References

The references are ordered alphabetically by the last name of the first author, and where multiple papers have the same first author they are ordered by the last name of the second author, etc. We preferred that all work by the same author be in consecutive positions. Unfortunately, this causes that some of the abbreviations are not in alphabetical order. For example, [BaRT] is earlier on the list than [BaLS]. We also wish to explain a possible confusion with respect to the order of parts and spelling of Chinese names. We put them without any abbreviations, often with the last name written first as is customary in original. Sometimes this is different from the citations in other sources. One can obtain all variations of writing any specific name by consulting the authors database of Mathematical Reviews at http://www.ams.org/mathscinet/search, or zbMATH (formerly Zentralblatt für Mathematik) at http://www.zbmath.org/authors.

Papers containing results obtained with the help of computer algorithms have been marked with stars. We identify two such categories of papers: those marked with * involving some use of computers where the results are easily verifiable with some computations, and those marked with ** where cpu intensive algorithms have to be implemented to replicate or verify the results. The first category contains mostly constructions done by algorithms, while the second mostly nonexistence results or claims of complete enumerations of special classes of graphs.

\begin{tabular}{ll}
A, Ba, Br & page 57 \\
Ca, Cl, D, E & page 62 \\
F, Ga, Gu, H & page 68 \\
I, J, K, La, Lo & page 74 \\
M, N, O, P, Q, R & page 79 \\
Sa, Si, Su & page 84 \\
T, U, V, W, X, Y, Z & page 90 - page 94 \\
\end{tabular}

A

[-] Adiwijaya, see [SuAM, SuAAM].

[-] B.M.N. Alzaleq, see [BatJA, JaAl1, JaAl2].

[-] H. Assiyatun, see [HaABS, HaBA1, HaBA2, BaHA, SuAAM, SuBAU1, SuBAU2, SuBAU3].

Ba - Bo

[-] Bai Lufeng, see also [SonBL].

[-] A.Q. Baig, see [AliBB].

[-] A.M.M. Baniabedalruhman, see [JaBa].

[-] Qiquan Bao, see [ShaXB, ShaXBP].

[-] E.T. Baskoro, see also [AliBB, AliBas, AliBT1, AliBT2, HaABS, HaBA1, HaBA2, SuBa1, SuBa2, SuBAU1, SuBAU2, SuBAU3, SuBB1, SuBB2, SuBB3, SuBB4, SuBT1, SuBT2, SuBTB, SuBUB].

[-] S. Ben-Shimon, see [AlBK].

[Boza1] L. Boza, Nuevas Cotas Superiores de Algunos Números de Ramsey del Tipo $r(K_m,K_n-e)$, in proceedings of the VII Jornada de Matemática Discreta y Algoritmitca, JMDA 2010, Castro Urdiales, Spain, July 2010.

[Boza3]* L. Boza, Upper Bounds for Some Ramsey Numbers of K_n-e versus K_m, *manuscript* (2012).

[Boza4]* L. Boza, Números de Ramsey de Algunos Gráficos de 4 Vértices y Todos los Gráficos de 7 Vértices, in proceedings of the VIII Jornada de Matemática Discreta y Algoritmitca, JMDA 2012, Almería, Spain, July 2012.

[Boza6]* L. Boza, Sobre el Número de Ramsey $R(K_4,K_6-e)$, VIII Encuentro Andaluz de Matemática Discreta, Sevilla, Spain, October 2013.

[BoPo]* L. Boza and J.R. Portillo, Sobre el Número de Ramsey $R(K_4-e,K_7)$, in proceedings of the VIII Jornada de Matemática Discreta y Algoritmitca, JMDA 2012, Almería, Spain, July 2012.

Br - Bu

[-] A. Brandis, see [BierB].

[-] G. Brightwell. see [AllBS].

[-] H.J. Broersma, see [SaBr1, SaBr2, SaBr3, SaBr4, SuBB1, SuBB2, SuBB3, SuBB4, SuBTB, SuBUB].

Ca - Ch

[-] M. Cera, see [BoCGR].

Cl - Cs

[-] R. Cleve, see also [ChCD].

[-] O. Cooley, see also [KüCFO].

[-] K. Coolsaet, see [BrCGM].

D

[-] P. Dagum, see [ChCD, CleDa].

[Dong] Dong Lin, A Note on a Lower Bound for \(r(K_{m,n}) \), *Journal of Tongji University (Natural Science)*, 38 (2010) 776,778.

