Table 4.8: Triangle-free cubic plane graphs with maximum face size 6 listed with re-
spect to their minimum face size (continued). nv is the number of vertices
and nf is the number of faces.

4.4. Testing and results 121

nv nf fullerenes IPR fullerenes

318 161 15 930 619 304 3 458 148 016
320 162 16 942 010 457 3 704 939 275
322 163 17 880 232 383 3 964 153 268
324 164 19 002 055 537 4 244 706 701
326 165 20 037 346 408 4 533 465 777
328 166 21 280 571 390 4 850 870 260
330 167 22 426 253 115 5 178 120 469
332 168 23 796 620 378 5 531 727 283
334 169 25 063 227 406 5 900 369 830
336 170 26 577 912 084 6 299 880 577
338 171 27 970 034 826 6 709 574 675
340 172 29 642 262 229 7 158 963 073
342 173 31 177 474 996 7 620 446 934
344 174 33 014 225 318 8 118 481 242
346 175 34 705 254 287 8 636 262 789
348 176 36 728 266 430 9 196 920 285
350 177 38 580 626 759 9 768 511 147
352 178 40 806 395 661 10 396 040 696
354 179 42 842 199 753 11 037 658 075
356 180 45 278 616 586 11 730 538 496
358 181 47 513 679 057 12 446 446 419
360 182 50 189 039 868 13 221 751 502
362 183 52 628 839 448 14 010 515 381
364 184 55 562 506 886 14 874 753 568
366 185 58 236 270 451 15 754 940 959
368 186 61 437 700 788 16 705 334 454
370 187 64 363 670 678 17 683 643 273
372 188 67 868 149 215 18 744 292 915
374 189 71 052 718 441 19 816 289 281
376 190 74 884 539 987 20 992 425 825
378 191 78 364 039 771 22 186 413 139
380 192 82 532 990 559 23 475 079 272
382 193 86 329 680 991 24 795 898 388
384 194 90 881 152 117 26 227 197 453
386 195 95 001 297 565 27 670 862 550
388 196 99 963 147 805 29 254 036 711
390 197 104 453 597 992 30 852 950 986
392 198 109 837 310 021 32 581 366 295
394 199 114 722 988 623 34 345 173 894
396 200 120 585 261 143 36 259 212 641
398 201 125 873 325 588 38 179 777 473
400 202 132 247 999 328 40 286 153 024

Table 4.9: Counts of fullerenes and IPR fullerenes. nv is the number of vertices and
nf is the number of faces.

122 Generation of fullerenes

4.4.2 Testing conjectures related to fullerenes

We also tested some conjectures related to fullerenes, more specfically Barnette’s
conjecture and the spiral conjecture.

Barnette’s conjecture

There is a famous conjecture from Barnette which conjectures the following:

Conjecture 4.35 (Barnette, 1969). Every 3-connected cubic planar graph with
maximum face size 6 is hamiltonian.

All 3-connected cubic planar graphs with up to n vertices and maximum face
size 6 can be obtained by applying the program plantri md6 from [34] to all
fullerenes with up to n vertices. We checked Barnette’s conjecture up to 316
vertices. For fullerenes (which have minimum face size 5), we checked it up to
336 vertices: no counterexamples were found. We did not test this conjecture
for larger fullerenes, since not the generation but the hamiltonicity test is the
bottleneck.

The number of cubic plane graphs with maximum face size 6 with respect to
their minimum face size is listed in Tables 4.5-4.8. This corrects and extends the
results of the computation reported by Brinkmann et al. [34], which relied on the
faulty version of fullgen. In that paper they had verified Barnette’s conjecture
up to 250 vertices.

The spiral conjecture

Recall from Section 4.1.2 that the first algorithm to generate fullerenes was the
spiral algorithm of Manolopoulos et al. [86]. It constructs fullerenes by enumer-
ating spiral codes – that are encodings of face spirals.

A clockwise (respectively counterclockwise) face spiral (see Figure 4.28) of
a fullerene with k faces is a sequence of distinct faces (f1, f2, . . . , fk) with the
property that f1 and f2 share an edge and that for 3 ≤ i ≤ k face fi has a
connected intersection with {f1 ∪ f2 ∪ · · · ∪ fi−1} and shares an edge e with fi−1

that is the last of those edges of fi−1 in clockwise (respectively counterclockwise)
orientation around fi−1 that belong to no face in {f1, f2, . . . , fi−2}.

Such face spirals can be encoded as sequences of the face sizes, or more com-
pactly as a sequence of length 12 which contains the positions of the 12 pentagons
in the spiral. Thus fullerenes which have a face spiral can be encoded in a very
compact way. Figure 4.28 shows an example of a face spiral of the C60 buckyball.

4.4. Testing and results 123

Figure 4.28: A face spiral of the C60 buckyball with encoding 1, 7, 9, 11, 13, 15, 18, 20,

22, 24, 26, 32.

The spiral conjecture (see [53]) stated that every fullerene can be described
by a face spiral.

Already in [85] Manolopoulos and Fowler give an example of a fullerene with
380 vertices which does not allow any face spirals and would therefore be missed
by their algorithm. The question was whether this is the smallest counterexam-
ple to the spiral conjecture. In [12] it is shown that in the more general class
of all cubic polyhedra, the smallest element which does not allow any face spi-
rals has only 18 vertices. So one might have expected that there is a smaller
counterexample in the class of fullerenes.

For efficiency reasons, Manolopoulos and Fowler restricted the generation of
fullerene spiral codes to spirals starting at a pentagon (see [53]). It is known that
the smallest fullerene that is missed in this way has 100 vertices. The smallest
IPR fullerene that does not have a spiral starting at a pentagon has 206 vertices.

Later, the International Union of Pure and Applied Chemistry (IUPAC) also
recommended [57] to use face spirals as basis for fullerene nomenclature.

Thus it would be interesting to know the smallest fullerene which does not
allow a face spiral. Therefore we used buckygen to generate all fullerenes up to
400 vertices and tested them for face spirals. The result is that the fullerene
with 380 vertices depicted in Figure 4.29 is the smallest fullerene without a face

124 Generation of fullerenes

spiral. This is exactly the counterexample from Manolopoulos and Fowler [85],
but at that time its minimality could not be proven. The second smallest fullerene
without a spiral has 384 vertices and is shown in Figure 4.30. Again, this example
was already obtained before by construction (by Yoshida and Fowler [124]).

The two fullerenes from Figure 4.29 and 4.30 are the only fullerenes without
spirals up to 400 vertices. The counts of fullerenes which do not have a spiral
starting at a pentagon can be found in [30]. We have independently confirmed
these results up to 380 vertices by running fullgen.

Recently Fowler et al. [52] determined graphs which do not allow face spirals
for all of the remaining classes of cubic polyhedra with maximum face size 6.

Figure 4.29: The smallest fullerene without a spiral. In order to show the rotational

symmetry with vertices as centres of rotation, one vertex has to be chosen

at infinity.

4.5 Closing remarks

We have described a new fullerene generator buckgen which is considerably faster
than fullgen, which is the only previous generator capable of going beyond 100

4.5. Closing remarks 125

Figure 4.30: The second smallest fullerene without a spiral.

vertices. The generation cost is now likely to be lower than that of any significant
computation performed on the generated structures (such as e.g. testing if the
fullerenes are hamiltonian or performing energy computations).

After correction of an error in fullgen, we now have two independent counts
of fullerenes up to 380 vertices which are in complete agreement, and counts up
to 400 vertices from buckgen.

The latest version of buckygen can be downloaded from [25]. Buckygen is also
part of the CaGe software package [17].

126 Generation of fullerenes

Chapter 5

Ramsey numbers

In the first part of this chapter we describe an optimised algorithm for the gener-
ation of maximal triangle-free graphs and triangle Ramsey graphs. This enabled
us to compute all triangle Ramsey numbers R(K3, G) up to 30 for graphs of order
10. We also prove several theoretical results which allow us to determine several
triangle Ramsey numbers larger than 30. By combining the new computational
and theoretical results, we determine the Ramsey numbers R(K3, G) of nearly
all of the 12 005 168 graphs of order 10, except for 10 of the hardest cases.

Remark: this was joint work also with Jan-Christoph Schlage-Puchta, who
contributed the theoretical results. The research is also described in [31]. Various
parts of this chapter were adopted from that article.

In the second part of this chapter we derive six new upper bounds for the clas-
sical triangle Ramsey numbers R(3, k) by using specialised computational tech-
niques: R(3, 10) ≤ 42, R(3, 11) ≤ 50, R(3, 13) ≤ 68, R(3, 14) ≤ 77, R(3, 15) ≤ 87
and R(3, 16) ≤ 98. All of them are improvements by one over the previously best
published bounds. We also determine all critical triangle Ramsey graphs for K8

(i.e. triangle Ramsey graphs for K8 with R(3, 8)− 1 vertices) and prove that the
known critical triangle Ramsey graph for K9 with 35 vertices is unique up to
isomorphism.

Remark: this second part was joint work with Stanis law P. Radziszowski and
it is also described in [59]. Various parts of this chapter were adopted from that
article.

127

128 Ramsey numbers

5.1 Introduction

Ramsey theory is often described as the study of how order emerges from ran-
domness. The Ramsey number R(G,H) of two graphs G and H is the smallest
integer r such that every assignment of two colours (e.g. red and blue) to the edges
of Kr contains G as a red subgraph or H as a blue subgraph. Or equivalently,
R(G,H) is the smallest integer r such that every graph F with at least r vertices
contains G as a subgraph, or its complement F c contains H as a subgraph. A
graph F is a Ramsey graph for a pair of graphs (G,H) if F does not contain G

as a subgraph and its complement F c does not contain H as a subgraph. This
concept also generalises to n colours (i.e. R(G1, G2, ..., Gn)), but in this thesis we
focus on two colours.

The existence of R(G,H) follows from Ramsey’s theorem [103] from 1930.
The classical Ramsey numbers (where both G and H are complete graphs) are
known to be extremely difficult to determine. It is even difficult to obtain narrow
bounds when G or H have a large order. Therefore only few exact results are
known. The last exact result was obtained by McKay and Radziszowski [91] in
1995 when they proved that R(K4,K5) = 25.

For a good overview of the results and bounds of Ramsey numbers which are
currently known, we refer the reader to Radziszowski’s dynamic survey [99]. We
also denote the classical Ramsey number R(Km,Kn) by R(m,n). In Section 5.3,
we derive new upper bounds for the Ramsey numbers R(3, n) for 10 ≤ n ≤ 16 by
using specialised computational techniques.

The requirement that Gc contains Kn as a subgraph is equivalent to the re-
quirement that G contains an independent set of order n. Therefore the classical
Ramsey number R(m,n) can also be interpreted as a solution to the party prob-
lem: what is the minimum number of guests that must be invited to a party so
that it is guaranteed that at least m people will be mutual acquaintances or at
least n people will be mutual strangers?

Since Ramsey numbers are difficult to determine, straightforward methods
usually do not work. Therefore advanced computational techniques are required
for solving Ramsey-type problems. It is likely that these techniques will also be
applicable in other areas of combinatorics which require extensive computations
with a very large number of graphs or with very large graphs. Ramsey theory
has amongst others applications in theoretical computer science. We refer the
reader to [108] and [55] for a survey of applications.

In this thesis, we focus on triangle Ramsey numbers: that is Ramsey numbers
R(G,H) where G = K3. When we speak about Ramsey numbers or Ramsey

5.2. Generalised triangle Ramsey numbers 129

graphs in the remainder of this chapter, we always mean triangle Ramsey numbers
or triangle Ramsey graphs, respectively.

Already in 1980 all triangle Ramsey numbers for graphs of order 6 were de-
termined by Faudree, Rousseau and Schelp [51]. In 1993 the Ramsey numbers
for connected graphs of order 7 were computed by Jin Xia [123]. Unfortunately,
some of his results turned out to be incorrect. These were later corrected by
Brinkmann [13] who computationally determined all triangle Ramsey numbers
for graphs of order 7 and 8. Independently, Schelten and Schiermeyer also deter-
mined Ramsey numbers of graphs of order 7 by hand [111, 112].

Brandt, Brinkmann and Harmuth [8] gave all triangle Ramsey numbers for
connected graphs of order 9 and all Ramsey numbersR(K3, G) ≤ 24 for connected
graphs of order 10. For 2001 graphs of order 10 the Ramsey number remained
open. As not only the number of graphs is increasing very fast, but also the
difficulty to determine Ramsey numbers, it is very likely that the table of all
triangle Ramsey numbers for graphs of order 10 is the last complete list that can
possibly be determined for a very long time.

In Section 5.2 we describe an efficient algorithm for the generation of all non-
isomorphic maximal triangle-free graphs and triangle Ramsey graphs together
with new theoretical results. This allowed us to determine the Ramsey number
of all graphs of order 10, except for 10 of the hardest cases.

In Section 5.3, we derive new upper bounds for the Ramsey numbers R(3, n)
by using computational techniques.

5.2 Generalised triangle Ramsey numbers

5.2.1 Introduction

In this section we describe an algorithm for generating maximal triangle-free
graphs and triangle Ramsey graphs. A maximal triangle-free graph (in short,
an mtf graph) is a triangle-free graph such that the insertion of each new edge
introduces a triangle. For graphs with more than 2 vertices this is equivalent to
being triangle-free and having diameter 2.

Note that adding edges to a graph removes edges from its complement. So
if F is a triangle Ramsey graph for some graph G, all triangle-free graphs (with
|V (F)| vertices) obtained from F by adding edges are also triangle Ramsey graphs
for G. If an mtf graph M is not a triangle Ramsey graph for G, graphs obtained
from M by removing edges are not triangle Ramsey graphs for G. Hence, there

130 Ramsey numbers

is a triangle Ramsey graph of order r for G if and only if there is an mtf graph
of order r that is a Ramsey graph for G (in short, an mtf Ramsey graph).

Thus in order to prove that R(K3, G) = r, we have to show that:

• There are no mtf Ramsey graphs for G with r vertices
(which implies R(K3, G) ≤ r).

• There is an mtf Ramsey graph for G with r − 1 vertices
(which implies R(K3, G) > r − 1).

Even though only a very small portion of the triangle-free graphs are also
maximal (see Table 5.1), the number of mtf graphs still grows very fast (see
Table 5.2). Thus it is computationally not feasible for large r to generate all
mtf graphs with r vertices and test if they are Ramsey graphs for a given G.
Therefore it is necessary to include the restriction to Ramsey graphs already in
the generation process.

|V (G)| triangle-free graphs mtf graphs percentage mtf
1 1 1 100
2 2 1 50
3 3 1 33.333333
4 7 2 28.571429
5 14 3 21.428571
6 38 4 10.526316
7 107 6 5.607477
8 410 10 2.439024
9 1 897 16 0.843437
10 12 172 31 0.254683
11 105 071 61 0.058056
12 1 262 180 147 0.011647
13 20 797 002 392 0.001885
14 467 871 369 1 274 0.000272
15 14 232 552 452 5 036 0.000035
16 581 460 254 001 25 617 0.000004

Table 5.1: Counts of triangle-free and maximal triangle-free graphs.

In Section 5.2.3 we describe an algorithm for the generation of all non-
isomorphic mtf graphs. This algorithm uses the same basic approach as the

5.2. Generalised triangle Ramsey numbers 131

algorithm by Brandt et al. [9], but also uses some structural information ob-
tained from [9] to significantly speed up the generation. In Section 5.2.4 we
describe how we extended this algorithm to generate only mtf Ramsey graphs
for a given graph G. In Section 5.2.5 we describe how we used the generator for
Ramsey graphs to determine the Ramsey numbers R(K3, G). The main difference
between the approach used in this thesis and the approach described in [8] is that
the approach used here is optimised for small lists of graphs with large Ramsey
numbers while the approach in [8] is optimised for large lists with comparatively
small Ramsey numbers.

Next to these computational results, we also list new theoretical results in
Section 5.2.2. By combining these computational and theoretical results, we were
able to determine the Ramsey numbers R(K3, G) of nearly all of the 12 005 168
graphs of order 10, except for 10 of the hardest cases. Our results are presented
in Section 5.2.6.

5.2.2 Theoretical results

In this section we list several general results on Ramsey numbers of the form
R(K3, G), where G is close to a complete graph. These results were proven by
Jan-Christoph Schlage-Puchta, therefore we refer the reader to [31] for the proofs.

The first result is a slight modification of Theorem 1 from [8]. We give the
proof for completeness. The proofs of the other lemmas in this section use a
similar argument and can be found in [31].

Lemma 5.1. Let M be a triangle-free graph with r vertices, such that M c con-
tains Kn−1, and let s be an integer satisfying 1 ≤ s < n and (r − n)(s + 1) >
(n− 1)(n− 2). Then M c contains Kn −K1,s.

Proof. Suppose otherwise. If M contains a vertex with degree at least n, then
M c contains Kn since M is triangle-free. So assume ∆(M) ≤ n−1. Now assume
that M contains a vertex v with degree n − 1. Then the neighbourhood of v is
an independent set of order n − 1. Thus if we delete this vertex, we obtain a
graph M ′ with r − 1 vertices, which contains an independent set of order n− 1,
such that each vertex in this independent set has degree at most n − 2. If M
contains no vertex of degree n−1, we delete an arbitrary vertex not contained in
some specified independent set of order n− 1. In each case we obtain an induced
subgraph M ′ of M with r − 1 vertices, which contains an independent set S of
size n−1, such that every vertex in S has degree at most n−2. From each vertex
w in V (M ′) \S there are at least s+ 1 edges connecting w with an element of S,

132 Ramsey numbers

otherwise S ∪ {w} would induce a supergraph of Kn −K1,s in M c. Hence, there
exists a vertex v ∈ S, which has degree at least (r−n)(s+1)

n−1 . By assumption this
quantity is larger than n − 2, contradicting the choice of M ′. Hence our claim
follows.

Let Ts+ denote the tree obtained from K1,s by adding an extra vertex and
connecting it to a vertex with degree 1 in K1,s. Let ∆s be the graph obtained
from K1,s by adding one edge connecting two vertices with degree 1 in K1,s.

Lemma 5.2. Let r, n, s be integers such that 1 ≤ s < n and (r − n)(s + 1) >
(n − 1)(n − 2). Then for every triangle-free graph M with r vertices, such that
M c contains Kn −∆s+1, we have that M c contains Kn − Ts+.

Since Ts+ is a subgraph of ∆s+1, we have R(K3,Kn −∆s+1) ≤ R(K3,Kn −
Ts+). Together with Lemma 5.2 this gives:

Corollary 5.3. Let r, n, s be integers such that 1 ≤ s < n and (r − n)(s+ 1) >
(n− 1)(n− 2). Then R(K3,Kn −∆s+1) = R(K3,Kn − Ts+).

Lemma 5.4. Let n, r, s be integers, such that (r − n+ 1)s > (n− 2)(n− 3) and
(r − n)(s + 1) > (n − 1)(n − 2). Then every graph with r vertices containing
Kn−1 − e, also contains Kn − Ts+.

Lemma 5.5. Let n, r, s, t be integers, such that s + t + 2 ≤ n, s ≥ t > 0,
(r−n)(s+1) > (n−1)(n−2) and (r−(n−1))(s+1) > (n+2(s−t)−2)(n−3). Then
every graph with r vertices containing Kn−1− e, also contains Kn−K1,s−K1,t.

Applying these results to the case of graphs of order 10, we obtain the follow-
ing:

Corollary 5.6.

• For 2 ≤ s ≤ 9, we have R(K3,K10 −K1,s) = R(K3,K9) = 36.

• For 3 ≤ s ≤ 8, we have R(K3,K10 − Ts+) = R(K3,K10 − ∆s+1) =
R(K3,K10 −K1,s − e) = R(K3,K9 − e) = 31.

Proof. The upper bounds follow from the lemmas, while the lower bounds are
implied by R(K3,K9) = 36 and R(K3,K9 − e) = 31, respectively.

5.2. Generalised triangle Ramsey numbers 133

5.2.3 Generation of maximal triangle-free graphs

Mtf graphs with n + 1 vertices are generated from mtf graphs with n vertices
using the same construction method as in [9], but different isomorphism rejection
routines. To describe the construction, we first introduce the concept of good
dominating sets.

Definition 5.1. S ⊆ V (G) is a dominating set of G if S ∪ {N(s) | s ∈ S} =
V (G).

A dominating set S of an mtf graph G is good if after removing all edges with
both endpoints in S, the distance from s to v is at most two for every s ∈ S and
v ∈ V (G) \ S.

The basic construction operation removes all edges between vertices of a good
dominating set S and connects all vertices of S to a new vertex v. This is also
illustrated in Figure 5.1. Edges with both endpoints in S are called internal edges
of S. This basic construction operation is a recursive structure for the class of
all mtf graphs [9].

Figure 5.1: The basic construction operation for mtf graphs.

In [9] it was observed that a surprisingly large number of mtf graphs have
an automorphism group of order 2. For example more than 33% of the mtf
graphs with 21 vertices have an automorphism group of order 2. This is nearly
always caused by two vertices with identical neighbourhoods. We exploit this
observation to improve the efficiency of the isomorphism rejection routines. To
this end we distinguish between 3 types of good dominating sets:

type 0: A set S = N(v) for some v ∈ V . Note that for every vertex v in an mtf
graph, the set N(v) is a good dominating set without internal edges.

type 1: A good dominating set S without internal edges, but S 6= N(v) for every
vertex v in V .

type 2: A good dominating set S with internal edges.

134 Ramsey numbers

We also refer to construction operations as expansions and call the inverse
operations reductions. We speak about reductions or expansions of type 0, 1 and
2 if the good dominating sets involved are of this type. If G′ is obtained from G

by an expansion, we call G′ the child of G and G the parent of G′.
We use the canonical construction path method (see Section 1.3) to make sure

that only pairwise non-isomorphic mtf graphs are generated. Two reductions of
mtf graphs G and G′ (which may be identical) are called equivalent if there is an
isomorphism from G to G′ mapping the vertices that are removed onto each other
and inducing an isomorphism of the reduced graphs. Note that a reduction does
not only depend on the vertex which is removed, since the graph obtained after
removing that vertex is not necessarily mtf (i.e. in case of a reduction of type 2).
In that case, one also has to describe which edges must be inserted to make the
graph mtf. In order to use the canonical construction path method, we first have
to define which of the various possible reductions of an mtf graph G to a smaller
mtf graph is the canonical reduction of G. This canonical reduction must be
uniquely determined up to equivalence. We call the graph obtained by applying
the canonical reduction to G the canonical parent of G and an expansion that is
the inverse of a canonical reduction a canonical expansion.