[DoLi] Lin Dong and Yusheng Li, A Construction for Ramsey Numbers for \(K_{m,n} \), *European Journal of Combinatorics*, 31 (2010) 1667-1670.

[-] Dong Lin, see also [HeLD, LinLD].

[-] J. Dybizbański, see also [BoDD].

[-] T. Dzido, see also [BoDD, DyDz1, DyDz2, DyDR].

E

[Ea1] Easy to obtain by simple combinatorics from other results, in particular by using graphs establishing lower bounds with smaller parameters.

[Ea2] Unique 2-(6,3,2) design gives lower bound 7, upper bound is easy.

[Ea3] Every edge (3,3,3;2)-coloring of K_{15} has 35 edges in each color [Hein], and since the number of triangles in K_{16} is not divisible by 3, hence no required triangle-coloring of K_{16} exists.

[Ex6]* G. Exoo, A Lower Bound for $r(K_5-e,K_5)$, *Utilitas Mathematica*, 38 (1990) 187-188.

[-] G. Exoo, see also CEHMS, XXER.

F

[-] R.J. Faudree, see also [BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSGJ, BEFS, BF, BFRS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9].

[Fid1]* R. Fidytek, Two- and Three-Color Ramsey Numbers for Paths and Cycles, manuscript (2010).

[-] R. Fidytek, see also [DzFi1, DzFi2].

[-] N. Fountoulakis, see [CooFKO1, CooFKO2, KiiCFO].

[-] J. Fox, see also [ConFS1, ConFS2, ConFS3, ConFS4, ConFS5, ConFS6].

[---] Z. Füredi, see also [AxFM].

Ga - Gr

[---] P. García-Vázquez, see [BoCGR].

[---] A.M. Gleason, see [GG].

[---] J. Goedgebeur, see also [BrCGM, BrGS].

[-] R.J. Gould, see also [BEFRSGJ, ChGP].

[-] R.L. Graham, see also [ChGra1, ChGra2, EG].

[-] S. Griffiths, see [FizGM, FizGMSS].

[-] C. Grinstead, see also [ChGri].

[-] J.W. Grossman, see also [BG].

Gu - Gy

[-] Gu Hua, see also [SonGQ].

[-] L. Gupta, see [GGS].

[-] A. Gyárfás, see also [AxGLM, GeGy].

H

[Han]* D. Hanson, Sum-Free Sets and Ramsey Numbers, *Discrete Mathematics*, 14 (1976) 57-61.

[-] D. Hanson, see also [AbbH].

[-] F. Harary, see also [CH1, CH2, CH3, GHK].

[-] Huang Jian, see [HWSYZH].

[-] Huang Wenke, see [DuHu].

[-] Huang Yi Ru, see also [BoJY+, YHZ1, YHZ2].

I

[-] R.W. Irving, see also [HiIr].

[-] G. Isaak, see [HoIs].

J

[-] M.S. Jacobson, see also [BEFRSGJ, GoJa1, GoJa2].

[-] M.M.M. Jaradat, see also [BatJA].

[-] C.J. Jayawardene, see also [BoJY+, RoJa1, RoJa2].

[-] Jiang Baoqi, see [SunYJLS].

[-] Jin Xia, see also [RaJi].

\(K \)

[-] P. Keevash, see [BohK1, BohK2].

[-] K. Klammroth, see also [ArKM].

[-] M. Klawe, see [GHK].

[-] D.J. Kleitman, see [GoK].

[-] J. Komlós, see [CsKo, AjKS, AjKSS].

[-] R.L. Kramer, see [FKR].

[-] S. Krause, see [HaKr1, HaKr2].

[-] D.L. Kreher, see also [RK1, RK2, RK3, RK4].

[-] M. Krivelevich, see also [AIBK, AIKS].

[KroMe] M. Krone and I. Mengersen, The Ramsey Numbers \(r(K_5-2K_2, 2K_3)\), \(r(K_5-e, 2K_3)\) and \(r(K_5, 2K_3)\), *Journal of Combinatorial Mathematics and Combinatorial Computing*, **81** (2012) 257-260.

[-] M. Kubale, see [DzKP].

[-] D. Kühn, see also [CooFKO1, CooFKO2].

La - Li

[-] A. Lange, see [LivLR].

[-] P.C.B. Lam, see [ShiuLL].

[-] S.L. Lawrence, see also [FLPS].