Furthermore, we also define an equivalence relation on the set of possible
expansions of a graph G. Note that the expansions are uniquely determined by
the good dominating set S to which they are applied. Therefore we define two
expansions of G to be equivalent if and only if there is an automorphism of G
mapping the two good dominating sets onto each other.

The two rules of the canonical construction path method are:

1. Only accept a graph if it was constructed by a canonical expansion.

2. For every graph G to which construction operations are applied, perform
exactly one expansion from each equivalence class of expansions of G.

If we start with K1 and recursively apply these rules to each graph until the
output size is reached (cf. Algorithm 1.1 from Section 1.3), exactly one graph of
each isomorphism class of mtf graphs is generated. We refer the reader to [9] for
a proof.

For deciding whether or not a reduction is canonical, we use a two-step strat-
egy. First we decide which vertex should be removed by the canonical reduction.
In case the graph obtained after removing this vertex is not an mtf graph, we
determine the canonical way to insert edges (i.e. the second step). If the graph
obtained after removing this vertex is an mtf graph, there is no need to perform

5.2. Generalised triangle Ramsey numbers 135

the second step. A 5-tuple t(v) = (x0(v), . . . , x4(v)) represents the vertex v which
is removed by the reduction in such a way that two vertices have the same 5-tuple
if and only if they are in the same orbit of the automorphism group. The canon-
ical reduction is a reduction which removes the vertex with the lexicographically
smallest 5-tuple.

The first entry x0(v) is the type of the neighbourhood of v in the reduced graph
(i.e. 0, 1 or 2). The most expensive part in computing the canonical reduction is
the computation of how edges have to be inserted between the former neighbours
of the removed vertex. Therefore we assigned the lowest priority to operations of
type 2. If the graph has vertices with identical neighbourhood, a reduction with
x0 = 0 is always possible and other reductions do not have to be considered in
order to find the one with minimal 5-tuple. In case there are exactly two vertices
with identical neighbourhood, the canonical reduction is already found after this
step: no matter how the remaining entries of the 5-tuple are defined, removing
one of these two vertices is the canonical reduction as they are the only ones with
minimal value of x0. Furthermore, there is an automorphism exchanging these
two vertices and fixing the other vertices, so the two reductions are equivalent
and both are canonical.

The way the remaining values are chosen is the result of a lot of performance
tests comparing different choices. The value of x1(v) is −deg(v) of the vertex v

that is going to be removed by the reduction in case x0(v) ∈ {0, 1} and deg(v)
in case x0(v) = 2. Furthermore x2(v) = −

∑
w∈N(v) deg(w) and x3(v) can be

described as −
∑
w∈N(v) |V |deg(w) (where V denotes the set of vertices of the mtf

graph which was constructed). In the program x3 is in fact implemented as a
sorted string of degrees, but it results in the same ordering.

We call a vertex v eligible for position j if it is among the vertices for which
(x0(v), ..., xj−1(v)) is minimal among all possible reductions. For the first rule
of the canonical construction path method we do not have to find the canonical
reduction, but only have to determine whether the last expansion producing
vertex w is canonical. Therefore each xi is only computed if the vertex w is still
eligible for position i and only for vertices which are eligible for position i. If
x0(w) ∈ {0, 1} and w is the only vertex eligible for position i, we know that the
expansion was canonical. If x0(w) = 2, we still have to determine whether the
edges that have been removed are equivalent to the edges that would be inserted
by a canonical reduction.

If there are also other vertices eligible for position 4, we canonically label the
graph G using the program nauty [88]. We define x4(v) to be the negative of

136 Ramsey numbers

the largest label in the canonical labelling of G of a vertex which is in the same
orbit of Aut(G) as v. The discriminating power of x0, ..., x3 is usually enough
to decide whether or not a reduction is canonical. For generating all mtf graphs
with n = 20 vertices for example, the more expensive computation of x4 is only
required in 7.8% of the cases. This fraction is decreasing with the number of
vertices to e.g. 6.2% for n = 22. After computing x4, the vertex in the canonical
reduction is uniquely defined up to isomorphism.

In case x0 = 2, the canonical reduction is not completely determined by the
vertex v which is removed by the canonical reduction, as there can be multiple
ways to insert the edges in the former neighbourhood of v. In this case we use the
same method as Brandt et al. used in [9], which is essentially a canonical choice of
a set of edges that can be inserted and give priority to sets of small size. As this
routine is not often used, this part has hardly any impact on the computation
time: for generating mtf graphs with n = 18 vertices, only about 2.5% of the
time is spent on the routines dealing with this part and already for n = 20 this
decreases to 1.5%. Therefore we decided not to develop any improvements for
this part and refer the reader to [9] for details.

The priority of the operations expressed in the 5-tuple also allows look-aheads
for deciding whether or not an expansion can be canonical before actually per-
forming it. This is also an advantage when constructing good dominating sets
for expansion as it often allows to reduce the number of sets that have to be
constructed.

A vertex which has the same neighbourhood as another vertex is called a
double vertex. An mtf graph with double vertices can be reduced by a reduction
of type 0. If two vertices have the same neighbourhood in an mtf graph, each good
dominating set without internal edges either contains both vertices or none. So
after an operation of type 0 or 1, the vertices still have identical neighbourhoods
allowing a reduction of type 0. Thus if a graph G contains a reduction of type
0, we do not have to apply expansions of type 1. Furthermore we only have to
apply expansions of type 0 to neighbourhoods of vertices v of G for which deg(v)
is at least as large as the degree of the canonical double vertex in G, otherwise
the new vertex will not have the minimal value of x1. If G did not contain any
double vertices, we have to apply operations of type 0 to the neighbourhoods
of all vertices. In this case, we don’t have to check canonicity for the graphs
constructed.

After a canonical operation of type 2, no reductions of type 0 are possible.
So we only have to apply operations of type 2 that make sure that afterwards

5.2. Generalised triangle Ramsey numbers 137

no vertices with identical neighbourhoods exist. Therefore the good dominating
sets to which an operation of type 2 is applied must contain at least one vertex
from the neighbourhood of each double vertex. If no vertex of the common
neighbourhood of a pair of double vertices is included, both vertices must be
contained in the dominating set themselves (since the expanded graph must have
diameter 2). But then they would still have identical neighbourhoods after the
operation. Each good dominating set must also contain a vertex from each set of
vertices with identical neighbourhood. In the program we use this in its strongest
form only if there is just one common neighbourhood, else we use a weaker form.
This is not a problem for the efficiency as there is usually only one common
neighbourhood.

If a graph has at least 3 vertices which have the same neighbourhood, every
graph obtained by applying an expansion of type 2 to G has a reduction of
type 0: let v1, v2 and v3 be vertices which have the same neighbourhood. In
order to destroy an operation of type 0, the good dominating set S to which
an operation of type 2 is applied must contain at least one vertex of the set of
vertices with identical neighbourhood. Suppose w.l.o.g. that S contains v1. If S
also contains v2 (respectively v3), v1 and v2 (respectively v3) also have identical
neighbourhoods in the expanded graph. If S contains neither v2 nor v3, v2 and
v3 have identical neighbourhoods in the expanded graph. So in each case the
expanded graph contains a reduction of type 0. Thus we do not have to apply
expansions of type 2 to graphs which contain at least 3 vertices which have the
same neighbourhood.

The simplified structure of the algorithm which searches for possible expan-
sions and uses these optimisations is listed as pseudocode in Algorithm 5.1.

Due to the choice of x1, the degree of the vertex which is removed by the
reduction is minimal for canonical reductions of type 2. If we apply an operation
of type 2 to a good dominating set S, the new vertex v will have degree |S|. If
the minimum degree of a graph is m, we only have to apply operations of type 2
to good dominating sets of size at most m (or size m+ 1 if the good dominating
set contains all vertices of minimum degree).

Recall that we also have to compute the equivalence classes of expansions of
a graph in order to comply with the second rule of the canonical construction
path method. We use nauty to compute the automorphism group of the graph
and then compute the orbits of good dominating sets using the generators of the
group. In case we know that only an operation of type 0 can be canonical, we
actually compute the orbits of vertices representing the good dominating sets

138 Ramsey numbers

Algorithm 5.1 Find expansions(graph G, type t)
if t == 0 then

search for expansions of type 0
else if t == 1 then

if G contains no double vertices then
search for expansions of type 1

end if
else

if G contains no double vertices then
search for expansions of type 2

else
if G contains at least 3 vertices with the same neighbourhood then

return no type 2 expansions possible
else

search for expansions where the good dominating set contains at least
one vertex from the neighbourhood of every double vertex

end if
end if

end if

formed by their neighbourhoods (which is computationally cheaper).
In some cases we do not have to call nauty to compute the automorphism

group. For example, if G has a trivial automorphism group and we apply an
operation of type 0 by inserting a vertex v′ with the same neighbourhood as v,
the expanded graph G′ will have an automorphism group of order 2 generated
by the automorphism exchanging v and v′ and fixing all other vertices.

Testing and results

We used our program to generate all mtf graphs up to 23 vertices. The number
of graphs generated were in complete agreement with the results obtained by
running the program from Brandt et al. [9] (which is called MTF). The graph
counts, running times and a comparison with MTF are given in Table 5.2. Our
program is called triangleramsey . Both programs were compiled by gcc and the
timings were performed on an Intel Xeon L5520 CPU at 2.27 GHz. The timings
for |V (G)| ≥ 20 include a small overhead due to parallelisation. We can conclude
from Table 5.2 that triangleramsey is significantly faster than MTF for generating

5.2. Generalised triangle Ramsey numbers 139

mtf graphs.
Table 5.3 gives an overview how many graphs are constructed by canonical

operations of the different types. This table shows that operations of type 2 are
by far the least common canonical operations.

|V (G)| number of graphs MTF (s) triangleramsey (s) speedup
17 164 796 4.0 0.8 5.00
18 1 337 848 30.5 6.2 4.92
19 13 734 745 315 67 4.70
20 178 587 364 4 390 972 4.52
21 2 911 304 940 75 331 17 109 4.40
22 58 919 069 858 1 590 073 373 417 4.26
23 1 474 647 067 521 40 895 299 10 431 362 3.92

Table 5.2: Counts and generation times for mtf graphs.

number number num. generated num. generated num. generated

of of by an operation by an operation by an operation

vertices mtf graphs of type 0 of type 1 of type 2

4 2 2 0 0

5 3 2 0 1

6 4 4 0 0

7 6 6 0 0

8 10 9 0 1

9 16 15 0 1

10 31 29 1 1

11 61 57 3 1

12 147 139 4 4

13 392 368 15 9

14 1 274 1 183 75 16

15 5 036 4 595 391 50

16 25 617 22 889 2 420 308

17 164 796 142 718 19 577 2 501

18 1 337 848 1 105 394 213 743 18 711

19 13 734 745 10 674 672 2 855 176 204 897

20 178 587 364 129 333 325 46 244 514 3 009 525

Table 5.3: The number of mtf graphs which were generated by operations of each type.

140 Ramsey numbers

5.2.4 Generation of Ramsey graphs

The construction operations for mtf graphs never add edges between vertices
of the parent and thus never remove edges from the complement. So, if G is
contained in the complement of an mtf graph M , G will also be contained in
the complement of all descendants of M . If M is not a Ramsey graph for G, its
descendants won’t be Ramsey graphs. This means we can prune the generation
process when an mtf graph is generated which is not a Ramsey graph for G.

The same pruning was already used by Brandt et al. in [8]. Nevertheless,
we optimised our algorithm which tests if G is contained in the complement of
an mtf graph for dense graphs as the graphs with 10 vertices whose Ramsey
number could not be determined in [8] are all very dense. These optimisations
are described in the remainder of this section.

For a graph G and an mtf graph M the following criteria are equivalent:

(i) G is subgraph of M c

(ii) M contains a spanning subgraph of Gc as an induced subgraph

If G is dense, Gc has relatively few edges and therefore in this case it is easier
to test (ii) instead of (i). By just applying this simple algorithm, even with the
faster generator we were not able to go much further than Brandt et al. did in [8].
Therefore we designed and applied several optimisations specifically for dense test
graphs G. These optimisations are crucial for the efficiency of the algorithm.

The bottleneck of the algorithm is the procedure which tests if the generated
mtf graphs contain a spanning subgraph of Gc as induced subgraph. This pro-
cedure basically constructs all possible sets with |V (G)| vertices and an upper
bound of |E(Gc)| on the number of edges and tests for each set if the graph
induced by this set is a subgraph of Gc. If none of these sets induces a spanning
subgraph of Gc, the current mtf graph is a Ramsey graph for G. Various bound-
ing criteria are used to avoid the construction of sets which cannot be a subgraph
of Gc. The simplified structure of this algorithm (where some optimisations are
omitted to improve the readability) is sketched as pseudocode in Algorithm 5.2.
In the pseudocode M [S] denotes the subgraph of M induced by the set of vertices
S ⊆ V (M). In the actual implementation we represent S and P by bitvectors.

To test if S induces a spanning subgraph of Gc, we first use some cheap
heuristics. For example, if the graph induced by S contains more vertices with
degree at least 1 than Gc, it cannot be a spanning subgraph of Gc. If these cheap
heuristics are passed, we try to map the vertices of the graph induced by S to

5.2. Generalised triangle Ramsey numbers 141

the vertices of Gc in all possible ways. The vertices are mapped in descending
order of their degrees. This is a simple algorithm, but it is not a bottleneck.

Algorithm 5.2 Contains spanning subgraph(mtf graph M , test graph G, set S,
possible vertices P)

if S contains |V (G)| elements then
test if S induces a spanning subgraph of Gc

return result
end if
P ′ := P

for every v ∈ P ′ do
remove v from P ′

add v to S
if |E(M [S])| ≤ |E(Gc)| and ∆(M [S]) ≤ ∆(Gc) then

if Contains spanning subgraph(M , G, S, P ′) then
return true

end if
end if
remove v from S

end for
return false

If the algorithm as described so far is applied and the order of the mtf graphs
is sufficiently large, by far most of the mtf graphs that are generated are rejected
as they turn out to be no Ramsey graphs for the test graph G. For example for
G = K10 − P5 and |V (M)| = 28 (without other optimisations) approximately
99% of the mtf graphs which were generated are no Ramsey graphs (and are thus
rejected). So most of the tests for making spanning induced subgraphs give a
positive result – that is: there is an induced subgraph of M that is a spanning
subgraph of Gc. We take this into account by first using some heuristics to try
to find a set of vertices which is a spanning subgraph of Gc quickly. If such a set
is found, we can abort the search.

More specifically: when an mtf graph is rejected because it is not a Ramsey
graph for G, we store the set of vertices which induces a spanning subgraph of Gc.
For each order n, we store up to 100 sets of vertices which caused an mtf graph
with n vertices to be rejected. When a graph with n vertices is generated, we
first investigate if one of those 100 sets of vertices induces a spanning subgraph
of Gc. Only if this is not the case, we continue the search. Experimental results

142 Ramsey numbers

showed that storing 100 sets seems to be a good compromise between cost to
test if a set induces a spanning subgraph of Gc and the chance to have success.
Without other optimisations this already makes the program 5 times faster for
e.g. G = K10 − P5 and |V (M)| = 26.

The second step in trying to prove that M is not a Ramsey graph is a greedy
heuristic. We construct various sets of |V (G)| vertices which have as few common
neighbours as possible. These sets are good candidates to induce a subgraph of
Gc. Only if none of these sets induces a subgraph of Gc, we have to continue
to investigate the graph. This results in an additional speedup of approximately
10%.

These heuristics allow to find a set of vertices which induces a spanning sub-
graph of Gc quickly in about 98% of the cases. If these heuristics did not yield
such a set of vertices, we start a complete search. In about 70% of the cases
the graphs passing the heuristic search are actually Ramsey graphs for G. The
coarse pseudocode of the procedure which tests if an mtf graph M is a Ramsey
graph for G is given in Algorithm 5.3.

Algorithm 5.3 Is Ramsey graph(mtf graph M , test graph G)
for each stored set S with n = |V (M)| do

if S induces a spanning subgraph of Gc in M then
return M is not a Ramsey graph for G

end if
end for
construct sets of |V (G)| vertices in a greedy way
if set found which induces a spanning subgraph of Gc in M then

store set
return M is not a Ramsey graph for G

end if
construct all possible sets of |V (G)| vertices // cf. Algorithm 5.2
if set found which induces a spanning subgraph of Gc in M then

store set
return M is not a Ramsey graph for G

else
return M is a Ramsey graph for G

end if

The construction of all possible sets of |V (G)| vertices can also be improved.
Since most of the graphs passing the heuristical search are actually Ramsey

5.2. Generalised triangle Ramsey numbers 143

graphs for G, we try to construct sets of |V (G)| in a well-defined order rather
than in a random order. More specifically, we first try to add the vertices which
have the largest degrees and most vertices in common with the vertices in the
current set of vertices S to S. This allows to bound earlier in the recursion of
Algorithm 5.2.

Also recall that our algorithm constructs Ramsey graphs from smaller Ramsey
graphs. Therefore if an mtf graph M was constructed by operations of type 0 or
1 (i.e. no edges were removed), we only have to investigate sets of vertices which
contain the new vertex which was added by the construction. The subgraphs
induced by the other sets did not change and are already proven not to induce
a spanning subgraph of Gc. Moreover if M was constructed by an operation of
type 0, we only have to investigate sets of vertices which contain the new vertex
and all other vertices which have the same neighbourhood as the new vertex.
Since if a set does not contain a vertex v which has the same neighbourhood as
the new vertex, we can swap v and the new vertex.

Similarly, if M was constructed by an operation of type 2 and one edge {v1, v2}
was removed, we only have to investigate sets of vertices which contain the new
vertex or which contain both v1 and v2. Similar optimisations can also be used
when more edges are removed, but this does not speed up the program as in most
cases such operations turn out to be not canonical. In these cases the graph is
already rejected before it is tested whether or not this graph is a Ramsey graph.

We also try to avoid constructing mtf graphs that are no Ramsey graphs for
G in advance. This is of course even better than efficiently rejecting graphs after
they are constructed. More specifically, each time a new mtf Ramsey graph M for
a graph G was constructed, we search and store approximating sets of vertices.
We call a set of vertices approximating if it induces a spanning subgraph of Gcδ,
where Gcδ is a graph obtained by removing a vertex of minimum degree from
Gc. For most graphs G with 10 vertices whose Ramsey number could not be
determined in [8], Gc has minimum degree 0.

If for a graph M ′ which is constructed from M there is an approximating set
S of M for which no vertex s ∈ S is a neighbour of the new vertex v, the graph
induced by S ∪ {v} in M ′ is a spanning subgraph of Gc. So graphs constructed
from M can only be Ramsey graphs if the good dominating set of M contains
at least one vertex from each approximating set in M . Since searching for all
approximating sets is expensive, we search for them during the search for sets of
vertices which induce a spanning subgraph of Gc: when a set of |V (Gcδ)| vertices
was formed, we store it. We store up to 300 such sets, but only store them if they

144 Ramsey numbers

are sufficiently distinct from the sets which were already stored. If it turns out
that the graph which was under investigation is a Ramsey graph, we test the list
of stored sets and determine the approximating sets among them. On average
this optimisation avoids the construction of more than 90% of the children.

5.2.5 Computation of Ramsey numbers

To determine Ramsey numbers with our algorithm, we also use the same basic
strategy as Brandt et al. used in [8] (combined with several new optimisations):

Assume we have a list of all graphs G with Ramsey number R(K3, G) ≥ r. We
want to split this list into those with R(K3, G) = r and those with R(K3, G) > r.
We have a (possibly empty) list of MAXGRAPHs, these are graphs which have
Ramsey number r. We also have a (possibly empty) list of RAMSEYGRAPHs,
which are triangle-free graphs with r vertices which are (or might be) Ramsey
graphs for some of the remaining graphs.

The procedure to test whether the remaining graphs have Ramsey number r
or at least r + 1 works as follows:

for k =
(
n
2

)
downto n− 1 do

for every connected graph G with k edges in the list do
if G is not contained in any MAXGRAPH then

if G is contained in the complement of every RAMSEYGRAPH then
if triangleramsey applied to G finds a Ramsey graph of order r then

add this Ramsey graph to the list of RAMSEYGRAPHs
R(K3, G) > r

else
add G to the list of MAXGRAPHs
R(K3, G) ≤ r

end if
else
R(K3, G) > r

end if
else
R(K3, G) = r

end if
end for

end for

The graphs are tested in descending order of edges. So if G′ ⊂ G, then G

is tested before G′. If G has Ramsey number R(K3, G) = r, all subgraphs of G

5.2. Generalised triangle Ramsey numbers 145

which are in the list of graphs with Ramsey number at least r also have Ramsey
number r. The algorithm used in this procedure to test if G is contained in the
complement of an mtf graph M , is the same as the algorithm used in triangler-
amsey to test if M contains a spanning subgraph of Gc as induced subgraph.
The results from the subgraph tests used in this procedure were independently
confirmed by performing the same subgraph tests using programs from Brandt
et al. [8].

For large orders of r (i.e. r ≥ 26), the bottleneck of the procedure is the
computation of individual Ramsey graphs by triangleramsey. Here we used some
additional optimisations: if r is close to R(K3, G), there are usually only very
few Ramsey graphs of order r for G. Therefore for certain graphs G where
we expected r to be close to R(K3, G), we used triangleramsey to compute all
Ramsey graphs of order r for G, instead of aborting the program as soon as
one Ramsey graph was found. Triangleramsey constructs Ramsey graphs from
smaller Ramsey graphs, so in order to construct all Ramsey graphs for G of
order r + 1, we can start the program from the Ramsey graphs of order r. This
avoids redoing the largest part of the work. Of course this approach only works
if there are not too many Ramsey graphs of order r to be stored. We used this
strategy amongst others to generate all Ramsey graphs of order 28 for K10 − P5

and K10 − 2P3 (where Px stands for the path with x vertices). Computing all
Ramsey graphs with 28 vertices for K10 − 2P3, for example, required almost 4
CPU years. This yielded 7 Ramsey graphs and constructing the Ramsey graphs
with 29 vertices from these 7 graphs took less than 2 seconds.

Let H be a subgraph of G for which we know that R(K3, H) ≥ r. If we have
the list of all Ramsey graphs of order r for G and none of these Ramsey graphs
is a Ramsey graph for H, we know that R(K3, H) = r. Amongst others, this
allowed us to determine that several subgraphs of K10 − P5 and K10 − 2P3 have
Ramsey number 28.

5.2.6 Testing and results

By using the algorithm described in Section 5.2.5, we were able to compute
all Ramsey numbers R(K3, G) = r for connected graphs of order 10 for which
r ≤ 30 and to determine which Ramsey graphs have Ramsey number larger than
30. Since triangleramsey is more than 20 times faster than MTF for generating
triangle Ramsey graphs of large order r, we could only compute Ramsey numbers
up to r = 26 with the original version of MTF. In order to be able to compare our
results for larger r, we added several of the optimisations which were described

146 Ramsey numbers

in Section 5.2.4 to MTF. With this improved version of MTF we were also able
to determine all Ramsey numbers up to r = 30 and to determine which graphs
have Ramsey number larger than 30 (though this optimised version of MTF still
required significantly more CPU-time than triangleramsey). All results were in
complete agreement. In the cases where we generated all Ramsey graphs of order
r for a given test graph, the results obtained by triangleramsey and MTF were
also in complete agreement. For each Ramsey graph which was generated, we
also used an independent program to confirm that the Ramsey graph does not
contain G in its complement.

There are 34 connected graphs G for which R(K3, G) > 30. In Section 5.2.2,
we proved that R(K3,K10 − T3+) = R(K3,K10 −K1,3 − e) = 31. So the graphs
with R(K3, G) > 30 which are a subgraph of K10−T3+ or K10−K1,3−e also have
Ramsey number 31. In that section, we also proved that R(K3,K10−K1,s) = 36
(for 2 ≤ s ≤ 9). This leaves us with 10 connected graphs G with R(K3, G) >
30 for which we were unable to determine their exact Ramsey number. The
complements of these 10 remaining graphs are depicted in Figure 5.2.

Actually we have some additional knowledge about most of these graphs: if
Gc contains a triangle, an mtf graph cannot contain Gc as induced subgraph.
So if Gc contains a triangle and Hc is the only graph which can be obtained by
removing an edge from that triangle of Gc, then R(K3, G) = R(K3, H). Thus
among the 10 remaining graphs, R(K3,K10−K3− e) = R(K3,K10−P3− e) and
R(K3,K10 −K4) = R(K3,K10 −K−4) (where K−4 stands for K4 with one edge
removed). It is also known that 40 ≤ R(K3,K10) ≤ 42 and 37 ≤ R(K3,K10−e) ≤
38 (see Section 5.3 and [99, 59] for more information). Seven of the ten remaining
graphs are subgraphs of K10−P3 and since it follows from the theoretical results
from Section 5.2.2 that R(K3,K10−P3) = 36, the Ramsey number of these seven
graphs is at most 36.

Table 5.4 contains the number of connected graphs G of order 10 which have
R(K3, G) = r. Since no connected graph of order n can be contained in the
complement of Kn−1,n−1, the smallest possible Ramsey number of a connected
graph of order n is at least 2n − 1. The triangle Ramsey numbers of connected
graphs of order 10 are given in Appendix B.

Previously only the Ramsey numbers for disconnected graphs of order at
most 8 were known (see [13]). We independently verified these results for order 8
and also determined all Ramsey numbers for disconnected graphs of order 9
and 10. These results are listed in Table 5.5. The Ramsey numbers smaller
than 28 were obtained computationally. We also independently confirmed these

5.2. Generalised triangle Ramsey numbers 147

b c

b c

Figure 5.2: The complements Gc of the 10 remaining graphs which have R(K3, G) >

30 for which we were unable to determine the Ramsey number. Graphs

which must have the same Ramsey number are grouped by b and c.

computational results by using MTF. The other Ramsey numbers were obtained
by some simple reasoning. More specifically, if a disconnected graph is the union
of 2 connected graphs G1 and G2 and R(K3, G1) − |V (G1)| ≥ R(K3, G2), then
R(K3, G1 ∪G2) = R(K3, G1).

Unfortunately, we did not succeed to compute new values of the functions
f(), g() and h() given in Table 2 of [8]. Nevertheless we could confirm all the
values given in Table 2 of [8] with triangleramsey.

5.2.7 Closing remarks

Since all computational results were independently obtained by both MTF and
triangleramsey, the chance of incorrect results caused by errors in the implemen-
tation is extremely small.

We believe that specialised algorithms and/or new theoretical results will be
required to determine the triangle Ramsey number of the 10 remaining graphs.
It is likely that the specialised algorithms from Section 5.3 which are used to
obtain better upper bounds for classical Ramsey numbers can also be adapted
and applied to obtain better bounds for some of the remaining graphs.

As not only the number of graphs is increasing very fast, but also the difficulty
to determine Ramsey numbers, it is very likely that this is the last list of Ramsey
numbers that can be completed for a very long time. Therefore we hope that the
challenge of determining the Ramsey number of the 10 remaining graphs will be
taken up by the mathematical community.

As human intuition and insight is often based on examples, data about small

148 Ramsey numbers

|G| = 3 |G| = 4 |G| = 5 |G| = 6 |G| = 7 |G| = 8 |G| = 9 |G| = 10

r = 5 1

r = 6 1

r = 7 5

r = 8

r = 9 1 18

r = 10

r = 11 2 98

r = 12 6

r = 13 2 772

r = 14 1 4 40

r = 15 9 024

r = 16 13 1 440

r = 17 1 19 498 242 773

r = 18 1 7 119 16 024

r = 19 311 10 101 711

r = 20 504

r = 21 1 28 1 809 1 602 240

r = 22 22 3 155

r = 23 1 6 98 6 960

r = 24

r = 25 1 26 1 384

r = 26 5 316

r = 27 3 92

r = 28 1 7 142

r = 29 30

r = 30 3

r = 31 1 16 + ?

r = 36 1 8 + ?

Table 5.4: Number of connected graphs G with Ramsey number R(K3, G) = r. Note

that the 10 graphs with R(K3, G) > 30, for which we were unable to

determine the Ramsey number are not included in the table.

graphs, like complete lists of Ramsey numbers, can help to discover mathematical
theorems, suggest conjectures and give insight into the structure of mathematical
problems. An example is given in [16], where a large amount of computational
data about alpha-labellings gave insight into the structure of alpha-labellings of
trees so that new theorems could be proven and some unexpected conjectures

5.2. Generalised triangle Ramsey numbers 149

|G| = 3 |G| = 4 |G| = 5 |G| = 6 |G| = 7 |G| = 8 |G| = 9 |G| = 10

r = 3 2

r = 4 2

r = 5 2 4

r = 6 1 3 7

r = 7 5 11 18

r = 8 3 5 23

r = 9 1 20 50 60 83

r = 10 36 68 151

r = 11 2 102 225 427 596

r = 12 6 12 144 168

r = 13 2 776 1 552 3 734

r = 14 1 6 52 107 447

r = 15 9 024 18 048

r = 16 13 1 466 2 933

r = 17 1 21 540 243 856

r = 18 1 9 137 16 301

r = 19 311

r = 20

r = 21 1 30 1 869

r = 22 22

r = 23 1 8 114

r = 24

r = 25 1 28

r = 26 5

r = 27 3

r = 28 1 9

r = 31 1

r = 36 1

Table 5.5: Number of disconnected graphs G with Ramsey number R(K3, G) = r.

were suggested. In order not to be misled by too small examples, it is important
to have as much data as possible to develop a good intuition. This is confirmed
by the following example: if Kn −m · e denotes the graph obtained by removing
m disjoint edges from Kn, then the previously existing lists of triangle Ramsey
numbers for graphs of order at most 9 have the property that for fixed n, the
values of R(K3,Kn − m · e) are the same for all 2 ≤ m ≤ n/2. This may be
considered as a hint that it could be true in general. But as the list in Appendix B

150 Ramsey numbers

shows, this equation does not hold for n = 10: R(K3,K10 −m · e) = 30 for all
(3 ≤ m ≤ 5), while R(K3,K10 − 2 · e) > 30. The complements of these graphs
are also depicted in Figure 5.3.

Figure 5.3: The complements of K10 −m · e (2 ≤ m ≤ 5). R(K3,K10 −m · e) = 30

for all (3 ≤ m ≤ 5), while R(K3,K10 − 2 · e) > 30.

Another interesting observation in the list of Ramsey numbers in Appendix B
is that while for 7 ≤ n ≤ 9 the graph Kn − P5 has a smaller Ramsey number
than Kn − 2P3, they have the same Ramsey number (i.e. 29) for n = 10.

These observations are in a certain sense similar to the results obtained with
the new lists of snarks from Chapter 3 which yielded counterexamples to several
conjectures. These conjectures hold for snarks with less than 34 vertices, so this
might have suggested that they also hold in general, whereas this is not always
the case. Thus it is important to have as much data as possible.

The latest version of triangleramsey can be downloaded from [21]. The list
of the Ramsey graphs used in this research can be obtained from House of
Graphs [15] by searching for the keywords “ramsey * order 10” and the Ramsey
numbers can be obtained from [22].

5.3 Classical triangle Ramsey numbers

In this section we describe several specialised techniques and algorithms which
we used to determine new upper bounds for classical Ramsey numbers.

5.3.1 Definitions and preliminaries

A (k, l;n, e)-graph is a Kk-free graph with n vertices and e edges with indepen-
dence number α(G) < l. We denote the set of all (k, l;n, e)-graphs byR(k, l;n, e).
We omit the parameter e, or both e and n, or give a range to either of these pa-
rameters, when referring to special (k, l;n, e)-graphs or unions of R(k, l;n, e).
For example, a (k, l)-graph is a (k, l;n, e)-graph for some n and e, and the set
R(3, 9; 35,≤ 139) consists of all triangle-free graphs with 35 vertices and α(G) ≤ 8

5.3. Classical triangle Ramsey numbers 151

with at most 139 edges (later we will prove that this set is empty). A (k, l;n)-
graph is called critical for (k, l) if n = R(k, l)− 1.

Let e(k, l, n) denote the minimum number of edges in any (k, l;n)-graph (or
∞ if no such graph exists). The sum of the degrees of all neighbours of v in G is
denoted by ZG(v) (or Z(v) if G is fixed), i.e.

Z(v) = ZG(v) =
∑

{u,v}∈E(G)

deg(u). (1)

Let G be a (3, k;n, e)-graph. For any vertex v ∈ V (G), Gv denotes the graph
induced in G by the set V (G) \ (N(v) ∪ {v}). Gv is a (3, k − 1)-graph, since if
Gv contained an independent set S of order k − 1, the set S ∪ {v} would be an
independent set of order k in G. Thus if d = degG(v), Gv is a (3, k − 1;n− d−
1, |E(G)| − ZG(v))-graph. If γ(v, k,G) (or γ(v) if k and G are fixed) is defined
as e− ZG(v)− e(3, k − 1, n− d− 1), this implies that:

γ(v) ≥ 0, (2)

where γ(v) is the so called deficiency of vertex v (see [61]). Finally, the deficiency
γ(G) of a graph G is defined as

∑
v∈V (G) γ(v, k,G). Since all γ(v, k,G)’s are

non-negative, this implies:

γ(G) ≥ 0. (3)

The condition that γ(G) is non-negative is often sufficient to derive good lower
bounds for e(k, l, n), though sometimes the stronger condition that all γ(v, k,G)’s
in
∑
v∈V (G) γ(v, k,G) have to be non-negative implies even better bounds. γ(G)

can be computed from the degree sequence of G [61, 63]. If a (3, k;n, e)-graph G
has ni vertices of degree i, then:

γ(G) = ne−
k−1∑
i=0

ni
(
i2 + e(3, k − 1, n− i− 1)

)
≥ 0, (4)

where n =
∑k−1
i=0 ni and 2e =

∑k−1
i=0 ini.

5.3.2 Summary of prior and new results

In 1995, Kim [78] obtained a breakthrough result by proving that R(3, k) =
Θ(n2/ log n) using probabilistic arguments. For a good overview of the results
related to the asymptotic behaviour of R(3, k), we refer the reader to [115]. But,

152 Ramsey numbers

as already mentioned in Section 5.1, even though the asymptotic behaviour of
R(3, k) is known, computing the exact values of R(3, k) remains an extremely
difficult problem. Therefore only a few exact results are known.

In 1955 Greenwood and Gleason [62] proved that R(3, 4) = 9 and R(3, 5) = 14.
Kéry [77] proved that R(3, 6) = 18 in 1964. A few years later Kalbfleisch [75]
established that R(3, 7) ≥ 23 and R(3, 9) ≥ 36 in his Ph.D. thesis. In 1968 Graver
and Yackel [61] established that R(3, 7) ≤ 23, thus proving that R(3, 7) = 23.
In 1982 Grinstead and Roberts [63] proved that R(3, 9) = 36 and established a
lower bound of 28 for R(3, 8). Ten years later McKay and Zhang [94] proved that
R(3, 8) = 28. The exact value of R(3, k) for k ≥ 10 is still unknown. Exoo [47]
established a lower bound of 40 for R(3, 10) and Radziszowski and Kreher [101]
proved that R(3, 10) ≤ 43. In this chapter we improve this upper bound to 42.
These results are also summarised in Table 5.6. The known values and bounds
for R(m,n) for m > 3 or n > 10 can be found in [99].

Most of the results from Table 5.6 were obtained by using knowledge about
e(3, k, n). We also use this direction here: we compute new exact values of
e(3, k, n) in several cases and give improved lower bounds for many other cases,
which in turn permits us to prove new upper bounds for R(3, k) for k = 10, 11,
13, 14, 15 and 16. Likely, more new upper bounds could also be obtained for
k ≥ 17, but we did not perform these computations.

k R(3, k) year reference (upper / lower bound)

3 6 - Folklore

4 9 1955 Greenwood and Gleason [62]

5 14 1955 Greenwood and Gleason [62]

6 18 1964 Kéry [77]

7 23 1966 / 1968 Kalbfleisch [75] / Graver and Yackel [61]

8 28 1982 / 1992 Grinstead and Roberts [63] / McKay and Zhang [94]

9 36 1966 / 1982 Kalblfeisch [75] / Grinstead and Roberts [63]

10 40-43 1989 / 1988 Exoo [47] / Radziszowski and Kreher [101]

Table 5.6: Known values and bounds for R(3, k).

There are still several other open problems related to R(3, k). For example
Erdős and Sós [46] conjectured that:

Conjecture 5.7 (Erdős and Sós [46]). R(3, n+ 1)−R(3, n)→∞, for n→∞.

They also asked to prove or disprove that R(3, n+ 1)−R(3, n) = o(n). Both
problems are still open. Erdős has formulated various other problems related to

5.3. Classical triangle Ramsey numbers 153

Ramsey numbers which are still unsolved.
General formulas for e(3, k, n) are known for all n ≤ 13k/4 − 1 and for n =

13k/4 when k = 0 mod 4. Theorem 5.8 is a cumulative summary of various
contributions [61, 63, 100, 101, 102]. It captures many of the small cases, for
example it gives the exact values of e(3, 9, n) for all n ≤ 26, of e(3, 10, n) for
n ≤ 28, and of e(3, 13, n) for all n ≤ 39.

Theorem 5.8 ([100, 102]). For all n, k ≥ 1, for which e(3, k + 1, n) is finite,

e(3, k + 1, n) =

0 if n ≤ k,
n− k if k < n ≤ 2k,
3n− 5k if 2k < n ≤ 5k/2,
5n− 10k if 5k/2 < n ≤ 3k,
6n− 13k if 3k < n ≤ 13k/4− 1.

Furthermore, e(3, k+ 1, n) = 6n− 13k for k = 4t and n = 13t, and the inequality
e(3, k + 1, n) ≥ 6n − 13k holds for all n and k. All critical graphs have been
characterized whenever the equality in the theorem holds for n ≤ 3k.

In 2001 Lesser [81] stated in her thesis the theorem that e(3, k+1, n) ≥ (40n−
91k)/6 (which is better than e(3, k+1, n) ≥ 6n−13k for larger parameters) and a
number of other improvements and characterisations of graphs realising a specific
number of edges. These improvements are credited to an unpublished manuscript
of her supervisor Backelin [3]. As of 2012, Backelin’s manuscript already exceeds
500 pages and it contains numerous additional related results [3, 4], but it still
needs more work before it can be published. Therefore we will not rely on these
unpublished results in the remainder of this chapter. However, in several places
we will cite the bounds obtained there for reference.

In summary, the behaviour of e(3, k + 1, n) is known for n ≤ 13k/4 − 1. It
seems regular but very difficult to deal with for n slightly larger than 13k/4. And
it becomes hopelessly hard for even larger n.

In the remainder of this chapter we apply computational techniques to estab-
lish lower bounds on e(3, k, n) for larger n, for k ≤ 15. Our results immediately
imply better upper bounds for R(3, k) in several cases. We also hope that they
may contribute to further progress in understanding the general behaviour of
e(3, k, n).

The complete enumeration of the sets R(3, k) with k ≤ 6 was established
in [100, 94]. The exact values of e(3, 7, n) were determined by Radziszowski
and Kreher in [100] and the values of e(3, 8,≤ 26) in [101]. In this chapter,

154 Ramsey numbers

we determine the last missing value for α(G) < 8, namely e(3, 8, 27) = 85. We
also match or improve all lower bounds for e(3, k, n) from Radziszowski and
Kreher [101]. Lesser’s thesis [81] contains many lower bounds for e(3, k, n) which
are better than those in [101]. We match or improve these lower bounds in all
cases for k ≤ 10. For k ≥ 11 and n slightly exceeding 13k/4− 1, Lesser’s bounds
(which are in part credited to Backelin’s unpublished manuscript [3]) are better
than our bounds in some cases. However we obtain significantly better bounds
for larger n.

Our general method is to compute the exact value of e(3, k, n) for concrete
k and n, if this is feasible. Else we derive a lower bound for e(3, k, n) by using
a combination of inequalities (2), (3) and (4), and computations. Better lower
bounds for e(3, k−1,m) for m = n−d−1 and various d, lead in general to better
lower bounds for e(3, k, n). If we manage to show that e(3, k, n) = ∞, i.e. no
(3, k;n)-graph exists, then we obtain an upper bound R(3, k) ≤ n. An additional
specialised algorithm was needed to establish R(3, 10) ≤ 42.

Section 5.3.3 describes the extension algorithms which we used to exhaustively
construct all (3, k;n, e)-graphs for several n and e, for k ≤ 10. The details of
these algorithms are presented in Section 5.3.4. This leads to many new lower
bounds for e(3, k, n) and the enumeration of all (3, k;n)-graphs for which the
number of edges is equal to or a little larger than e(3, k, n) for k ≤ 10. These
results are presented in Section 5.3.5 (and Appendix C) and are then used in
Section 5.3.6 to prove that there is only one critical graph for the Ramsey number
R(3, 9). It is known that 40 ≤ R(3, 10) ≤ 43 (see Table 5.6). In Section 5.3.6 we
establish that R(3, 10) = 43 if and only if e(3, 10, 42) = 189, or equivalently: that
R(3, 10) = 43 if and only if every critical graph in this case is 9-regular. Then,
using computations, we prove in Section 5.3.7 that the latter do not exist and
thus show that R(3, 10) ≤ 42. In Section 5.3.10 we describe how we tested the
correctness of our programs.

Finally, in Section 5.3.8 we describe the second stage of our computations
which imply many new lower bounds for e(3,≥ 11, n). This stage only uses degree
sequence analysis of potential (3, k;n, e)-graphs which have to satisfy inequality
(4). This in turn leads to the new upper bounds for the Ramsey numbers which
are marked in bold in Table 5.7. This table presents the values and best bounds
for the Ramsey numbers R(3, k) for k ≤ 16. All of our new bounds improve
the previously best known bounds (listed in the 2011 revision of Radziszowski’s
dynamic survey on small Ramsey numbers [99]) by one. All references to the
lower bounds and the previous upper bounds can be found in that survey. In

5.3. Classical triangle Ramsey numbers 155

November 2012, Exoo [49] improved the lower bound of R(3, 11) by one to 47.
The bound R(3, 16) ≤ 98 was also obtained by Backelin in 2004, though it was
not published [3, 4]. In Section 5.3.9 we describe how we attempted to improve
lower bounds for R(3, k), but unfortunately this did not lead to any new bounds.

k R(3, k) k R(3, k)
3 6 10 40–42
4 9 11 47–50
5 14 12 52–59
6 18 13 59–68
7 23 14 66–77
8 28 15 73–87
9 36 16 79–98

Table 5.7: Values and best known bounds for Ramsey numbers R(3, k), for k ≤ 16.

5.3.3 Methods for computing e(3, k, n)

We use three methods to compute e(3, k, n): the maximum triangle-free method,
the minimum degree extension method and the neighbourhood gluing extension
method. These methods are described in the following.

Maximum triangle-free method

One method to determine e(3, k, n) is by first generating all maximal triangle-
free (in short: mtf) (3, k;n)-graphs. Recall from Section 5.2 that there exists a
(3, k;n)-graph if and only if there is an mtf (3, k;n)-graph. We use the algorithm
from Section 5.2.4 to generate all mtf (3, k;n)-graphs efficiently (our implementa-
tion of this algorithm is called triangleramsey). Using this algorithm, it is much
easier to generate all mtf (3, k;n)-graphs instead of all (3, k;n)-graphs, because
the number of the former is in most cases much smaller. For example, there
are 477 142 (3, 8; 27)-graphs, but only 21 798 of them are mtf. Table 5.8 shows
the percentage of mtf Ramsey graphs for R(3, 6). By recursively removing edges
in all possible ways from these mtf (3, k;n)-graphs and testing if the resulting
graphs G still satisfy α(G) < k, the complete set R(3, k;n) can be obtained. We
use isomorphism rejection by lists (see Section 1.3) to make sure no isomorphic
copies are output.