[-] H. Lefmann, see also [DLR].

[-] J. Lehel, see [BaLS, GyLSS].

[-] D. Leven, see [BlLR].

[-] Li Bingxi, see [SunYWLX, SunYXL].

[-] Li Guiqing, see [SLLL, SLZL].

[-] Li Jinwen, see [ZLLS].

[-] Li Qiao, see also [SLL, SLLL].

[-] Li Wei, see [KLR].

[LiTZ] Li Yusheng, Tang Xueqing and Zang Wenan, Ramsey Functions Involving $K_{m,n}$ with n Large, *Discrete Mathematics*, 300 (2005) 120-128.

[-] Li Yusheng, see also [BaiLi, BaLX, CaLRZ, Doli, DoLL1, DoLL2, GuLi, HeLD, LinLi1, LinLi2, LinLD, Shiu LL, SonLi, SunLi, WaLi].

[-] Li Zhenchong, see [LSL, LuLL].

[-] Meilian Liang, see [LuLL].

[-] Liang Wenzhong, see also [ChWXSL].

[-] Ko-Wei Lih, see [LiLih].

[-] Qizhong Lin, see also [DoLL1, DoLL2].

[-] Lin Xiaohui, see [SunYJLS, SunYLZ1, SunYLZ2].

[-] Andy Liu, see [AbbL].

[-] Hong Liu, see [AxGLM].

[-] Liu Linzhong, see [ZLLS].

[-] Liu Shu Yan, see [SonBL].

[-] Liu Xiangyang, see [GuSL].

[-] Liu Yanwu, see [SonYL].

[LivLR]** I. Livinsky, A. Lange and S.P. Radziszowski, Computation of the Ramsey Numbers $R(C_4,K_9)$ and $R(C_4,K_{10})$, *manuscript* (2013).

[-] P.J. Lorimer, see also [CocL1, CocL2].

[-] T. Łuczak, see also [FiŁu1, FiŁu2, HaŁP1+, HaŁP2+, HaŁT].

[-] Luo Haipeng, see also [LSLW, SL, SLLL, SLZL, WSLX1, WSLX2].

M

J.P. Mayberry, see [LayMa].

B.D. McKay and Zhang Ke Min, The Value of the Ramsey Number \(R(3,8) \), *Journal of Graph Theory*, 16 (1992) 99-105.

H. Mélot, see [BrCGM].

I. Mengersen, see also [ArKM, CEHMS, EHM1, EHM2, HoMe, HaMe1, HaMe2, HaMe3, HaMe4, KlaM1, KlaM2, KroMe, LoM1, LoM2, LoM3, LoM4, LoM5].

Zhengke Miao, see [ChenCMN].

M. Miller, see [BaSNM].

E.L. Monte Carmelo, see also [GoMC].

L.P. Montejano, see [ChaMR].

R. Morris, see [FizGM, FizGMSS].

D. Mubayi, see [AxFM, AxGLM, KosMV1, KosMV2, LaMu].

P.R. Mullins, see [LorMu].

S. Musdalifah, see [SuAM, SuAAM].
N

[-] S.M. Nababan, see [BaSNM].
[-] J. Nešetřil, see also [GrNe].
[-] C.T. Ng, see [ChenCMN, ChenCNZ, CheCZN].
[-] A. Nowik, see [DzNS].

O

[-] J. Oeckermann, see [MeO].
[-] S. Olsen, see [NaORS].
[-] G.R. Omidi, see also [MaORS1, MaORS2].
[-] P. Ossona de Mendez, see [NeOs].
[-] D. Osthus, see [CooFKO1, CooFKO2, KiiCFO].

P

[-] S.P. Pal, see [MiPal].
[-] Linqiang Pan, see [ShaXBP, ShaXSP].

[-] T.D. Parsons, see also [FLPS].

[-] Yuejian Peng, see [HaèP1+, HaèP2+].

[-] Y. Person, see [JoPe].

[-] O. Pikhurko, see [BePi].

[-] K. Piwakowski, see also [MPR, DzKP].

[-] A.D. Polimeni, see [ChGP, CRSPS].

[-] J.R. Portillo, see [BoPo].

[-] L.M. Pretorius, see [SwPr].

[-] P. Pudlák, see [AlPu, CPR, KosPR].

Q

[-] Qian Xinjin, see [SonGQ].