156 Ramsey numbers

|V (G)| Ramsey mtf Ramsey percentage
graphs graphs mtf

7 100 5 5.00
8 356 8 2.25
9 1 407 10 0.71
10 6 657 18 0.27
11 30 395 28 0.09
12 116 792 50 0.04
13 275 086 74 0.03
14 263 520 108 0.04
15 64 732 96 0.15
16 2 576 38 1.48
17 7 2 28.57

Table 5.8: Counts of Ramsey and mtf Ramsey graphs for R(3, 6) with at least 7 ver-

tices.

In 1992 McKay and Zhang [94] proved that R(3, 8) = 28, but the complete set
of critical graphs for R(3, 8) was not yet known. When present research began,
430 215 (3, 8; 27)-graphs were known (most of these were generated by McKay).

We used triangleramsey to compute all mtf (3, 8; 27)-graphs. This yielded
21 798 graphs. The counts of all mtf (3, 8;≥ 15)-graphs are given in Table 5.9.
We also used the program MTF (see Section 5.2) to independently generate these
mtf Ramsey graphs and obtained the same results. We then recursively removed
edges in all possible ways from these mtf (3, 8; 27)-graphs to obtain the complete
set R(3, 8; 27). This yielded 477 142 such graphs. As a test we verified that all
of the 430 215 previously known (3, 8; 27)-graphs are indeed included in our list.
The list can be downloaded from [87] and Table 5.10 contains the counts of these
graphs according to their number of edges. So this proves that e(3, 8; 27) = 85
and hereby we have determined the last missing value of e(3, 8, n).

We also applied this method to generate the sets R(3, 7; 21),R(3, 7; 22) and
R(3, 8; 26,≤ 77) (see Appendix C for detailed results). The set of all (3, 7; 22)-
and (3, 7;n, e(3, k, n))-graphs were already determined by Radziszowski and Kre-
her [100] and our results are in complete agreement with theirs. Other enumera-
tions are new.

This mtf method is infeasible for generating (3,≥ 9;n)-graphs for n which were
needed in this work. Nevertheless, we used this method to verify the correctness

5.3. Classical triangle Ramsey numbers 157

Number of Number of mtf
vertices Ramsey graphs

15 4 012
16 19 513
17 114 506
18 806 842
19 6 684 059
20 60 771 178
21 540 848 076
22 3 943 287 721
23 17 440 394 271
24 28 776 353 233
25 8 322 160 988
26 127 313 531
27 21 798

Table 5.9: Counts of all mtf (3, 8;n)-graphs for n ≥ 15.

of our other programs for small numbers. The results agreed in all cases in which
more than one method was used (see Section 5.3.10 for more details).

Minimum degree extension method

In their 1992 paper establishing R(3, 8) = 28, McKay and Zhang [94] proved that
the set R(3, 8; 28) is empty by generating several sets R(3, k;n, e) with additional
restrictions on the minimum degree δ(G). Suppose that one wants to generate
all (3, k;n, e)-graphs. If G is such a graph and one considers its minimum degree
vertex v, then we can reconstruct G given all possible graphs Gv. McKay and
Zhang described such dependencies, designed an algorithm to reconstruct G, and
completed the proof of R(3, 8) = 28 using this algorithm. We illustrate this
method by an example. Note that if G is a (3, k;n, e)-graph and v ∈ V (G) is a
vertex of minimum degree, then Gv is a (3, k−1;n−δ(G)−1,≤ e−δ(G)2)-graph.

Example: Suppose we want to construct all (3, 8; 22,≤ 43)-graphs. The average
degree of a (3, 8; 22,≤ 43)-graph G is 2·43

22 < 4, so δ(G) ≤ 3. Thus if we perform
the following computations, we obtain all (3, 8; 22,≤ 43)-graphs:

158 Ramsey numbers

Number of Number of
edges Ramsey graphs

85 4
86 92
87 1 374
88 11 915
89 52 807
90 122 419
91 151 308
92 99 332
93 33 145
94 4 746

Table 5.10: Counts of all (3, 8; 27)-graphs according to their number of edges.

• Construct all G’s with δ(G) = 0.

– These G’s can be obtained from (3, 7; 21,≤ 43)-graphs, however none
exist since e(3, 7; 21) = 51.

• Construct all G’s with δ(G) = 1.

– These G’s can be obtained from (3, 7; 20,≤ 42)-graphs, however none
exist since e(3, 7; 20) = 44.

• Construct all G’s with δ(G) = 2.

– These G’s can be obtained from (3, 7; 19,≤ 39)-graphs.

(Remark: e(3, 7; 19) = 37).

• Construct all G’s with δ(G) = 3.

– These G’s can be obtained from (3, 7; 18,≤ 34)-graphs.

(Remark: e(3, 7; 18) = 30).

The details of this algorithm are given in Section 5.3.4. The smaller Ramsey
graphs on which the expansions are performed, can be obtained by recursively
applying this minimum degree extension method until one reaches a size where all
initial graphs were already known. If feasible, one can also generate the smaller
Ramsey graphs by using the maximal triangle-free method. We implemented and

5.3. Classical triangle Ramsey numbers 159

used this minimum degree extension method, and in all cases where more than
one algorithm was used, it agreed with the results obtained by other algorithms
(see Section 5.3.10 for details). However, using this method it was not feasible
to generate most classes of graphs with higher parameters which were needed
to improve upper bounds of R(3, k). For example, we could not generate all
(3, 9; 28,≤ 69)-graphs with this method, as the graphs with δ(G) = 4 are obtained
from (3, 8; 23,≤ 53)-graphs, but there are already 10 691 100 (3, 8; 23,≤ 52)-
graphs (see Table C.2 in Appendix C).

Neighbourhood gluing extension method

The most successful method which we used for our computations is the neighbour-
hood gluing extension method. Most of our computational results were obtained
by this method.

Our general extension algorithm for an input (3, k;m)-graph H produces all
(3, k+1;n, e)-graphs G, often with some specific restrictions on n and e, such that
H is isomorphic to Gv for some vertex v ∈ V (G). Thus the algorithm connects
or glues the neighbours of a vertex v to H in all possible ways (see Figure 5.4
for an example). Note that each neighbour of v is glued to an independent set,
otherwise the extended graph would contain triangles. This algorithm is also
used in the minimum degree extension method and is described in more detail in
Section 5.3.4.

H

v

Figure 5.4: The operation of gluing the neighbours of v in all possible ways to H.

We used the following strategy to determine if the parameters of the input
graphs to which our extender program was applied were such that the output

160 Ramsey numbers

was guaranteed to contain all (3, k+ 1;n,≤ e)-graphs. Let mi = n− i− 1, where
i ranges over possible degrees in any graph G we look for, thus δ(G) ≤ i ≤ ∆(G).
In the broadest case we have δ(G) = max{n − R(3, k), 0} and ∆(G) = k. If
G would contain a vertex v with degree less than n − R(3, k), Gv would be a
(3, k)-graph with at least R(3, k) vertices, while no such graphs exist. If ∆(G)
would be larger than k, G would contain an independent set of order k + 1. We
also identified a number of special cases where this range was more restricted.

Let ti be an integer such that we have extended all (3, k;mi, < e(3, k,mi)+ti)-
graphs as potential Gv’s of G. Now, if we use e(3, k,mi)+ ti instead of e(3, k,mi)
in the formula for γ(G) in inequality (4) from Section 5.3.1 for all possible values
of i, we get:

γ̄(G) = ne−
∆(G)∑
i=δ(G)

ni
(
i2 + e(3, k, n− i− 1) + ti

)
, (5)

where ni stands for the number of vertices of degree i in G and n =
∑∆(G)
i=δ(G) ni

and 2e =
∑∆(G)
i=δ(G) ini. If there are no degree sequences nδ(G), ..., n∆(G) for which

γ̄(G) is non-negative, we can conclude that all (3, k + 1;n,≤ e)-graphs were
already generated.

Example: Table 5.11 lists specific parameters of the general process used to
obtain all (3, 8; 25,≤ 65)-graphs. Every vertex v in any (3, 8; 25,≤ 65)-graph
has degree i, for some 2 ≤ i ≤ 7. The corresponding graph Gv is of type
(3, 7;mi, |E(Gv)|). The values of e(3, 7,m) are included in Table C.1 from Ap-
pendix C, and let the ti’s be as in Table 5.11. When we use these values of
e(3, 7,mi) and ti in equality (5) for γ̄(G), there are no degree sequences of
(3, 8; 25,≤ 65)-graphs for which γ̄(G) is non-negative. Thus, if we run the ex-
tender program for all possible graphs Gv with the number of edges listed in the
last column of Table 5.11, we will obtain all (3, 8; 25, e)-graphs for e ≤ 65.

The set of increments ti accomplishing this goal is not unique, there are others
which work. We just tried to minimise the amount of required computations in
a greedy way (i.e. we make an initial guess for the values of ti and then increase
them one by one till there are no degree sequences for which γ̄(G) is non-negative).
Note that the largest increments ti in Table 5.11 occur for i’s which are close to
the average degree of G.

5.3. Classical triangle Ramsey numbers 161

i = degG(v) mi = |V (Gv)| e(3, 7,mi) ti |E(Gv)| = e− Z(v)
2 22 60 1 60
3 21 51 1 51
4 20 44 2 44, 45
5 19 37 3 37, 38, 39
6 18 30 2 30, 31
7 17 25 1 25

Table 5.11: Obtaining all (3, 8; 25,≤ 65)-graphs.

5.3.4 Algorithmic details

In this section we present details about the algorithm which produces all (3, k+1;
n, e)-graphs G for an input (3, k;m)-graph H such that for some vertex v ∈ V (G),
H is isomorphic to Gv. This algorithm is used in the minimum degree and
neighbourhood gluing extension method. The implementation of the algorithm
to generate maximal triangle-free Ramsey graphs is described in Section 5.2.4.

Given a (3, k;n, f)-graph G′ as input and an expansion degree d, a desired
maximum number of edges e and a minimum degree dm as parameters. Our
program constructs all (3, k + 1;n + d + 1,≤ e)-graphs G with δ(G) ≥ dm for
which there is a vertex v ∈ V (G) such that deg(v) = d and Gv ∼= G′. More
specifically, the program adds a vertex v with neighbours u1, ..., ud to G′ and
connects them to independent sets of G′ in all possible ways, so that the resulting
graph is a (3, k + 1;n + d + 1,≤ e)-graph with δ(G) ≥ dm. We also use this (∗)
notation in the remainder of this section, i.e. the extension procedure always
adds a new vertex v with d neighbours u1, ..., ud and connects these neighbours
to independent sets S1, ..., Sd of G′ (so ui is connected to Si, for 1 ≤ i ≤ d) to
construct a (3, k + 1;n+ d+ 1,≤ e)-graph G.

The extension program first determines all independent sets of G′ of orders
t that are possible, namely for which dm − 1 ≤ t ≤ k − 1. The program then
recursively assigns the d neighbours of v to the eligible independent sets of G′

and adds the edges joining the ui’s to their associated independent sets. It is
then tested if the resulting graph G is a valid (3, k + 1;n+ d+ 1,≤ e)-graph. If
it is, we output it. This general process is greatly accelerated by the techniques
which are described in the remainder of this section.

We bound the recursion if a given partial assignment of neighbours of v to
independent sets cannot lead to any (3, k + 1;n + d + 1,≤ e)-graphs. Suppose

162 Ramsey numbers

that i neighbours u1, ..., ui of v have already been assigned to independent sets
S1, . . . , Si. If V (G′)\(S1∪ ...∪Si) induces an independent set I of order k+1− i,
this assignment cannot lead to any output since I ∪ {u1, . . . , ui} would form an
independent set of order k + 1 in G. We could test this property for all subsets
of Si’s, but we found it to be most efficient to do it only for all pairs. Namely,
if u1, ..., ui have already been assigned to independent sets S1, . . . , Si and we
consider to assign the next neighbour of v to an independent set S, we test if for
all j (1 ≤ j ≤ i), V (G′) \ (Sj ∪ S) does not induce any independent set of order
k − 1. The list of independent sets which can still be assigned is dynamically
updated.

For the efficiency of the algorithm it is vital that determining the indepence
number of the graph induced by V (G′)\(S1∪...∪Si) is fast. Hence we precompute
the independence numbers of all induced subgraphs of G′. This precomputation
also needs to be done very efficiently. We represent a set of vertices S ⊂ V (G′)
by a bitvector. The array indep_number[] of 2n unsigned chars stores the
independence number of the graph induced by S in G′. It is very important
that indep_number[] fits into the memory. On the computers on which we per-
formed the expansions this was still feasible up to n = 31 (this requires approx-
imately 2 GB of memory). We investigated various approaches to precompute
indep_number[]. The algorithm which is given as pseudocode in Algorithm 5.4
was by far be the most efficient one. In the pseudocode bitv(S’) represents the
bitvector corresponding with set S′.

Algorithm 5.4 Precomputing the independence number
for i = 0 upto 2n − 1 do

set indep_number[i] = 0
end for
for j = k − 1 downto k + 1− d do

for all independent sets S of order j in G′ do
Recursively make all supersets S′ of S, and
if indep_number[bitv(S’)] = 0 then set indep_number[bitv(S’)] = j
else break making supersets of S

end for
end for

The key idea is that if the superset S′ of S already has indep_number[bitv(S’)]
≥ j, we can break the recursion of making the supersets. Usually one can break
very quickly. For small extension degrees d ≤ 3, it is more efficient not to pre-
compute these independence numbers, but instead to compute them as needed.

5.3. Classical triangle Ramsey numbers 163

If a neighbour ui of v (1 ≤ i ≤ d) has been assigned to an independent set
Si (still using the notation of (∗)), we also update the degrees of the vertices in
G′. If ui is being connected to Si, the degree of every vertex of Si increases by
one. If the degree of a vertex w of G′ becomes k, other neighbours of v cannot be
assigned to independent sets which contain w. We call such vertices which are no
longer eligible forbidden vertices. We store all of them in a dynamically updated
bitvector. We also dynamically update the list of independent sets to which
ui’s can still be assigned. Independent sets which contain forbidden vertices are
removed from the list of eligible independent sets (i.e. independent sets to which
ui’s can still be assigned). We test this by performing bitvector operations. If
no eligible independent sets are left, we can bound the recursion. Note that we
cannot break the recursion when the number of eligible independent sets is smaller
than the number of neighbours of v that still have to be assigned to independent
sets, since they can be assigned to the same independent set. If i neighbours of v
are already assigned and the forbidden vertices form an independent of set order
k+1− (d− i), the recursion can also be bounded, though in general this criterion
is weak.

We assign the neighbours u1, ..., ud of v to independent sets S1, ..., Sd in as-
cending order of the independent sets, i.e. |Sj | ≤ |Sj+1| for all 1 ≤ j < d. Doing
this rather than in descending order allows us to eliminate many candidate in-
dependent sets early in the recursion. If an independent set S is small, it is very
likely that V (G′)\S induces a large independent set. So if a neighbour of v is as-
signed to S, it is also very likely that S cannot be assigned to another neighbour
of v or that assigning S eliminates many eligible independent sets.

Assigning the neighbours of v to independent sets of ascending order also
gives us an easy lower bound for the number of edges in any potential output
graph which can be obtained from the current graph and assignment. If the the
neighbours u1, ..., ui of v (1 ≤ i ≤ d) have already been assigned to independent
sets S1, . . . , Si and the current minimal order of eligible independent sets is t, then
any expanded graph will have at least f = |E(G′)|+ d+ |S1|+ ...+ |Si|+ t(d− i)
edges. If f > e, we can bound the recursion as well since we are constructing
(3, k + 1;n+ d+ 1,≤ e)-graphs.

The pseudocode of the recursive extension procedure is listed in Algorithm 5.5.
It is assumed that indep_number[] (see Algorithm 5.4) and the list of eligible
independent sets are already computed. The procedure Construct_Ramsey() has
two parameters. The first parameter is the number of neighbours l of v (0 ≤ l ≤ d)
which are already assigned to an independent set of G′. The second parameter

164 Ramsey numbers

is the minimum order of the independent set to which the next neighbour ul+1

of v can be assigned. The recursion is bounded if any of the bounding criteria
described above can be applied. When all neighbours u1, ..., ud of v have been
assigned to independent sets S1, ..., Sd of G′, we add edges connecting ui with
every vertex of Si for every ui (1 ≤ i ≤ d).

Algorithm 5.5 Construct Ramsey(num assigned, current order)
if num assigned == d then

expand graph G′ to G
if G is a (3, k + 1;n+ d+ 1,≤ e)-graph then

output G
end if

else
for every eligible set S of order current order do

assign S to unum assigned+1

update the set of eligible independent sets
Construct Ramsey(num assigned + 1, current order)

end for
if current order < k − 1 then

Construct Ramsey(num assigned, current order + 1)
end if

end if

Our extension program does not perform any isomorphism rejection. We
canonically label the output graphs with nauty [88] and remove the isomorphic
copies. This is not a bottleneck as there are usually only a few (3, k+1;n+d+1,≤
e)-graphs which are constructed by our program. The results obtained by our
extension algorithms are described in Sections 5.3.5 and 5.3.7. In Section 5.3.10
we describe how we tested the correctness of our programs.

Degree Sequence Feasibility

Suppose we know the values or lower bounds for e(3, k,m) for some fixed k and we
wish to know all feasible degree sequences of (3, k+1;n, e)-graphsG. We construct
the system of integer constraints consisting of n =

∑k
i=0 ni, 2e =

∑k
i=0 ini, and

inequality (4) from Section 5.3.1 (where ni stands for the number of vertices of
degree i in G). If it has no solutions (i.e. there are no degree sequences n0, ..., nk
for which γ(G) is non-negative), we conclude that e(3, k+1, n) > e. Otherwise, we
obtain possible degree sequences for G. This algorithm is similar in functionality
to the package FRANK which was developed by Lesser [81].

5.3. Classical triangle Ramsey numbers 165

5.3.5 Progress on computing small e(3, k, n)

As already mentioned in Section 5.3.2, the complete enumeration of the sets
R(3, k) with k ≤ 6 was established in [100, 94]. Radziszowski and Kreher deter-
mined the exact values of e(3, 7, n) in [100] and those of e(3, 8,≤ 26) in [101].

By performing computations using the algorithms which are described in Sec-
tion 5.3.3, we determined the last missing value for α(G) < 8, namely e(3, 8, 27) =
85. We also complete the computation of exact values for e(3, 9, n) for all n and
for all n ≤ 33 for k = 10. Previously only the values for e(3, 9,≤ 26) and
e(3, 10,≤ 28) were known (these are given by Theorem 5.8). We also establish
new lower bounds for e(3, 10,≥ 34). All of these improvements are obtained by
performing computations using the algorithms from Section 5.3.3.

The exact counts of (3, k;n, e)-graphs for k = 7, 8, 9, 10 are listed in Ta-
bles C.1,C.2, C.3 and C.4, respectively, in Appendix C. All (3,≤ 9;n, e(3, k, n))-
graphs which were constructed by our programs can be obtained from House of
Graphs [15] by searching for the keywords “minimal ramsey graph” or from [58].

Exact values of e(3, 9, n)

The values of e(3, 9,≤ 26) are determined by Theorem 5.8. The values of e(3, 9, n)
for 27 ≤ n ≤ 34 were obtained by computations, mostly by the neighbourhood
gluing extender algorithm described in Section 5.3.3. The results are presented in
Table 5.12. All of these values improve the previously best known lower bounds
for e(3, 9, n) reported by Radziszowski and Kreher [101] and Lesser [81]. The
equality e(3, 9, 35) = 140 will be established by Theorem 5.9 in Section 5.3.6.

n e(3, 9, n) comments

27 61

28 68 the same as in [3]

29 77

30 86

31 95

32 104 not enough for R(3, 10) ≤ 42

33 118 just enough for Theorem 5.10

34 129 122 required for R(3, 10) ≤ 43

35 140 Theorem 5.9

36 ∞ hence R(3, 9) ≤ 36, old bound

Table 5.12: Exact values of e(3, 9, n), for n ≥ 27

166 Ramsey numbers

Values and lower bounds for e(3, 10, n)

The values of e(3, 10,≤ 28) are determined by Theorem 5.8. The values for
29 ≤ n ≤ 34 were obtained by the neighbourhood gluing extender algorithm
described in Section 5.3.3 and are listed in Table 5.13. The lower bounds for
e(3, 10,≥ 35) are included in the second column of Table 5.13. They are based on
solving integer constraints of inequalities (3) and (4) from Section 5.3.1, using the
exact values of e(3, 9, n) listed in Table 5.12, and results from the neighbourhood
gluing extender algorithm used similarly as in the example of Section 5.3.3. Our
bounds for e(3, 10, n) improve the previously best known bounds [101, 81] for all
n ≥ 30.

By Theorem 5.10 (see Section 5.3.6) we know that any (3, 10; 42)-graph must
be 9-regular (and thus have 189 edges). Hence all its graphs Gv are necessarily of
type (3, 9; 32, 108). There exist a large number of these graphs. Their generation,
extensions to possible (3, 10; 42, 189)-graphs and the implied nonexistence of any
(3, 10; 42)-graphs is described in Section 5.3.7.

n e(3, 10, n) ≥ comments

29 58 exact, the same as in [81]

30 66 exact

31 73 exact

32 81 exact

33 90 exact

34 99 exact, (3, 10; 34, 99)-graph constructed by Backelin [4]

35 107

36 117

37 128

38 139 146 required for R(3, 11) ≤ 49

39 151 as required for R(3, 11) ≤ 50, Theorem 5.13

40 161

41 172 184 maximum

42 ∞ hence R(3, 10) ≤ 42, new bound, Theorem 5.12

43 ∞ hence R(3, 10) ≤ 43, old bound

Table 5.13: Values and lower bounds on e(3, 10, n), for n ≥ 29.

All lower bounds in Tables 5.12 and 5.13 required computations of our neigh-
bourhood gluing extender algorithm. We did not perform any such computations
in an attempt to improve the lower bounds of e(3,≥ 11, n) as this was computa-

5.3. Classical triangle Ramsey numbers 167

tionally infeasible. All results presented in Section 5.3.8 for k ≥ 11 depend only
on the degree sequence analysis and the results for k ≤ 10.

5.3.6 Improved lower bounds for e(3, 9, 35) and e(3, 10, 42)

Sometimes we can improve the lower bounds for e(3, k, n) implied by inequalities
(3) and (4) from Section 5.3.1 by a more detailed analysis of feasible degree
sequences. Such improvements can typically be made in cases for which inequality
(4) gives a small number of possible degree sequences n0, ..., nk−1 with only one
strongly dominating degree (i.e. a degree sequence with a large value of ni (0 ≤
i ≤ k − 1), while the other nj ’s are small), but where the graphs represented
by the degree sequences are not regular. We have such a situation in the proofs
of the two following theorems. These theorems were proven by Stanis law P.
Radziszowski in [59].

Theorem 5.9. There exists a unique (3, 9; 35)-graph, and e(3, 9, 35) = 140.

Proof. Any (3, 9; 35)-graph G has ∆(G) ≤ 8, hence we have |E(G)| ≤ 140. Sup-
pose G ∈ R(3, 9; 35, 140 − s) for some s ≥ 0. Since R(3, 8) = 28, the degrees of
vertices in G are 7 or 8, and let there be n7 and n8 of them, respectively. We have
n7 + n8 = 35, n7 = 2s. In this case there are five solutions to inequality (4) with
0 ≤ s ≤ 4. In particular, this shows that e(3, 9, 35) ≥ 136. If n7 > 0 (equivalently
s > 0), then consider graph H induced in G by n7 vertices of degree 7. Observe
that δ(H) ≤ s, since H is a triangle-free graph with 2s vertices. Let v be a vertex
in V (G) of degree 7 connected to at most s other vertices of degree 7. Thus we
have ZG(v) ≥ 7s + 8(7 − s) = 56 − s, and |E(Gv)| ≤ (140 − s) − (56 − s) = 84.
However Gv is a (3, 8; 27)-graph which contradicts the fact that e(3, 8, 27) = 85.

The computations extending all (3, 8; 26, 76)-graphs, using the neighbourhood
gluing extension method described in Section 5.3.3, established that there exists
a unique (up to isomorphism) 8-regular (3, 9; 35)-graph. We note that it is a
circulant graph with 35 vertices with circular distances {1,7,11,16}, which was
already found by Kalbfleisch [75] in 1966. This graph is depicted in Figure 5.5.
Clearly, any (3, 9; 35, 140)-graph must be 8-regular, and thus the theorem follows.

Theorem 5.10. R(3, 10) = 43 if and only if e(3, 10, 42) = 189.

Proof. It is known that R(3, 10) ≤ 43 [101], i.e. there are no (3, 10; 43)-graphs. We
will prove the theorem by showing that any (3, 10; 42)-graph must be 9-regular.

168 Ramsey numbers

Figure 5.5: The unique (3, 9; 35)-graph.

Suppose G ∈ R(3, 10; 42, 189 − s) for some s ≥ 0. Computations using the
algorithm described in Section 5.3.4 established that G cannot have the unique
(3, 9; 35)-graph as one of its Gv’s. Hence, 7 ≤ degG(v) ≤ 9 for all vertices
v ∈ V (G). The solutions to inequality (4) for which all degrees of the possible
degree sequences are between 7 and 9 are presented in Table 5.14.

Note that for all 0 ≤ s ≤ 4 we have 0 ≤ n7 ≤ s, n8 + 2n7 = 2s, n9 =
42 − n8 − n7, and |E(G)| = 189 − s. Since e(3, 9, 34) = 129, using inequality
(2) from Section 5.3.1 we see that Z(v) ≤ 60 − s for every vertex v of degree 7.
Similarly, since e(3, 9, 33) = 118, Z(v) ≤ 71 − s for every vertex v of degree 8.
If s = 0, then we are done. Otherwise consider the graph H induced in G by
the 2s − n7 vertices of degree 7 or 8. Observe that δ(H) ≤ s − n7/2, since H is
triangle-free.

Case 1: n7 = 0. Let v be a vertex in V (G) of degree 8 connected to at most s
other vertices of degree 8. This gives ZG(v) ≥ 8s+ 9(8− s) = 72− s, which is a
contradiction.

Case 2: n8 = 0. Let v be a vertex in V (G) of degree 7 connected to at most
s/2 other vertices of degree 7 (in this case |V (H)| = s). This gives ZG(v) ≥
7s/2 + 9(7− s/2) = 63− s, which is a contradiction.

Case 3: n7 = 1. If v is the only vertex of degree 7, then n8 = 2s − 2 and
we easily have ZG(v) ≥ 8n8 + 9(7 − n8) = 65 − 2s > 60 − s, which again is a
contradiction.

5.3. Classical triangle Ramsey numbers 169

n7 n8 n9 |E(G)| γ(G) s

0 8 34 185 24 4
1 6 35 185 25 4
2 4 36 185 26 4
3 2 37 185 27 4
4 0 38 185 28 4
0 6 36 186 60 3
1 4 37 186 61 3
2 2 38 186 62 3
3 0 39 186 63 3
0 4 38 187 96 2
1 2 39 187 97 2
2 0 40 187 98 2
0 2 40 188 132 1
1 0 41 188 133 1
0 0 42 189 168 0

Table 5.14: Solutions to inequality (4) for (3, 10; 42, 189− s)-graphs.

Case 4: n7 = 2. Both vertices of degree 7 must have ZG(v) ≥ 7 + 8n8 + 9(7 −
n8 − 1) = 61− (2s− 2n7) = 65− 2s, which is a contradiction.

Case 5: n7 > 2. The only remaining degree sequence not covered by previous
cases is n7 = 3 and n8 = 2, for s = 4 and e = 185. There is a vertex v of degree 7
connected to at most one other of degree 7, and thus ZG(v) ≥ 7+2·8+4·9 > 60−s,
which is a contradiction.

5.3.7 R(3, 10) ≤ 42

Theorem 5.10 implies that any (3, 10; 42)-graph G must be 9-regular (and thus
have 189 edges). Removing any vertex v with its neighbourhood from G yields a
(3, 9; 32, 108)-graph Gv. Hence, our first task is to obtain all (3, 9; 32, 108)-graphs.

We used the neighbourhood gluing extension method to generate (3, 9; 32, 108)-
graphs H which have a vertex v for which Hv is one of the following types:
(3, 8; 27), (3, 8; 26,≤ 77), (3, 8; 25,≤ 68), (3, 8; 24,≤ 59) or (3, 8; 23, 49). These
extensions yielded a set X of 2 104 151 (3, 9; 32, 108)-graphs. When we use the
notation of the example in Section 5.3.3, we have 4 ≤ i ≤ 8, mi = 31 − i and

170 Ramsey numbers

ti = 10, 5, 4, 4, 1, respectively. When we use these values of e(3, 8,mi) and ti in
equality (5) for γ̄(G) for a (3, 9; 32, 108)-graph G, the only degree sequence for
which γ̄(G) is non-negative is n6 = 8, n7 = 24.

Potentially, the complete set of (3, 9; 32, 108)-graphs could be obtained by
performing additional extensions of degree 6 to (3, 8; 25, 69)-graphs or exten-
sions of degree 7 to (3, 8; 24, 60)-graphs. However, there are already 12 581 543
(3, 8; 25,≤ 68)-graphs and 3 421 512 (3, 8; 24,≤ 59)-graphs (see Table C.2 in Ap-
pendix C), and there are many more with one additional edge. So extending all
(3, 8; 25, 69)- or (3, 8; 24, 60)-graphs to (3, 9; 32, 108)-graphs using the algorithm
from Section 5.3.4 is computationally infeasible. Hence, further refinement of the
construction method to generate the (3, 9; 32, 108)-graphs which are not in X is
needed.

Lemma 5.11 describes which (3, 9; 32, 108)-graphs are possibly not in X .

Lemma 5.11. Every (3, 9; 32, 108)-graph H 6∈ X has n6 = 8, n7 = 24, and
furthermore in such H every vertex of degree 6 has exactly 3 neighbours of degree
7 and every vertex of degree 7 has exactly 1 neighbour of degree 6.

Proof. As stated after the definition of X in the beginning of this section, the
fact that γ̄(G) from equality (5) must be non-negative implies the specified degree
sequence of H 6∈ X . Suppose that H contains a vertex v of degree 6 with at least
4 neighbours of degree 7. As ZH(v) ≥ 40 and thus |E(Hv)| ≤ 68. However,
all such graphs were included in the set of inputs producing X , so we have a
contradiction. Similarly, suppose that H has a vertex v of degree 7 with no
neighbours of degree 6. Then ZH(v) = 49 and |E(Hv)| = 59, but all such graphs
were used as inputs producing X , hence again we have a contradiction. So for
any H /∈ X , every vertex of degree 6 has at most 3 neighbours of degree 7 and
every vertex of degree 7 has at least 1 vertex of degree 6. So there are exactly
24 edges connecting vertices of distinct degrees, and we can easily conclude that
every vertex of degree 6 must have exactly 3 neighbours of degree 7 and every
vertex of degree 7 exactly 1 neighbour of degree 6.

We adapted the extension algorithm from Section 5.3.4 to generate this very
restricted set of (3, 9; 32, 108)-graphs by performing extensions on all 64 233 886
(3, 8; 24, 60)-graphs (see Table C.2 in Appendix C). The result is that there are
no (3, 9; 32, 108)-graphs which are not in X . In Section 5.3.10 we describe how
we tested the correctness of this adapted extension algorithm.

5.3. Classical triangle Ramsey numbers 171

Theorem 5.12. R(3, 10) ≤ 42.

Proof. Suppose that G is a (3, 10; 42)-graph. By Theorem 5.10 it must be a 9-
regular (3, 10; 42, 189)-graph. Thus for any v ∈ V (G), Gv is a (3, 9; 32, 108)-graph.
By Lemma 5.11 and the computations described above, we have proved there are
exactly 2 104 151 such graphs. Since it is computationally not feasible to use the
extension algorithm described in Section 5.3.4 to extend all (3, 9; 32, 108)-graphs
to (3, 10; 42, 189)-graphs G, we implemented a modified version of this algorithm
which was specialised for this task. The specialised algorithm goes as follows: the
neighbours of v have to be connected to independent sets of order 8 in Gv. For
every pair of (possibly equal) independent sets {Si, Sj} of order 8, we test if they
can be assigned to two neighbours of v by checking if V (Gv)\(Si∪Sj) induces an
independent set of order 8 in Gv. If so, we can bound the recursion. We cannot
use the precomputed array indep_number[] of 2n elements (see Section 5.3.4)
for this task, since this array does not fit into the memory for n ≥ 32. Instead we
precompute a two-dimensional array which stores for every pair of independent
sets {Si, Sj} of order 8 if V (Gv) \ (Si ∪ Sj) induces an independent set of order
8 in Gv. The concept of eligible candidates (see Section 5.3.4) was also used,
and the condition ∆(G) = 9 turned out to be particularly strong in pruning the
recursion. No 9-regular (3, 10; 42, 189)-graphs were produced by this algorithm,
and thus R(3, 10) ≤ 42.

Theorem 5.12 improves the bound R(3, 10) ≤ 43 obtained in 1988 by Radzis-
zowski and Kreher [101]. In Section 5.3.10 we describe how we tested the cor-
rectness of our implementations and the computational effort required for various
parts of the computations.

5.3.8 New upper bounds on R(3, k) for k ≥ 11

We establish five further new upper bounds on the Ramsey numbers R(3, k),
for k ≥ 11 as listed in Theorem 5.13. All of the new bounds improve the results
listed in the 2011 revision of the Radziszowski’s dynamic survey on small Ramsey
numbers [99] by 1. The bound R(3, 16) ≤ 98 was also obtained by Backelin,
though it was not published [3, 4]. Note that we don’t improve the upper bound
for R(3, 12).

Theorem 5.13. The following upper bounds hold: R(3, 11) ≤ 50, R(3, 13) ≤ 68,
R(3, 14) ≤ 77, R(3, 15) ≤ 87, and R(3, 16) ≤ 98.

172 Ramsey numbers

Proof. Each of the new upper bounds R(3, k) ≤ n can be obtained by showing
that e(3, k, n) =∞. The details of the intermediate stages of computations for all
k are presented in the tables and comments of the remainder of this section. For
k = 16 no data is shown except some comments in Table 5.19. In particular the
data in this table implies e(3, 16, 98) =∞ by inequality (4) from Section 5.3.1.

Tables 5.15-5.19 list our lower bounds for e(3, k, n), for 11 ≤ k ≤ 15. These
results were obtained by using our new bounds for e(3, 10, n) from Section 5.3.5
and degree sequence analysis of potential (3, k;n, e)-graphs which have to satisfy
inequality (4). So here we did not perform any computations with the algorithms
described in Section 5.3.3 as this is computationally infeasible.

All of our lower bounds for e(3, k, n) are at least as good as those of Radzis-
zowski and Kreher [101]. In Tables 5.15, 5.16 and 5.17, for k = 11, 12 and 13,
respectively, we list some cases in the comments column, where the lower bounds
for e(3, k, n) listed in Lesser’s thesis [81] (some of them credited to [3]) are better
than our results. This is the case for n slightly larger than 13k/4− 1, mostly due
to the theorems claimed in Backelin’s unpublished manuscript [3, 4]. Our lower
bounds for e(3, k, n) and the implied upper bounds for R(3, k), do not rely on
these results. We have checked that assuming the results from [3, 4, 81] would
not imply, using the methods of this paper, any further improvements on the
upper bounds on R(3, k) for k ≤ 16, but they may for k ≥ 17. Hence, if the
results in [3, 81] are published, then using them jointly with our results may lead
to better upper bounds on R(3, k), at least for some k ≥ 17.

5.3. Classical triangle Ramsey numbers 173

Lower bounds for e(3, 11, n)

The exact values of e(3, 11,≤ 31) are determined by Theorem 5.8. The bounds
for n = 32, 33 which are marked with a ’t’ in Table 5.15 are implied by Theo-
rem 5.8. The lower bounds for e(3, 11,≥ 32) are included in the second column
of Table 5.15. They are based on solving inequality (4) using known values and
lower bounds for e(3, 10, n) listed in Table 5.13 in Section 5.3.5. They are better
than those in [81] for all 36 ≤ n ≤ 50.

n e(3, 11, n) ≥ comments
32 62t 63 in [81], 63 is exact [3, 4]
33 68t 69 in [81], 70 is exact [3, 4]
34 75 76 in [81], 77 is exact [3, 4]
35 83 84 in [81], credit to [3]
36 92 the same as in [3, 4]
37 100
38 109
39 117 unique degree sequence solution, 6-regular
40 128
41 138
42 149
43 159
44 170
45 182
46 195 199 required for R(3, 12) ≤ 58
47 209
48 222 unique solution: n9 = 36, n10 = 12,

215 required for R(3, 12) ≤ 59, old bound
49 237 245 maximum
50 ∞ hence R(3, 11) ≤ 50, new bound, Theorem 5.13
51 ∞ hence R(3, 11) ≤ 51, old bound

Table 5.15: Lower bounds on e(3, 11, n), for n ≥ 32.

The maximum number of edges in any (3, 11; 49)-graph is that of a 10-regular
graph, so a proof of e(3, 11, 49) > 245 would imply R(3, 11) ≤ 49. Observe that
any graph Gv of any 10-regular (3, 11; 50)-graph must be a (3, 10; 39, 150)-graph.
Thus, our improvement of the upper bound on R(3, 11) from 51 to 50 is mainly
due to the new lower bound e(3, 10, 39) ≥ 151.

174 Ramsey numbers

Lower bounds for e(3, 12, n)

The exact values of e(3, 12,≤ 34) are determined by Theorem 5.8. The bounds
for 35 ≤ n ≤ 37 which are marked with a ’t’ in Table 5.16 are implied by
Theorem 5.8. The lower bounds for e(3, 12,≥ 35) are included in the second
column of Table 5.16. They are based on solving inequality (4) using known
values and lower bounds for e(3, 11, n) given in Table 5.15. They are better than
those in [81] for all 43 ≤ n ≤ 58.

An improvement of the upper bound on R(3, 12) obtained by Lesser [81] from
60 to 59 is now immediate (it formed a significant part of her thesis), but a
further improvement from 59 to 58 would require an increase of the lower bound
for e(3, 12, 58) by 4.

n e(3, 12, n) ≥ comments

35 67t 68 in [81], 68 is exact [3, 4]
36 73t 74 in [81], 75 is exact [3, 4]
37 79t 81 in [81], 82 is exact [3, 4]
38 86 88 in [81], 89 [3]
39 93 95 in [81], 96 [3]
40 100 102 in [81], 103 [3]
41 109 111 in [81]
42 119 119 in [81], 120 in [3]
43 128 the same as in [3]
44 138
45 148
46 158
47 167 168, proof based on Table 7 [4]
48 179 180, proof based on Table 7 [4]
49 191
50 203
51 216
52 229
53 241
54 255 259 required for R(3, 13) ≤ 67
55 269 265 required for R(3, 13) ≤ 68, Theorem 5.13
56 283
57 299
58 316 319 maximum
59 ∞ hence R(3, 12) ≤ 59, old bound

Table 5.16: Lower bounds on e(3, 12, n), for n ≥ 35.

5.3. Classical triangle Ramsey numbers 175

Lower bounds for e(3, 13, n)

The exact values of e(3, 13,≤ 39) are determined by Theorem 5.8. The bound
for n = 40 is implied by Theorem 5.8. The lower bounds for e(3, 13,≥ 40) are
included in the second column of Table 5.17. They are based on solving inequality
(4) using lower bounds for e(3, 12, n) listed in Table 5.16. They are better than
those in [81] for all 51 ≤ n ≤ 68.

n e(3, 13, n) ≥ comments

40 84t 86 in [81], 87 is exact [4]
41 91 93 in [81], 94 is exact [3]
42 97 100 in [81], 101 in [3]
43 104 107 in [81], 108 in [3]
44 112 114 in [81], 115 in [3]
45 120 122 in [81], 123 in [3]
46 128 130 in [81], 132 in [3]
47 136 139 in [81], 140 in [3]
48 146 148 in [81]
49 157 158 in [81]
50 167 167 in [81], 168 in [3]
51 177 178 in [3]
52 189
53 200
54 212
55 223
56 234
57 247
58 260
59 275
60 289
61 303
62 319 326 required for R(3, 14) ≤ 76
63 334
64 350 345 required for R(3, 14) ≤ 77, Theorem 5.13
65 365
66 381
67 398 402 maximum
68 ∞ hence R(3, 13) ≤ 68, new bound
69 ∞ hence R(3, 13) ≤ 69, old bound

Table 5.17: Lower bounds on e(3, 13, n), for n ≥ 40.

176 Ramsey numbers

Lower bounds for e(3, 14, n)

The exact values of e(3, 14,≤ 41) are determined by Theorem 5.8. Only lower
bounds for e(3, 14,≥ 66) are included in the second column of Table 5.18, since
these are relevant for our further analysis of R(3, 15) and R(3, 16). They are based
on solving inequality (4) using lower bounds for e(3, 13, n) listed in Table 5.17.
They are better than those in [81] for all 66 ≤ n ≤ 77.

n e(3, 14, n) ≥ comments
66 321
67 334 335, proof based on Table 9 [4]
68 350
69 365
70 381
71 398 407 required for R(3, 15) ≤ 86
72 415 414 required for R(3, 15) ≤ 87, Theorem 5.13
73 432
74 449
75 468
76 486 494 maximum
77 ∞ hence R(3, 14) ≤ 77, new bound
78 ∞ hence R(3, 14) ≤ 78, old bound

Table 5.18: Lower bounds on e(3, 14, n), for n ≥ 66.

5.3. Classical triangle Ramsey numbers 177

Lower bounds for e(3, 15, n)

The exact values of e(3, 15,≤ 44) are determined by Theorem 5.8. Only lower
bounds for e(3, 15,≥ 81) are included in the second column of Table 5.19, since
these are relevant for further analysis of R(3, 16). They are based on solving
inequality (4) using lower bounds for e(3, 14, n) listed in Table 5.18. They are
better than those in [81] for all 81 ≤ n ≤ 87.

n e(3, 15, n) ≥ comments
81 497 498, proof based on Table 10 [4]
82 515 518 required for R(3, 16) ≤ 97

511 required for R(3, 16) ≤ 98, Theorem 5.13
83 533
84 552
85 572
86 592 602 maximum
87 ∞ hence R(3, 15) ≤ 87, new bound
88 ∞ hence R(3, 15) ≤ 88, old bound

Table 5.19: Lower bounds on e(3, 15, n), for n ≥ 81.

5.3.9 Improving lower bounds for R(3, k)

Next to improving the upper bounds for R(3, k), a logical step to try to get
closer to determining the actual value of R(3, k) would be to improve the lower
bounds for R(3, k). Many of the known lower bounds for the classical Ramsey
numbers which are listed in Radziszowski’s dynamic survey [99] were obtained by
performing highly tuned metaheuristics such as tabu search. We refer the reader
to [47, 48, 98] for more details about these metaheuristics. In November 2012,
Exoo [49] improved the lower bound of R(3, 11) by one to 47 by using such a
metaheuristic.

We tried to improve the lower bounds for R(3, k) by using a different method.
Let l be the currently known lower bound for R(3, k). We start our algorithm
from an initial set of (3, k; l − 1)-graphs which is as large as we could get. This
set consists of the known (3, k; l − 1)-graphs. In case of k = 10, this set also
contains graphs which were constructed by our gluing extender algorithm from
Section 5.3.4. We then repeat Algorithm 5.6 until no new (3, k; l− 1)-graphs are
found.

178 Ramsey numbers

Algorithm 5.6 Procedure to construct more (3, k; l − 1)-graphs.
for every input (3, k; l − 1)-graph G do

Recursively add edges in all possible ways to G such that no triangles are
formed and store the mtf graphs in M.

end for
for every mtf (3, k; l − 1)-graph G in M do

Recursively remove edges in all possible ways from G such that the obtained
graphs are (3, k; l − 1)-graphs and output these graphs.

end for

Afterwards we apply Algorithm 5.7 to test if one of the (3, k; l− 1)-graphs G
can be extended to a (3, k; l)-graph by adding a vertex and connecting it to an
independent set in G.

Algorithm 5.7 Onevertex extension((3, k; l − 1)-graph G)
for every maximal independent set S where deg(s) < k − 1 for all s ∈ S do

add vertex v to G and connect it to all s ∈ S
if G is a (3, k; l)− graph then

output G
end if
remove v from G

end for

An independent set S of G is called maximal if no superset of S is an inde-
pendent set. We only have to apply the expansion to maximal independent sets
of G to test if a (3, k; l−1)-graph G can be extended to a (3, k; l)-graph by adding
a vertex and connecting it to edges in G. Since if applying the expansion to an
independent set I of G yields a (3, k; l)-graph, all graphs obtained by applying
the expansion to independent sets which contain I are also (3, k; l)-graphs. We
do not have to apply the expansion to independent sets which contain vertices of
degree k − 1 since then the expanded graph would contain a vertex of degree k
and thus cannot be a (3, k; l)-graph. In principle the independent sets to which
the expansion is applied must contain at least one vertex from every independent
set of order k − 1 from G, else the expanded graph would contain an indepen-
dent set of order k. This is similar to the “approximating vertices” optimisation
from Section 5.2.4. However we did not implement this optimisation here as
Algorithm 5.7 is already more than fast enough for our purposes.

5.3. Classical triangle Ramsey numbers 179

We also construct additional (3, k; l − 1)-graphs by taking our current set
of (3, k; l − 1)-graphs, dropping every vertex (and its incident edges) once and
applying Algorithm 5.7 to these (3, k; l − 2)-graphs. Afterwards we again apply
and repeat Algorithm 5.6 to this new set of (3, k; l−1)-graphs until no additional
graphs are found.

It is known that R(3, 10) ≥ 40 (see [47]). We applied this procedure to
(amongst others) the set of almost 300 000 known (3, 10; 39)-graphs which were
found by Exoo [49] and to the (3, 10; 39)-graphs which were constructed by our
gluing extender algorithm. This allowed us to construct more than 42 · 106

(3, 10; 39)-graphs, and very likely there are more of them. Unfortunately none of
these graphs is extensible to a (3, 10; 40)-graph. The (3, 10; 39)-graphs which we
constructed have between 161 to 175 edges, hence we have 151 ≤ e(3, 9, 39) ≤ 161.
We expect that the actual value of e(3, 9, 39) is much closer, if not equal, to 161.
Despite many attempts by Exoo, us, and others, no (3, 10; 40)-graphs were con-
structed.

Since there are that many (3, 10; 39)-graphs while there is only one critical
graph for R(3, 9) (see Theorem 5.9 from Section 5.3.6), one might expect that
(3, 10; 40)-graphs exist. On the other hand there are 477 142 critical graphs for
R(3, 8) (see Section 5.3.3). This again illustrates the irregular and unexpected
behaviour of Ramsey numbers. Therefore we think that it is not possible to
make a meaningful conjecture about the existence of (3, 10; 40)-graphs based on
our current knowledge of (3, 10; 39)-graphs.

We also applied this procedure to try to improve the lower bounds for R(3, k),
for 11 ≤ k ≤ 16, but unfortunately this did not lead to any new bounds.

5.3.10 Testing

Correctness

Since most results which are obtained in this chapter (and in this thesis in general)
rely on computations, it is very important that the correctness of our programs
has been thoroughly verified. In this section, we describe which correctness tests
we performed.

• For every (3, k)-graph which was output by our programs, we verified that
it does not contain an independent set of order k by using an independent
program.

• For every (3, k;n, e(3, k, n))-graph which was generated by our programs,

180 Ramsey numbers

we verified that dropping any edge creates an independent set of order k.

• For various (3, k;n,≤ e)-graphs we added up to f edges in all possible
ways to obtain (3, k;n,≤ e + f)-graphs. For the cases where we already
had the complete set of (3, k;n,≤ e + f)-graphs we verified that no new
(3, k;n,≤ e+ f)-graphs were obtained. We used this, amongst other cases,
to verify that no new (3, 9; 24,≤ 43), (3, 9; 28,≤ 70), (3, 9; 30,≤ 87) or
(3, 10; 30,≤ 67)-graphs were obtained.

• For various (3, k;n,≤ e+f)-graphs we dropped one edge in all possible ways
and verified that no new (3, k;n,≤ e+f−1)-graphs were obtained. We used
this technique, amongst other cases, to verify that no new (3, 9; 24,≤ 42),
(3, 9; 28,≤ 69), (3, 9; 33,≤ 119), (3, 9; 34,≤ 130), (3, 10; 30, 66) or (3, 10; 32, 81)-
graphs were obtained.

• For various sets of (3, k + 1;n,≤ e)-graphs we took each member G and
constructed all Gv’s from it. We then verified that this did not yield any
new (3, k;n − deg(v) − 1,≤ e − Z(v))-graphs for the cases where we have
all such graphs. We performed this test, amongst other cases, on the sets
of (3, 9; 28,≤ 70)- and (3, 10; 31,≤ 74)-graphs.

Various sets of graphs can be obtained by more than one extension method
from Section 5.3.3. As a test for the correctness, we applied multiple methods
for the generation of several sets of graphs. We also compared our results with
known results. In each case, the results are in complete agreement. More details
are given below:

• The sets of (3, 9; 24,≤ 43) and (3, 9; 25,≤ 48)-graphs (and several others)
were obtained by both the minimum degree and neighbourhood glueing
extension methods. The results were in complete agreement.

• The sets of (3, 7; 21,≤ 55), (3, 7; 22), (3, 8; 26,≤ 76) and (3, 8; 27,≤ 88)-
graphs were obtained by both the maximal triangle-free method and the
neighbourhood gluing extension method. The results were in complete
agreement. As these programs are entirely independent and the output sets
are large, we think that this provides strong evidence of their correctness.

• The counts of (3, 7; 16, 20), (3, 7; 17, 25), (3, 7; 18, 30), (3, 7; 19, 37), (3, 7; 20, 44),
(3, 7; 21, 51) and (3, 7; 22, e)-graphs for all 60 ≤ e ≤ 66, are confirmed
by [100].

5.3. Classical triangle Ramsey numbers 181

• The counts of (3, 7; 18, 31), (3, 7; 19, 38), (3, 7; 20, 45) and (3, 7; 21,≤ 53)-
graphs are confirmed by [101].

• The counts of (3, 8; 19, 25), (3, 8; 20, 30), (3, 8; 21, 35) and (3, 9; 24, 40)-graphs
are confirmed by [102].

• The counts of (3, 7; 16, 21), (3, 7; 17, 26), (3, 8; 22, 42) and (3, 9; 25, 47)-graphs
are confirmed by [4].

We also performed additional correctness tests for the specialised algorithms
described in Section 5.3.7 (which were used to prove R(3, 10) ≤ 42):

• The specialised program of Section 5.3.7 was used to extend (3, 8; 26, 76)-
to (3, 9; 35, 140)-graphs and it produced the unique (3, 9; 35, 140)-graph.

• We relaxed the conditions to generate the (3, 9; 32, 108)-graphs from Lemma 5.11
(see Section 5.3.7) by dropping the requirement that each vertex of degree
6 has 3 neighbours of degree 7, and enforcing just one vertex of degree 7
with exactly one neighbour of degree 6. This yielded 21 602 graphs. We
verified that each of these graphs was indeed already included in the set X
and that X does not contain any additional such graphs.

Since our results are in complete agreement with previous results and since
all of our consistency tests passed, we believe that this is strong evidence for the
correctness of our implementations and results.

Computation Time

We implemented the extension algorithms described in Sections 5.3.4 and 5.3.7 in
C code. Most computations were performed on a cluster with Intel Xeon L5520
CPU’s at 2.27 GHz, on which a computational effort of one CPU year can be
usually completed in about 8 elapsed hours. The overall computational effort
which was required to improve the upper bounds of R(3, k) is estimated to be
about 50 CPU years. This includes the time used by a variety of programs. The
most CPU-intensive tasks are listed in the following.

For the proof of R(3, 10) ≤ 42, the first phase of obtaining (3, 9; 32, 108)-
graphs required about 5.5 CPU years. The bottlenecks of this phase were the com-
putations required for extending all (3, 8; 24,≤ 59)-graphs (which required ap-
proximately 3.5 CPU years) and extending the (3, 8; 25,≤ 68)-graphs (which took
more than 2 CPU years). The second phase of obtaining the special (3, 9; 32, 108)-
graphs with n6 = 8, n7 = 24 as in Lemma 5.11 took about 5.8 CPU years. The

182 Ramsey numbers

specialised program from Section 5.3.7 extended all (3, 9; 32, 108)-graphs to 9-
regular (3, 10; 42, 189)-graphs relatively fast, i.e. in about 0.25 CPU years. The
computations to generate all (3, 10; 39,≤ 150)-graphs (there are none of these),
which were needed for the bound R(3, 11) ≤ 50, took about 4.8 CPU years.

The CPU time needed to complete the computations of Section 5.3.8 was
negligible.

5.3.11 Closing remarks

We think that it is likely that the techniques from this section can also be used to
obtain better bounds and possibly even determine the Ramsey number for some
of the other graphs of order 10 whose Ramsey number could not be determined
by the techniques from Section 5.2. In particular we think that these techniques
could be applied to determine the Ramsey number of K10 − e since it is known
that 37 ≤ R(K3,K10 − e) ≤ 38.

However, the computations from Section 5.3.7 which were needed to improve
the upper bound of R(3, 10) were barely feasible. Despite many attempts by
Exoo, us, and others, no (3, 10; 40)-graphs were constructed. Consequently,
we anticipate that any further improvement to either of the bounds in 40 ≤
R(3, 10) ≤ 42 will be very difficult.

Therefore we conclude that determining Ramsey numbers still remains an
extremely difficult problem. Or to use a famous quote from Erdős [60]:

Suppose aliens invade the earth and threaten to obliterate it in a year’s

time unless human beings can find the Ramsey number for red five

and blue five. We could marshal the world’s best minds and fastest

computers, and within a year we could probably calculate the value.

If the aliens demanded the Ramsey number for red six and blue six,

however, we would have no choice but to launch a preemptive attack.

Appendix A

Notation

183

184 Notation

In each notation it is assumed that G and G′ are graphs and that v and w are
vertices.

V (G) : The set of vertices of G.

E(G) : The set of edges of G.

Gc : The complement of G.

G[X] : The subgraph of G induced by X ⊆ V (G).

N(v) : The neighbourhood of v.

deg(v) : The degree of v.

δ(G) : The minimal degree of G.

∆(G) : The maximal degree of G.

d(v, w) : The distance between v and w.

g(G) : The girth of G.

λc(G) : The cyclic edge-connectivity of G.

χ(G) : The chromatic number of G.

χ′(G) : The chromatic index of G.

α(G) : The independence number of G.

G ∼= G′ : G and G′ are isomorphic.

Aut(G) : The automorphism group of G.

Kn : The complete graph with n vertices.

Km,n : The complete bipartite graph with partitions of size m and n.

Pn : The path with n vertices.

R(m,n) : The Ramsey number R(Km,Kn).

Appendix B

Ramsey numbers of

connected graphs of

order 10

The following 10 graphs Gc have R(K3, G) > 30, but we were unable to determine
their Ramsey number. Graphs which must have the same Ramsey number are
grouped by b and c.

b c

b c

If Gc is one of the graphs:

185

186 Ramsey numbers of connected graphs of order 10

Then R(K3, G) = 36. These are possibly not all graphs with R(K3, G) = 36.

If Gc is contained in one of the graphs:

and contains one of the graphs:

Then R(K3, G) = 31. These are possibly not all graphs with R(K3, G) = 31.

R(K3, G) = 30 if and only if Gc is contained in:

and contains:

R(K3, G) = 29 if and only if Gc is contained in one of the graphs:

187

and contains one of the graphs:

The graphs with Ramsey number R(K3, G) < 29 can be obtained from [22]
or [31].

188 Ramsey numbers of connected graphs of order 10

Appendix C

Number of Ramsey graphs

for R(3, k)

Tables C.1,C.2, C.3 and C.4 contain all known exact counts of (3, k;n, e)-graphs
for specified n, for k = 7, 8, 9 and 10, respectively. All graph counts were obtained
by the algorithms described in Section 5.3.3. Empty entries indicate 0. In all
cases, the maximum number of edges is bounded by ∆(G)n/2 ≤ (k − 1)n/2.
All (3,≤ 9;n, e(3, k, n))-graphs which were constructed by our programs can be
obtained from the House of Graphs [15] by searching for the keywords “minimal
ramsey graph” or from [58].

189

190 Number of Ramsey graphs for R(3, k)

edges number of vertices n

e 16 17 18 19 20 21 22

20 2

21 15

22 201

23 2965

24 43331

25 498927 2

26 4054993 30

27 ? 642

28 ? 13334

29 ? 234279

30 ? 2883293 1

31 ? ? 15

32 ? ? 382

33 ? ? 8652

34 ? ? 160573

35 ? ? 2216896

36 ? ? ?

37 ? ? ? 11

38 ? ? ? 417

39 ? ? ? 10447

40 ? ? ? 172534

41 ? ? ? 1990118

42-43 ? ? ? ?

44 ? ? ? ? 15

45 ? ? ? ? 479

46 ? ? ? ? 10119

47 ? ? ? ? 132965

48 ? ? ? ? 1090842

49-50 ? ? ? ?

51 ? ? ? ? 4

52 ? ? ? 70

53 ? ? ? 717

54 ? ? ? 5167

55 ? ? 27289

56 ? ? 97249

57 ? ? 219623

58 ? 307464

59 ? 267374

60 ? 142741 1

61 43923 6

62 6484 30

63 331 60

64 59

65 25

66 10

Table C.1: Number of (3, 7;n, e)-graphs, for n ≥ 16.

191

edges number of vertices n

e 19 20 21 22 23 24 25 26 27

25 2

26 37

27 763

28 16939

29 ?

30 ? 3

31 ? 60

32 ? 1980

33 ? 58649

34 ? 1594047

35 ? ? 1

36 ? ? 20

37 ? ? 950

38 ? ? 35797

39 ? ? 1079565

40-41 ? ? ?

42 ? ? ? 21

43 ? ? ? 1521

44 ? ? ? 72353

45 ? ? ? 2331462

46-48 ? ? ? ?

49 ? ? ? ? 102

50 ? ? ? ? 8241

51 ? ? ? ? 356041

52 ? ? ? ? 10326716

53-55 ? ? ? ? ?

56 ? ? ? ? ? 51

57 ? ? ? ? ? 3419

58 ? ? ? ? ? 129347

59 ? ? ? ? ? 3288695

60 ? ? ? ? ? 64233886

61-64 ? ? ? ? ? ?

65 ? ? ? ? ? ? 396

66 ? ? ? ? ? ? 21493

67 ? ? ? ? ? 613285

68 ? ? ? ? ? 11946369

69-72 ? ? ? ? ? ?

73 ? ? ? ? ? 62

74 ? ? ? ? 1625

75 ? ? ? ? 23409

76 ? ? ? ? 216151

77 ? ? ? ? 1526296

78-84 ? ? ? ?

85 ? ? 4

86 ? ? 92

87 ? ? 1374

88 ? 11915

89 ? 52807

90 ? 122419

91 ? 151308

92 99332

93 33145

94 4746

Table C.2: Number of (3, 8;n, e)-graphs, for n ≥ 19.

192 Number of Ramsey graphs for R(3, k)

edges number of vertices n

e 24 25 26 27 28 29 30 31 32 33 34 35
40 2
41 32
42 2089
43 115588

44-45 ?
46 ? 1
47 ? 39
48 ? 4113
49 ? 306415

50-51 ? ?
52 ? ? 1
53 ? ? 1
54 ? ? 444
55 ? ? 58484

56-60 ? ? ?
61 ? ? ? 700
62 ? ? ? 95164
63 ? ? ? 6498191

64-67 ? ? ? ?
68 ? ? ? ? 126
69 ? ? ? ? 17223
70 ? ? ? ? 1202362

71-76 ? ? ? ? ?
77 ? ? ? ? ? 1342
78 ? ? ? ? ? 156686

79-85 ? ? ? ? ? ?
86 ? ? ? ? ? ? 1800
87 ? ? ? ? ? ? 147335

88-94 ? ? ? ? ? ? ?
95 ? ? ? ? ? ? ? 560
96 ? ? ? ? ? ? ? 35154

97-103 ? ? ? ? ? ? ?
104 ? ? ? ? ? ? 39
105 ? ? ? ? ? 952
106 ? ? ? ? ? 18598
107 ? ? ? ? ? 234681
108 ? ? ? ? ? 2104151

109-117 ? ? ? ? ?
118 ? ? ? 5
119 ? ? ? 69

120-128 ? ? ? ?
129 ? 1
130 ? 4
131 ? ≥ 15
132 ? ≥ 40
133 ≥ 54
134 ≥ 43
135 ≥ 20
136 ≥ 7

137-139
140 1

Table C.3: Number of (3, 9;n, e)-graphs, for n ≥ 24.

193

edges number of vertices n

e 29 30 31 32 33 34

58 5

59 1364

60–65 ?

66 ? 5084

67 ? 1048442

68–72 ? ?

73 ? ? 2657

74 ? ? 580667

75–80 ? ? ?

81 ? ? ? 6592

82–89 ? ? ? ?

90 ? ? ? ? 57099

91–98 ? ? ? ? ?

99 ? ? ? ? ? ≥ 1

≥ 100 ? ? ? ? ? ?

Table C.4: Number of (3, 10;n, e)-graphs, for 29 ≤ n ≤ 34.

194 Number of Ramsey graphs for R(3, k)

Bibliography

[1] E. Albertazzi, C. Domene, P.W. Fowler, T. Heine, G. Seifert,
C. Van Alsenoy, and F. Zerbetto. Pentagon adjacency as a determinant of
fullerene stability. Physical Chemistry Chemical Physics, 1(12):2913–2918,
1999.

[2] R.E.L. Aldred, G Brinkmann, D. Van Dyck, V. Fack, and B.D. McKay.
Graph structural properties of non-Yutsis graphs allowing fast recognition.
Discrete Applied Mathematics, 157(2):377–386, 2009.

[3] J. Backelin. Contributions to a Ramsey Calculus. Unpublished, 2000-2012.

[4] J. Backelin. Personal communication, 2012.

[5] A.T. Balaban. Valence-isomerism of cyclopolyenes. Revue Roumaine de
chimie, 11(9):1097–1116, 1966.

[6] R. Balakrishnan and K. Ranganathan. A textbook of graph theory. Univer-
sitext. Springer-Verlag, New York, 2000.

[7] J. Bornhöft, G. Brinkmann, and J. Greinus. Pentagon-hexagon-patches
with short boundaries. European Journal of Combinatorics, 24(5):517–529,
2003.

[8] S. Brandt, G. Brinkmann, and T. Harmuth. All Ramsey numbers r(K3, G)
for connected graphs of order 9. Electronic Journal of Combinatorics, 5,
1998.

[9] S. Brandt, G. Brinkmann, and T. Harmuth. The generation of maximal
triangle-free graphs. Graphs and Combinatorics, 16(2):149–157, 2000.

[10] G. Brinkmann. Zur mathematischen Behandlung gestörter periodischer
Pflasterungen. PhD thesis, Universität Bielefeld, 1990.

195

196 Bibliography

[11] G. Brinkmann. Fast generation of cubic graphs. Journal of Graph Theory,
23(2):139–149, 1996.

[12] G. Brinkmann. Problems and scope of spiral algorithms and spiral codes
for polyhedral cages. Chemical Physics Letters, 272(3-4):193–198, 1997.

[13] G. Brinkmann. All Ramsey numbers r(K3, G) for connected graphs of order
7 and 8. Combinatorics, Probablility and Computing, 7(2):129–140, 1998.

[14] G. Brinkmann. Isomorphism rejection in structure generation programs.
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, 51:25–38, 2000.

[15] G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. Mélot. House of
Graphs: a database of interesting graphs. Discrete Applied Mathematics,
161(1-2):311–314, 2013. Available at http://hog.grinvin.org/.

[16] G. Brinkmann, S. Crevals, H. Mélot, Rylands L., and Steffen E. alpha-
Labelings and the Structure of Trees with Nonzero α-Deficit. Discrete
Mathematics and Theoretical Computer Science, 14(1):159–174, 2012.

[17] G. Brinkmann, O. Delgado Friedrichs, S. Lisken, A. Peeters, and
N. Van Cleemput. CaGe - a Virtual Environment for Studying Some Special
Classes of Plane Graphs - an Update. MATCH Commun. Math. Comput.
Chem., 63(3):533–552, 2010. Available at http://caagt.ugent.be/CaGe.

[18] G. Brinkmann, O. Delgado Friedrichs, and U. von Nathusius. Numbers of
faces and boundary encodings of patches. In Graphs and Discovery, vol-
ume 69 of DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Sciences, pages 27–38, 2005.

[19] G. Brinkmann and A.W.M. Dress. A constructive enumeration of fullerenes.
Journal of Algorithms, 23:345–358, 1997.

[20] G. Brinkmann, D. Franceus, P.W. Fowler, and J.E. Graver. Growing
fullerenes from seed: Growth transformations of fullerene polyhedra. Chem-
ical Physics Letters, 428:386–393, 2006.

[21] G. Brinkmann and J. Goedgebeur. Homepage of triangleramsey: http:

//caagt.ugent.be/triangleramsey/.

[22] G. Brinkmann and J. Goedgebeur. House of Graphs: Ramsey numbers:
http://hog.grinvin.org/Ramsey.

http://hog.grinvin.org/
http://caagt.ugent.be/CaGe
http://caagt.ugent.be/triangleramsey/
http://caagt.ugent.be/triangleramsey/
http://hog.grinvin.org/Ramsey

Bibliography 197

[23] G. Brinkmann and J. Goedgebeur. Downloadable lists of snarks: http:

//hog.grinvin.org/Snarks.

[24] G. Brinkmann, J. Goedgebeur, J. Hägglund, and K. Markström. Gen-
eration and properties of snarks. To appear in Journal of Combinatorial
Theory, Series B.

[25] G. Brinkmann, J. Goedgebeur, and B.D. McKay. Homepage of buckygen:
http://caagt.ugent.be/buckygen/.

[26] G. Brinkmann, J. Goedgebeur, and B.D. McKay. Downloadable lists of
fullerenes: http://hog.grinvin.org/Fullerenes.

[27] G. Brinkmann, J. Goedgebeur, and B.D. McKay. Homepage of snarkhunter:
http://caagt.ugent.be/cubic/.

[28] G. Brinkmann, J. Goedgebeur, and B.D. McKay. Generation of cubic
graphs. Discrete Mathematics and Theoretical Computer Science, 13(2):69–
80, 2011.

[29] G. Brinkmann, J. Goedgebeur, and B.D. McKay. The generation of
fullerenes. Journal of Chemical Information and Modeling, 52(11):2910–
2918, 2012.

[30] G. Brinkmann, J. Goedgebeur, and B.D. McKay. The smallest fullerene
without a spiral. Chemical Physics Letters, 522(2):54–55, 2012.

[31] G. Brinkmann, J. Goedgebeur, and J.C. Schlage-Puchta. Ramsey Numbers
R(K3, G) for Graphs of Order 10. Electronic Journal of Combinatorics,
19(4), 2012.

[32] G. Brinkmann, J.E. Graver, and C. Justus. Numbers of faces in disordered
patches. Journal of Mathematical Chemistry, 45(2):263–278, 2009.

[33] G. Brinkmann and B.D. McKay. Fast generation of planar graphs. MATCH
Commun. Math. Comput. Chem., 58(2):323–357, 2007.

[34] G. Brinkmann, B.D. McKay, and U. von Nathusius. Backtrack search and
look-ahead for the construction of planar cubic graphs with restricted face
sizes. MATCH Commun. Math. Comput. Chem., 48:163–177, 2003.

[35] G. Brinkmann and E. Steffen. Snarks and reducibility. Ars Combinatoria,
50:292–296, 1998.

http://hog.grinvin.org/Snarks
http://hog.grinvin.org/Snarks
http://caagt.ugent.be/buckygen/
http://hog.grinvin.org/Fullerenes
http://caagt.ugent.be/cubic/

198 Bibliography

[36] G. Brinkmann, U. von Nathusius, and A.H.R. Palser. A constructive enu-
meration of nanotube caps. Discrete Applied Mathematics, 116(1-2):55–71,
2002.

[37] F.C. Bussemaker, S. Čobeljić, D.M. Cvetković, and J.J. Seidel. Cubic
graphs on ≤ 14 vertices. Journal of Combinatorial Theory, Series B,
23:234–235, 1977.

[38] F.C. Bussemaker and J.J. Seidel. Cubical graphs of order 2n ≤ 10. T.H.
Eindhoven, 1968.

[39] A. Cavicchioli, M. Meschiari, B. Ruini, and F. Spaggiari. A survey on snarks
and new results: products, reducibility and a computer search. Journal of
Graph Theory, 28:57–86, 1998.

[40] U.A. Celmins. On cubic graphs that do not have an edge 3-coloring. PhD
thesis, University of Waterloo, 1984.

[41] A.G. Chetwynd and R.J. Wilson. Snarks and supersnarks. In Y. Alavi
et al., editor, The Theory and Applications of Graphs, pages 215–241. John
Wiley & Sons, New York, 1981.

[42] J. de Vries. Over vlakke configuraties waarin elk punt met twee lijnen
incident is. Mededeelingen der Koninklijke Akademie voor Wetenschappen,
Afdeeling Natuurkunde, 3(6):382–407, 1889.

[43] J. de Vries. Sur les configurations planes dont chaque point supporte deux
droites. Rendiconti Circolo Matematico Palermo, 5:221–226, 1891.

[44] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Heidelberg, fourth edition, 2010.

[45] M.S. Dresselhaus, G. Dresselhaus, and P. Avouris. Carbon Nanotubes: Syn-
thesis, Structure, Properties, and Applications. Topics in applied physics.
Springer-Verlag, 2001.

[46] P. Erdős. Some new problems and results in graph theory and other
branches of combinatorial mathematics. In Combinatorics and graph theory
(Calcutta, 1980), volume 885 of Lecture Notes in Mathematics, pages 9–17.
Springer, Berlin, 1981.

[47] G. Exoo. On two classical Ramsey numbers of the form R(3, n). SIAM
Journal on Discrete Mathematics, 2(4):488–490, 1989.

Bibliography 199

[48] G. Exoo. On the Ramsey number R(4, 6). Electronic Journal of Combina-
torics, 19, 2012.

[49] G. Exoo. Personal communication, 2012.

[50] I.A. Faradžev. Constructive enumeration of combinatorial objects. Collo-
ques internationaux C.N.R.S. No260 - Problèmes Combinatoires et Théorie
des Graphes, Orsay, pages 131–135, 1976.

[51] R.J. Faudree, C.C. Rousseau, and R.H. Schelp. All triangle-graph Ram-
sey numbers for connected graphs of order six. Journal of Graph Theory,
4(3):293–300, 1980.

[52] P.W. Fowler, M. Jooyandeh, and G. Brinkmann. Face-spiral codes in cubic
polyhedral graphs with face sizes no larger than 6. Journal of Mathematical
Chemistry, 50:2272–2280, 2012.

[53] P.W. Fowler and D.E. Manolopoulos. An atlas of fullerenes. International
series of monographs on chemistry. Clarendon Press, 1995.

[54] M. Gardner. Mathematical games: Snarks, Boojums and other conjectures
related to the four-color-map theorem. Scientific American, 234:126–130,
1976.

[55] W. Gasarch. Applications of Ramsey theory to computer science: http:

//www.cs.umd.edu/~gasarch/ramsey/ramsey.html.

[56] L.A. Goddyn. Cycle covers of graphs. PhD thesis, University of Waterloo,
1989.

[57] E.W. Godly and R. Taylor. Nomenclature and terminology of fullerenes: a
preliminary survey. Pure and applied chemistry, 69(7):1411–1434, 1997.

[58] J. Goedgebeur. House of Graphs: Minimal Ramsey Graphs: http://hog.
grinvin.org/MinRamsey.

[59] J. Goedgebeur and S.P. Radziszowski. New computational upper bounds
for Ramsey numbers R(3, k). Electronic Journal of Combinatorics, 20(1),
2013.

[60] R. Graham and J. Spencer. Ramsey Theory. Scientific American,
262(7):112–117, 1990.

http://www.cs.umd.edu/~gasarch/ramsey/ramsey.html
http://www.cs.umd.edu/~gasarch/ramsey/ramsey.html
http://hog.grinvin.org/MinRamsey
http://hog.grinvin.org/MinRamsey

200 Bibliography

[61] Jack E. Graver and James Yackel. Some graph theoretic results associated
with Ramsey’s theorem. Journal of Combinatorial Theory, 4:125–175, 1968.

[62] R. E. Greenwood and A. M. Gleason. Combinatorial relations and chro-
matic graphs. Canadian Journal of Mathematics, 7:1–7, 1955.

[63] C. Grinstead and S. Roberts. On the Ramsey numbers R(3, 8) and R(3, 9).
Journal of Combinatorial Theory, Series B, 33(1):27–51, 1982.

[64] X. Guo, P. Hansen, and M. Zheng. Boundary uniqueness of fusenes. Dis-
crete Applied Mathematics, 118(3):209–222, 2002.

[65] M. Hasheminezhad, H. Fleischner, and B.D. McKay. A universal set of
growth operations for fullerenes. Chemical Physics Letters, 464:118–121,
2008.

[66] D.A. Holton and J. Sheehan. The Petersen Graph. Cambridge University
Press, 1993. Australian Mathematical Society Lecture Series 7.

[67] Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput.,
10(4):718–720, 1981.

[68] A. Huck. Reducible configurations for the cycle double cover conjecture.
In Proceedings of the 5th Twente Workshop on Graphs and Combinatorial
Optimization (Enschede, 1997), volume 99, pages 71–90, 2000.

[69] S. Iijma. Helical microtubules of graphitic carbon. Nature, 354(6348):56–58,
1991.

[70] W. Imrich. Zehnpunktige kubische graphen. Aequationes Mathematicae,
6:6–10, 1971.

[71] R. Isaacs. Infinite families of nontrivial trivalent graphs which are not Tait
colorable. American Mathematical Monthly, 82(3):221–239, 1975.

[72] B. Jackson. On circuit covers, circuit decompositions and Euler tours of
graphs. In Surveys in combinatorics, 1993 (Keele), volume 187 of Lon-
don Math. Soc. Lecture Note Ser., pages 191–210. Cambridge Univ. Press,
Cambridge, 1993.

[73] F. Jaeger. A survey of the cycle double cover conjecture. In Cycles in
graphs (Burnaby, B.C., 1982), volume 115 of North-Holland Math. Stud.,
pages 1–12. North-Holland, Amsterdam, 1985.

Bibliography 201

[74] C. Justus. Transformationen zwischen Fullerenen und die Flächenzahl von
Patches mit gleichem Rand. Master’s thesis, Universität Bielefeld, 2003.
(Advisor: G. Brinkmann).

[75] J.G. Kalbfleisch. Chromatic Graphs and Ramsey’s Theorem. PhD thesis,
University of Waterloo, 1966.

[76] F. Kardos̆ and R. S̆krekovski. Cyclic edge-cuts in fullerene graphs. Journal
of Mathematical Chemistry, 44(1):121–132, 2008.

[77] G. Kéry. On a theorem of Ramsey. Matematikai Lapok. Bolyai János
Matematikai Társulat, 15:204–224, 1964.

[78] J.H. Kim. The Ramsey number R(3, t) has order of magnitude t2/ log t.
Random Structures & Algorithms, 7(3):173–207, 1995.

[79] M. Kochol. Snarks without small cycles. Journal of Combinatorial Theory,
Series B, 67(1):34–47, 1996.

[80] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. C60:
Buckminsterfullerene. Nature, 318(6042):162–163, 1985.

[81] A. Lesser. Theoretical and Computational Aspects of Ramsey Theory.
Master’s thesis, Matematiska Institutionen, Stockholms Universitet, 2001.
(Advisor: J. Backelin).

[82] R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum, and J. Lederberg. Appli-
cations of Artificial Intelligence for Organic Chemistry: The DENDRAL
Project. McGraw-Hill, New York, 1980.

[83] X. Liu, D.J. Klein, T.G. Schmalz, and W.A. Seitz. Generation of carbon
cage polyhedra. Journal of Computational Chemistry, 12(10):1252–1259,
1991.

[84] D.E. Manolopoulos and P.W. Fowler. Molecular graphs, point groups, and
fullerenes. Journal of Chemical Physics, 96(10):7603–7614, 1992.

[85] D.E. Manolopoulos and P.W. Fowler. A fullerene without a spiral. Chemical
Physics Letters, 204(1-2):1–7, 1993.

[86] D.E. Manolopoulos and J.C. May. Theoretical studies of the fullerenes: C34

to C70. Chemical Physics Letters, 181:105–111, 1991.

202 Bibliography

[87] B.D. McKay. Combinatorial Data (Ramsey graphs): http://cs.anu.edu.
au/~bdm/data/ramsey.html.

[88] B.D. McKay. Practical graph isomorphism. 10th. Manitoba Conference on
Numerical Mathematics and Computing (Winnipeg, 1980), 30:45–87, 1981.

[89] B.D. McKay. Isomorph-free exhaustive generation. Journal of Algorithms,
26(2):306–324, 1998.

[90] B.D. McKay, W. Myrvold, and J. Nadon. Fast backtracking principles
applied to find new cages. 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 188–191, 1998.

[91] B.D. McKay and S.P. Radziszowski. R(4,5)=25. Journal of Graph Theory,
19(3):309–322, 1995.

[92] B.D. McKay and G.F. Royle. Constructing the cubic graphs on up to 20
vertices. Ars Combinatoria, 21A:129–140, 1986.

[93] B.D. McKay and N.C. Wormald. Automorphisms of random graphs with
specified degrees. Combinatorica, 4:325–338, 1984.

[94] B.D. McKay and K.M. Zhang. The value of the Ramsey number R(3, 8).
Journal of Graph Theory, 16(1):99–105, 1992.

[95] M. Meringer. Fast generation of regular graphs and construction of cages.
Journal of Graph Theory, 30(2):137–146, 1999.

[96] R. Nedela and M. Skoviera. Decompositions and reductions of snarks.
Journal of Graph Theory, 22:253–279, 1996.

[97] A.N. Petrenjuk and L.P. Petrenjuk. On constructive enumeration of 12
vertex cubic graphs (russian). Combinatorial Analysis, Moscow, 3, 1974.

[98] K. Piwakowski. Applying tabu search to determine new Ramsey graphs.
Electronic Journal of Combinatorics, 3, 1996.

[99] S.P. Radziszowski. Small Ramsey Numbers. Electronic Journal of Com-
binatorics, 1994-2011. Dynamic Survey 1, revision 13, http://www.

combinatorics.org/.

[100] S.P. Radziszowski and D.L. Kreher. On (3, k) Ramsey graphs: theoretical
and computational results. Journal of Combinatorial Mathematics and
Combinatorial Computing, 4:37–52, 1988.

http://cs.anu.edu.au/~bdm/data/ramsey.html
http://cs.anu.edu.au/~bdm/data/ramsey.html
http://www.combinatorics.org/
http://www.combinatorics.org/

Bibliography 203

[101] S.P. Radziszowski and D.L. Kreher. Upper bounds for some Ramsey num-
bers R(3, k). Journal of Combinatorial Mathematics and Combinatorial
Computing, 4:207–212, 1988.

[102] S.P. Radziszowski and D.L. Kreher. Minimum triangle-free graphs. Ars
Combinatoria, 31:65–92, 1991.

[103] F.P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, 30:264–286, 1930.

[104] R.C. Read. Some enumeration problems in graph theory. PhD thesis, Lon-
don University, 1958.

[105] R.C. Read. Every one a winner. Annals of Discrete Mathematics, 2:107–
120, 1978.

[106] R.W. Robinson and N.C. Wormald. Numbers of cubic graphs. Journal of
Graph Theory, 7:463–467, 1983.

[107] R.W. Robinson and N.C. Wormald. Almost all cubic graphs are hamilto-
nian. Random Structures & Algorithms, 3(2):117–125, 1992.

[108] V. Rosta. Ramsey Theory Applications. Electronic Journal of Combina-
torics, 2004. Dynamic Survey 13, http://www.combinatorics.org/.

[109] C.H. Sah. Combinatorial construction of fullerene structures. Croatica
Chemica Acta, 66:1–12, 1993.

[110] S. Sanjmyatav. Algorithms for generation of cubic graphs. Master’s thesis,
Department of Computer Science, Australian National University, 2000.
(Advisor: B. D. McKay).

[111] A. Schelten and I. Schiermeyer. Ramsey numbers r(K3, G) for connected
graphs G of order seven. Discrete Applied Mathematics, 79(1-3):189–200,
1997.

[112] A. Schelten and I. Schiermeyer. Ramsey numbers r(K3, G) forG ∼= K7−2P2

and G ∼= K7 − 3P2. Discrete Mathematics, 191(1-3):191–196, 1998.

[113] T.G. Schmalz, W.A. Seitz, D.J. Klein, and G.E. Hite. Elemental carbon
cages. Journal of the American Chemical Society, 110(4):1113–1127, 1988.

http://www.combinatorics.org/

204 Bibliography

[114] P. D. Seymour. Sums of circuits. In Graph theory and related topics (Proc.
Conf., Univ. Waterloo, Waterloo, Ont., 1977), pages 341–355. Academic
Press, New York, 1979.

[115] J. Spencer. Eighty years of Ramsey R(3, k) . . . and counting! In
Ramsey theory, volume 285 of Progress in Mathematics, pages 27–39.
Birkhäuser/Springer, New York, 2011.

[116] G. Szekeres. Polyhedral decompositions of cubic graphs. Bulletin of the
Australian Mathematical Society, 8:367–387, 1973.

[117] S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs,
and C. Dekker. Individual single-wall carbon nanotubes as quantum wires.
Nature, 386(6624):474–477, APR 3 1997.

[118] W.P. Thurston. Shapes of polyhedra and triangulations of the sphere.
In The Epstein birthday schrift, volume 1 of Geometry & Topology Mono-
graphs, pages 511–549. Geometry & Topology Publications, Coventry, 1998.

[119] W. T. Tutte. A contribution to the theory of chromatic polynomials. Cana-
dian Journal of Mathematics, 6:80–91, 1954.

[120] D.B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle
River, NJ, 1996.

[121] H. Whitney. 2-Isomorphic Graphs. American Journal of Mathematics,
55(1-4):245–254, 1933.

[122] N.C. Wormald. Models of random regular graphs. Surveys in Combina-
torics, pages 239–298, 1999. (LMS Lecture Note Series 267, Eds J.D. Lamb
and D.A. Preece).

[123] J. Xia. Ramsey numbers involving a triangle: theory and algorithms. Mas-
ter’s thesis, Rochester Institue of Technology, 1993. (Advisor: S. P. Radzis-
zowski).

[124] M. Yoshida and P. W. Fowler. Dihedral fullerenes of threefold symmetry
with and without face spirals. Journal of the Chemical Society, Faraday
Transactions, 93:3289–3294, 1997.

[125] M. Yoshida and E. Osawa. Formalized drawing of fullerene nets. 1. al-
gorithm and exhaustive generation of isomeric structures. Bulletin of the
Chemical Society of Japan, 68:2073–2081, 1995.

Bibliography 205

[126] C.Q. Zhang. Integer flows and cycle covers of graphs, volume 205 of Mono-
graphs and Textbooks in Pure and Applied Mathematics. Marcel Dekker
Inc., New York, 1997.

206 Bibliography

Nederlandstalige

samenvatting

In deze thesis ontwikkelen we efficiënte algoritmes voor de generatie van struc-
turen die gebruikt kunnen worden om chemische en wiskundige problemen op
te lossen. Hiervoor ontwerpen en implementeren we algoritmes om wiskundige
structuren (meer bepaald: grafen) te construeren.

In het eerste hoofdstuk geven we een inleiding over structuurgeneratie en
introduceren we de nodige grafentheoretische begrippen die gebruikt worden in
deze thesis. Een graaf is een structuur die bestaat uit een verzameling van toppen
en een verzameling van bogen die verbindingen tussen deze toppen voorstellen.
Een graaf kan onder andere dienen als model voor een wegennetwerk waar de
toppen kruispunten voorstellen en de bogen straten. Dit model kan dan bijvoor-
beeld gebruikt worden om de snelste route tussen twee kruispunten te bepalen.
Een graaf kan ook een molecule modelleren. Hier stellen de toppen atomen voor
en de bogen bindingen tussen de atomen. Een graaf kan ook gebruikt worden om
een toekenning van lesgevers aan vakken te bepalen. In dit geval stellen de top-
pen lesgevers en vakken voor en de bogen geven aan welke vakken een bepaalde
lesgever kan geven.

De algoritmes voor de generatie van structuren worden ontworpen om struc-
turen in een specifieke klasse van grafen op een heel efficiënte manier te genereren,
bijvoorbeeld de klasse van grafen waar alle toppen exact 3 buren hebben. In deze
thesis onderzoeken en ontwerpen we exhaustieve generatiealgoritmes. Dit zijn al-
goritmes die ervoor zorgen dat alle grafen in de klasse van grafen die we wensen
te genereren, opgesomd worden. Onze algoritmes zijn ook isomorfvrij, dit wil
zeggen dat ze garanderen dat er geen isomorfe kopieën uitgevoerd worden (dat
zijn grafen die dezelfde structuur hebben).

Structuurgeneratie heeft vooral toepassingen in de wiskunde en in de chemie.

207

208 Nederlandstalige samenvatting

In de wiskunde worden complete lijsten van structuren met specifieke eigenschap-
pen gebruikt om wiskundige vermoedens te testen. In de theoretische chemie
worden dergelijke lijsten gebruikt om de structuur van moleculen te bepalen of
te voorspellen. In deze thesis ontwerpen we algoritmes voor de generatie van
complete lijsten van grafen die belangrijke toepassingen hebben in de wiskunde
alsook generatiealgoritmes die belangrijk zijn voor de chemie.

In het tweede hoofdstuk bespreken we de generatie van 3-reguliere grafen.
Dit zijn grafen waar elke top exact 3 buren heeft. De eerste volledige lijst van 3-
reguliere grafen werd reeds in 1889 opgesomd door de Nederlander J. de Vries: hij
construeerde met de hand alle 3-reguliere grafen met 10 toppen [42, 43]. Sindsdien
hebben nog veel andere wetenschappers onderzoek gedaan naar het opsommen
van complete lijsten van 3-reguliere grafen. Vandaar dat dit als een benchmark
probleem binnen de structuurgeneratie beschouwd kan worden.

Ons generatiealgoritme voor 3-reguliere grafen bestaat uit twee delen: eerst
genereren we primitieve grafen (dit is een bijzondere deelklasse van de 3-reguliere
grafen) en daarna vertrekken we van deze grafen om alle 3-reguliere grafen te
construeren. Onze implementatie van dit algoritme is ruim 4 keer sneller dan de
snelste bestaande generatieprogramma’s voor 3-reguliere grafen. Tenslotte brei-
den we ons algoritme uit zodat ook 3-reguliere grafen zonder drie- of vierhoeken
op een efficiënte manier opgesomd kunnen worden.

In het derde hoofdstuk passen we ons generatiealgoritme voor 3-reguliere
grafen aan om snarks op een efficiënte manier te genereren. De snarks vormen
een belangrijke deelklasse van 3-reguliere grafen. Ze bevatten geen driehoeken
en hebben bijzondere kleurbaarheidseigenschappen. Het is gekend dat er voor
3-reguliere grafen altijd 3 of 4 kleuren nodig zijn om de bogen van zo’n graaf te
kleuren zodanig dat de 3 bogen van elke top elk een verschillende kleur hebben.
Bij snarks kunnen de bogen niet gekleurd worden met 3 kleuren. Deze klasse van
grafen is bijzonder interessant omdat voor veel wiskundige vermoedens bewezen
kan worden dat de vermoedens juist zijn als en slechts als ze voor snarks juist
zijn. Vaak is het zelfs zo dat als er een tegenvoorbeeld zou zijn, het kleinste
tegenvoorbeeld een snark zou zijn.

Onze implementatie van dit gespecialiseerde generatiealgoritme voor snarks is
ruim 14 keer sneller dan het snelste bestaande programma om snarks te genereren.
Dit liet ons toe om alle snarks tot en met 34 toppen op te sommen en alle snarks
zonder vierhoeken tot en met 36 toppen. Voordien waren enkel de volledige
lijsten van snarks met ten hoogste 32 toppen gekend. Gebruikmakend van deze
nieuwe lijsten testen we 22 (open) wiskundige vermoedens. Onze lijsten leveren

Nederlandstalige samenvatting 209

verschillende tegenvoorbeelden op voor 8 van deze vermoedens. Dit toont dus aan
dat (complete) lijsten van snarks niet louter theoretisch, maar ook in de praktijk
een goede bron voor tegenvoorbeelden zijn.

In het vierde hoofdstuk bespreken we een belangrijke toepassing van struc-
tuurgeneratie in de chemie. Meer bepaald bespreken we de generatie van (mod-
elleringen van) fullerenen. Dit zijn 3-reguliere grafen die op een bol getekend
kunnen worden en waar elk vlak een vijf- of een zeshoek is. Hier stellen de top-
pen van de graaf koolstofatomen voor. Het eerste (chemische) fullereen werd in
1985 door H.W. Kroto en zijn collega’s ontdekt [80]. Ze hebben een fullereen met
de vorm van een voetbal ontdekt, namelijk de fameuze C60-buckyball. Kroto en
zijn collega’s hebben later ook de Nobelprijs voor de chemie voor deze ontdekking
gekregen. De koolstof nanotubes (dit zijn langwerpige fullerenen) vormen een be-
langrijke deelklasse van de fullerenen. Deze zijn veelbelovend voor toekomstige
toepassingen [45]. Zo proberen onderzoekers nanotransistors te bouwen met be-
hulp van nanotubes.

Er werd reeds veel onderzoek naar de generatie van fullerenen gedaan, maar
tot nu toe was er nog maar één succesvol algoritme hiervoor gekend. Dit algo-
ritme werd ontworpen door G. Brinkmann en A.W.M. Dress [19]. Zij hebben
ook een efficiënt programma – genaamd fullgen – gebaseerd op hun algoritme
gëımplementeerd. In dit hoofdstuk bespreken we een nieuw en volledig onafhanke-
lijk generatiealgoritme voor fullerenen en tonen aan hoe dit op een heel efficiënte
manier gëımplementeerd kan worden. Onze implementatie van dit algoritme is
ruim 3.5 keer zo snel als fullgen. Onze generator leverde tegenstrijdige resultaten
met fullgen op. Dit heeft geleid tot de detectie van een programmeerfout in
fullgen. Door deze fout werden er startend vanaf 136 toppen te weinig fullere-
nen gegenereerd. Ondertussen is deze fout opgelost en komen de resultaten van
fullgen volledig overeen met die van ons programma. Gebruikmakend van ons
programma zijn we erin geslaagd om alle fullerenen tot en met 400 toppen te
genereren. Dit liet ons toe om te bewijzen dat het kleinste tegenvoorbeeld voor
het spiraalvermoeden 380 toppen heeft [30] (wat een open probleem was sinds
1991).

We ontwerpen ook een gespecialiseerd algoritme voor de generatie van IPR
fullerenen. Dit zijn fullerenen die geen aanliggende vijfhoeken bevatten. Der-
gelijke fullerenen vormen een belangrijke deelklasse van de fullerenen omdat ze
de neiging hebben om chemisch stabieler te zijn en het dus waarschijnlijker is
dat deze fullerenen ook in de natuur voorkomen. Ook hier is onze implementatie
van dit gespecialiseerde algoritme voor de generatie van IPR fullerenen duidelijk

210 Nederlandstalige samenvatting

sneller dan andere generatieprogramma’s voor IPR fullerenen.
In het laatste hoofdstuk bespreken we nog een andere toepassing van struc-

tuurgeneratie in de wiskunde, namelijk de generatie van Ramsey grafen voor het
bepalen van driehoek Ramsey getallen R(K3, G). Een driehoek Ramsey graaf
is een graaf die geen driehoeken bevat en waarvan de complementaire graaf een
gegeven graaf G niet als deelgraaf bevat. Het berekenen van Ramsey getallen is
een moeilijk computationeel probleem waar reeds veel onderzoek naar gedaan is
en kan als een benchmark probleem beschouwd worden.

In het eerste deel van dit hoofdstuk beschrijven we een geoptimaliseerde ver-
sie van een bestaand algoritme voor de generatie van maximale driehoeksvrije
grafen [9]. Dit zijn grafen die geen driehoeken bevatten en waar het toevoegen
van om het even welke boog een driehoek vormt. Daarna tonen we aan hoe dit
algoritme uitgebreid kan worden om driehoek Ramsey grafen op een efficiënte
manier op te sommen. Gebruikmakend van dit algoritme zijn we erin geslaagd
om alle driehoek Ramsey getallen tot en met 30 te bepalen voor grafen met 10
toppen. Door onze computationele resultaten te combineren met nieuwe theo-
retische resultaten konden we het driehoek Ramsey getal van bijna alle 12 005 168
grafen van orde 10 bepalen, behalve voor 10 van de moeilijkste gevallen. Door de
snelle groei van Ramsey getallen zal de lijst van driehoek Ramsey getallen voor
grafen van orde 10 hoogstwaarschijnlijk voor een heel lange tijd de laatste lijst
zijn die volledig bepaald zou kunnen worden.

In het tweede deel van dit hoofdstuk ontwikkelen we volledig andere gespe-
cialiseerde algoritmes om de bovengrenzen voor klassieke driehoek Ramsey getallen
te verbeteren. Dit zijn driehoek Ramsey getallen R(K3, G) waar de graaf G
een complete graaf is. Gebruikmakend van deze algoritmes zijn we erin ges-
laagd om betere bovengrenzen te bepalen voor verschillende klassieke driehoek
Ramsey getallen. Meer bepaald hebben we bewezen dat R(K3,K10) ≤ 42,
R(K3,K11) ≤ 50, R(K3,K13) ≤ 68, R(K3,K14) ≤ 77, R(K3,K15) ≤ 87 en
R(K3,K16) ≤ 98. Al deze nieuwe bovengrenzen verbeteren de oude grenzen met
één. We bepalen ook alle kritische Ramsey grafen voor K8 en bewijzen we dat
de gekende kritische Ramsey graaf voor K9 uniek is. Een Ramsey graaf voor G
is kritisch als hij R(K3, G)− 1 toppen heeft.

List of Figures

1.1 The basic edge insertion operation for cubic graphs. 7
1.2 A parent graph with isomorphic children. 8
1.3 A parent graph with isomorphic children obtained by non-equivalent

expansions. 9
1.4 A graph which can be obtained from multiple parents. 10

2.1 Some examples of cubic graphs: K4, the Petersen graph and the
C60 fullerene respectively. 12

2.2 The basic edge insertion operation. 13
2.3 Two examples of an irreducible edge e: an edge which has an

endpoint in a triangle that does not contain e (i.e. Figure 2.3a)
and an edge with two endpoints in the same 4-gon that does not
contain e (i.e. Figure 2.3b). 14

2.4 A K−4 and a K+
4 . 15

2.5 The construction operations for prime graphs. 16
2.6 Application of the edge insertion operation which yields a non-

prime graph. 17
2.7 A non-adjacent edge diamond insertion which yields a new re-

ducible lollipop with central vertex c. 24
2.8 A prime graph which contains 2 lollipops. 26
2.9 The basic edge insertion operation. 29
2.10 The basic triangle operation. 30
2.11 A subgraph ext(K−4) with two reducible triangles that cannot be

reduced at once. 30
2.12 Reusing information about the orbits of the automorphism group

of the parent graph to speed up the computation of the automor-
phism group of the expanded graph. 34

211

212 List of Figures

2.13 Subgraph of a cubic graph. The inserted edge e has value (1,−10, 1)
for (x0, x1, x2) while e′ has value (1,−10, 2). 39

2.14 Edge insertion which yields symmetries which were not induced by
the parent graph. 42

2.15 Edge insertion which destroys more than two squares. 45
2.16 A non-trivial 3-edge-cut . 49

3.1 Isaacs flower snarks J5, J7 and J9 [71] (i.e. Figures 3.1a, 3.1b and
3.1c, respectively). The flower snarks J2n+1 for n > 4 are defined
similarly. 57

3.2 One of the twelve cyclically 5-edge-connected permutation snarks
with 34 vertices. The bold cycles correspond to the 2-factor. 69

4.1 The fullerene C20 (drawn with black vertices and solid edges) and
its dual graph (drawn with white vertices and dashed edges). . . . 75

4.2 The C60 buckminsterfullerene drawn on the sphere (a) and in the
plane (b), respectively. 76

4.3 A carbon nanotube with 280 vertices. 78
4.4 The L, B and F expansions for fullerenes. 79
4.5 The L and B expansions in dual representation. 80
4.6 The irreducible fullerenes. 81
4.7 An example of two triples (e0, (3, 2), 1) and (e1, (2, 3), 0) represent-

ing the same B reduction. 83
4.8 A 5-vertex with 2 rings of 6-vertices. 86
4.9 L expansion which can turn a reduction of length 2 into a reduction

of length 4. The solid white vertices are 5-vertices, the solid black
vertices are 6-vertices and the dashed ones can be either. 87

4.10 The initial patch of an L2 expansion involving two neighbouring
pentagons p1 and p2. One of the edges from {e1, e2, e3} is equal to
an edge in {e4, e5, e6}. 89

4.11 The initial patch of a B1,0 expansion involving two neighbouring
pentagons p1 and p2. One of the edges from {e1, e2, e3} is equal to
an edge in {e4, e5, e6}. 89

4.12 The initial patch of an L2 expansion involving two neighbouring
pentagons p1 and p2. This is the case of Figure 4.10 where e2 = e5.
Since p1 and p2 share an edge, they must also share a face x.
However this patch has a non-trivial cyclic 5-edge-cut (which is
drawn in red), so it cannot be part of a reducible fullerene. 90

List of Figures 213

4.13 An L2 expansion which destroys 4 reductions of length 2. The
white vertices are 5-vertices and the black ones are 6-vertices. . . . 91

4.14 Examples of expansions which can lead to dual IPR fullerenes. . . 92
4.15 Example for Lemma 4.11 with d = 5. The black vertices are 6-

vertices and the dashed vertices can be either 5- or 6-vertices. Here
the reduction crosses the shortest path between v and w two times. 94

4.16 Example for Lemma 4.12 with d = 3. The white vertices are 5-
vertices, the black vertices are 6-vertices and the dashed vertices
can be either. Here the reduction crosses the shortest path between
v and w once. 95

4.17 The construction operations for cluster-trees. 97
4.18 The operations for clusters. 98
4.19 A locally irreducible 4-cluster. 100
4.20 A locally irreducible 4-cluster which has a B2,2-reduction (i.e. Fig-

ure 4.20a) or an L2-reduction (i.e. Figure 4.20b). 101
4.21 A locally irreducible 6-cluster, called straight-cluster. 101
4.22 Straight-cluster which has an L6-reduction (i.e. Figure 4.22a) or

an L2-reduction (i.e. Figure 4.22b). 102
4.23 A patch with 6 pentagons which cannot be completed with hexagons

to a patch with a boundary sequence of the form (23)l(32)m (i.e. Fig-
ure 4.23a). Figure 4.23b gives an example of a partial filling which
cannot be completed because there would be an octagon. 103

4.24 A locally irreducible 6-cluster, called distorted star-cluster. 104
4.25 Adding a ring of hexagons to an IPR cap with boundary parame-

ters (6,5). 104
4.26 Four irreducible 6-clusters. 106
4.27 Part of the boundary of a k-cluster tree (i.e. Figure 4.27a) and

how it can be modified to obtain a better bound on the number of
faces in the complementary part (i.e. Figures 4.27b and 4.27c). . . 111

4.28 A face spiral of the C60 buckyball with encoding 1, 7, 9, 11, 13, 15, 18, 20,
22, 24, 26, 32. 123

4.29 The smallest fullerene without a spiral. In order to show the ro-
tational symmetry with vertices as centres of rotation, one vertex
has to be chosen at infinity. 124

4.30 The second smallest fullerene without a spiral. 125

5.1 The basic construction operation for mtf graphs. 133

214 List of Figures

5.2 The complementsGc of the 10 remaining graphs which haveR(K3, G) >
30 for which we were unable to determine the Ramsey number.
Graphs which must have the same Ramsey number are grouped
by b and c. 147

5.3 The complements of K10−m ·e (2 ≤ m ≤ 5). R(K3,K10−m ·e) =
30 for all (3 ≤ m ≤ 5), while R(K3,K10 − 2 · e) > 30. 150

5.4 The operation of gluing the neighbours of v in all possible ways to
H. 159

5.5 The unique (3, 9; 35)-graph. 168

List of Tables

2.1 Number of prime graphs vs. number of cubic graphs. 28

2.2 Counts of all 2 094 480 864 connected cubic graphs with 26 vertices
according to the number of reducible triangles they have. 29

2.3 The percentage of cases where (x0, x1) is sufficient to decide whether
or not the constructed graph is canonical and the percentage of
cases where first testing the max edge and the previous rejector is
sufficient to reject the constructed graph. 42

2.4 Number of non-isomorphic graphs generated on each level by the
algorithm when generating all graphs with 28 vertices and girth at
least 4. 46

2.5 Number of non-isomorphic graphs generated on each level by the
algorithm when generating all graphs with 28 vertices and girth at
least 5. 46

2.6 Counts for various classes of cubic graphs according to their con-
nectivity. Note that every cyclically 4-edge-connected cubic graph
with more than 4 vertices has girth at least 4 since the 3 outgoing
edges of a triangle form a non-trivial 3-edge-cut. 52

2.7 Counts and generation times for classes of cubic graphs. The run-
ning times for minibaum for |V (G)| > 28 were omitted as these
computations were performed on multiple heterogeneous clusters. . 53

3.1 Percentage of graphs which have a given number of (possibly iso-
morphic) children with 28 vertices which are snarks among the
graphs with 26 vertices which are generated and which have at
least one child and a non-trivial automorphism group. 63

215

216 List of Tables

3.2 The number of snarks. We write λc(G) for the cyclic edge-connectivity
of a graph G and g(G) for the girth. None of the snarks listed
here has g(G) ≥ 7. The programs to compute the cyclic edge-
connectivity and girth were independently developed in Belgium
and Sweden and the results were in complete agreement. 66

3.3 Counts of all snarks according to the order of their automorphism
group. 67

3.4 Counts and generation times for snarks and weak snarks. The run-
ning times are for C code compiled by gcc and run on an Intel Xeon
L5520 CPU at 2.27 GHz. They include writing the snarks to a null
device. The running times for snarks with 36 vertices are omit-
ted as this computation was executed on multiple heterogeneous
clusters. 67

3.5 Growth rate of the number of snarks. 70

4.1 Upper bound for the number of vertices of a fullerene containing
the dual of a k-cluster. 111

4.2 Running times and generation rates for fullerenes. 114
4.3 Running times and generation rates for IPR fullerenes. Bg stands

for buckygen and fg stands for fullgen. 115
4.4 Percentage of IPR fullerenes. nv stands for the number of vertices. 116
4.5 Cubic plane graphs with maximum face size 6 listed with respect

to their minimum face size. Cubic plane graphs with maximum
face size 6 and with minimum face size 5 are fullerenes. nv is the
number of vertices and nf is the number of faces. 117

4.6 Cubic plane graphs with maximum face size 6 listed with respect to
their minimum face size (continued). nv is the number of vertices
and nf is the number of faces. 118

4.7 Triangle-free cubic plane graphs with maximum face size 6 listed
with respect to their minimum face size. nv is the number of
vertices and nf is the number of faces. 119

4.8 Triangle-free cubic plane graphs with maximum face size 6 listed
with respect to their minimum face size (continued). nv is the
number of vertices and nf is the number of faces. 120

4.9 Counts of fullerenes and IPR fullerenes. nv is the number of ver-
tices and nf is the number of faces. 121

5.1 Counts of triangle-free and maximal triangle-free graphs. 130

List of Tables 217

5.2 Counts and generation times for mtf graphs. 139
5.3 The number of mtf graphs which were generated by operations of

each type. 139
5.4 Number of connected graphs G with Ramsey number R(K3, G) =

r. Note that the 10 graphs with R(K3, G) > 30, for which we were
unable to determine the Ramsey number are not included in the
table. 148

5.5 Number of disconnected graphsG with Ramsey numberR(K3, G) =
r. 149

5.6 Known values and bounds for R(3, k). 152
5.7 Values and best known bounds for Ramsey numbers R(3, k), for

k ≤ 16. 155
5.8 Counts of Ramsey and mtf Ramsey graphs for R(3, 6) with at least

7 vertices. 156
5.9 Counts of all mtf (3, 8;n)-graphs for n ≥ 15. 157
5.10 Counts of all (3, 8; 27)-graphs according to their number of edges. . 158
5.11 Obtaining all (3, 8; 25,≤ 65)-graphs. 161
5.12 Exact values of e(3, 9, n), for n ≥ 27 165
5.13 Values and lower bounds on e(3, 10, n), for n ≥ 29. 166
5.14 Solutions to inequality (4) for (3, 10; 42, 189− s)-graphs. 169
5.15 Lower bounds on e(3, 11, n), for n ≥ 32. 173
5.16 Lower bounds on e(3, 12, n), for n ≥ 35. 174
5.17 Lower bounds on e(3, 13, n), for n ≥ 40. 175
5.18 Lower bounds on e(3, 14, n), for n ≥ 66. 176
5.19 Lower bounds on e(3, 15, n), for n ≥ 81. 177

C.1 Number of (3, 7;n, e)-graphs, for n ≥ 16. 190
C.2 Number of (3, 8;n, e)-graphs, for n ≥ 19. 191
C.3 Number of (3, 9;n, e)-graphs, for n ≥ 24. 192
C.4 Number of (3, 10;n, e)-graphs, for 29 ≤ n ≤ 34. 193

Index

K+
4 , 14

K−4 , 14
k-cluster, 93

irreducible, 94
locally reducible, 94

k-factor, 5
k-vertex, 79
(k, l;n, e)-graph, 150
2-factor

even, 59
3-edge-colourable, 58

active vertex, 79
adjacent, 3
automorphism, 5

group, 5
orbit, 5
trivial, 5

bipartite, 4
buckygen, 113

canonical
expansion, 8
graph, 8
labelling, 6
parent, 8
reduction, 8

cubic graphs, 35

fullerenes, 82
mtf graphs, 134
prime graphs, 18

cap, 102
child, 5
chromatic index, 4
cluster

globally irreducible, 107
cluster tree, 96
colourable, 58
complement, 3
complete graph, 4
connected, 4
connectivity, 4
cutvertex, 4
cycle, 4

length, 4
cycle double cover, 66

conjecture, 66
cyclic edge-connectivity, 4

deficiency, 151
degree, 3
diameter, 4
disconnected, 4
distance, 4
dominating set, 133

edge diamond, 15

218

Index 219

edge-cut, 4
embedding, 74
expanded graph, 5
expansion, 5

cubic graphs, 13
fullerenes, 78
IPR fullerenes, 93, 112
mtf graphs, 134
prime graphs, 15

face spiral, 122
fullerene, 74

dual, 75
IPR, 76
patch, see patch

fullgen, 73

girth, 4
good dominating set, 133
graph

cubic, 11
mtf, 129
multigraph, 27
planar, 74
plane, 74
simple, 3

hamiltonian, 5

incident, 3
independence number, 5
independent set, 5
internal edge, 133
irreducible

fullerene, 79
graph, 5
IPR fullerene, 93

isomer, 76
isomorphic, 5

embedded graphs, 74
isomorphism, 5

orientation-preserving, 74
orientation-reversing, 74

kernel, 104

lollipop, 15

minibaum, 12
MTF, 138

nanotube, 77
nauty, 6, 20, 164
non-adjacent edge diamond, 15

outer face, 76

parent, 5
patch, 76

boundary, 76
sequence, 102

replacement, 77
path, 3

length, 3
permutation graph, 68
prime graph, 13

R(G,H), 128
R(k, l;n, e), 150
R(m,n), 128
Ramsey

graph, 128
critical, 151

number, 128
reducible

edge, 13
fullerene, 79
triangle, 29

reduction, 5

220 Index

snark, 58
strong, 70
weak, 58

snarkhunter, 50, 65
spiral

algorithm, 76, 122
code, 122
conjecture, 123

counterexample, 123
subgraph, 3

induced, 3
spanning, 3

supergraph, 3

tree, 4
triangle insertion, 30
triangleramsey, 138
triangulation, 75

uncolourable, 58

vertex
central, 15
extremal, 14

vertex-cut, 4

	Summary
	Introduction
	Definitions and preliminaries
	Exhaustive generation
	Isomorphism-free generation

	Generation of cubic graphs
	Introduction
	The generation algorithm
	Generation of prime graphs
	Introduction
	Isomorphism rejection
	Determining possible expansions
	Conclusion

	Generation of graphs with reducible triangles
	Introduction
	Construction
	Optimisations

	Generation of non-prime graphs without reducible triangles
	Isomorphism rejection
	Determining possible expansions
	Optimisations

	Generation of graphs with girth at least 4 or 5
	Graphs with girth at least 4
	Graphs with girth at least 5
	Conclusion

	Generation of graphs with connectivity requirements
	Testing and results
	Closing remarks

	Generation of snarks
	Introduction
	Definitions
	The generation algorithm
	Optimisations
	The order of applying filters
	Postponing isomorphism rejection

	Testing and results
	Running times and the number of snarks
	Testing conjectures on snarks

	Closing remarks

	Generation of fullerenes
	Introduction
	Definitions
	Literature review

	Generation of fullerenes
	The construction algorithm
	Isomorphism rejection
	Optimisations

	Generation of IPR fullerenes
	Generator for all fullerenes with filter and look-aheads
	Recursive generation of IPR fullerenes

	Testing and results
	Running times and the number of fullerenes
	Testing conjectures related to fullerenes

	Closing remarks

	Ramsey numbers
	Introduction
	Generalised triangle Ramsey numbers
	Introduction
	Theoretical results
	Generation of maximal triangle-free graphs
	Generation of Ramsey graphs
	Computation of Ramsey numbers
	Testing and results
	Closing remarks

	Classical triangle Ramsey numbers
	Definitions and preliminaries
	Summary of prior and new results
	Methods for computing e(3,k,n)
	Algorithmic details
	Progress on computing small e(3,k,n)
	Improved lower bounds for e(3,9,35) and e(3,10,42)
	R(3,10) 42
	New upper bounds on R(3,k) for k 11
	Improving lower bounds for R(3,k)
	Testing
	Closing remarks

	Notation
	Ramsey numbers of connected graphs of order 10
	Number of Ramsey graphs for R(3,k)
	Bibliography
	Nederlandstalige samenvatting
	List of Figures
	List of Tables
	Index