R

[-] S.P. Radziszowski, see also [BaRT, BLR, CalSR, DyDR, FKR, GoR1, GoR2, KLR, LivLR, MPR, MR1, MR2, MR3, MR4, MR5, McR, PR1, PR2, ShWR, WuSR, WuSZR, XuR1, XuR2, XuR3, XSR1, XSR2, XXER, XXR].

[-] G. Raeisi, see [GyRa, MaORS1, MaORS2, OmRa1, OmRa2, OmRa3].

[-] J.L. Ramirez Alfonsin, see [ChaMR].

[-] A. Rao, see [BarRSW].

[-] G. Resta, see [CPR].

[-] M.P. Revuelta, see [BoCGR].

[-] S.W. Reyner, see [BR].

[-] D.F. Reynolds, see [ExRe].

[-] J.A. Roberts, see [BuRo1, BuRo2].

[-] S. Roberts, see [GR].

[-] Y. Roditty, see [KrRod].

[-] V. Rödl, see also [AlRö, CRST, DLR, GrRö, GRR1, GRR2, HaLP1+, HaLP2+, KosPR, KoRö1, KoRö2, KoRö3, NaORS, PoRRS].

[-] L. Rónyai, see [AlRöS].

[-] V. Rosta, see also [BuRo3, KáRos].

[-] B.L. Rothschild, see [GRS].

[-] C.C. Rousseau, see also [BoJY+, BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSG, BFRSJ, CaLRZ, CRSPS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9, FRS1, FRS2, FRS3, FRS4, FRS5, FRS6, FRS7, FRS8, FRSS, FRSS1, FRSS2, FRSS3, FRSS4, FRSS5, LiR1, LiR2, LiR3, LiR4, LiR5, LiRZ1, LiRZ2, NiRo1, NiRo2, NiRo3, NiRo4, NiRS].

[-] C. Rowan, see [KerRo].

[-] P. Rowlinson, see [YR1, YR2, YR3].

[-] A. Ruciński, see [GRR1, GRR2, HaABS].

[-] M. Ruszinkó, see [GyRSS].

Sa - Sh

[-] M. Salerno, see [JiSa].

[-] A.N.M. Salman, see also [HaABS].

[-] G.N. Sárközy, see also [GyLSS, GyRSS, GySá1, GySá2, GySS1, GySS2, MoSST].

[-] I. Sato, see [MiSa].

[-] D. Saxton, see [FizGMSS].

[-] M. Schacht, see [MoSST, NaORS].

[-] R.H. Schelp, see [BaLS, BaSS, BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSGJ, BEFS, BFRS, ChenS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9, FLPSS, FRS1, FRS2, FRS3, FRS4, FRS5, FRS6, FS1, FS2, FS3, FS4, FSR, FSS1, GyLSS, NiRS].

[SchSch2] A. Schelten and I. Schiermeyer, Ramsey Numbers \(r(K_3, G)\) for \(G \cong K_7-2P_2\) and \(G \cong K_7-3P_2\), *Discrete Mathematics*, **191** (1998) 191-196.

[-] J. Sheehan, see [CRSPS, CEHMS, FRS7, FRS8, FRS9, RS1, RS2].

[-] Jian Shen, see [LiShen].
[-] Shen Yun-Qiu, see [LSS1, LSS2].

[-] Shi Lei, see [SunYJLS].

[ShZ1] Shi Ling Sheng and Zhang Ke Min, An Upper Bound Formula for Ramsey Numbers, manuscript (2001).

[ShZ2] Shi Ling Sheng and Zhang Ke Min, A Sequence of Formulas for Ramsey Numbers, manuscript (2001).

[-] Xiaolong Shi, see [ShaXSP].

Si - St

[-] M. Simonovits, see [AjKSS, BaSS, FSS1, FS, HaèP1+, KoSS1, KoSS2, LucSS].

[-] J. Skokan, see [AllBS, BenSk, FizGMSS, HaèP1+, KoSS1, KoSS2, LucSS].

[-] M.J. Smuga-Otto, see [AbbS].

[-] W. Solomon, see [LorSo].

[-] L. Soltés, see [LiRS].

[-] Song En Min, see also [HuSo, ZLLS].

[Song9] Hongxue Song, Asymptotic Upper Bounds for $K_{1,m,k}$: Complete Graph Ramsey Numbers, *Ars Combinatoria*, 111 (2013) 137-144.

[-] Song Hongxue, see also [GuSL].

[-] J.H. Spencer, see also [BES, GRS].

[-] T.S. Spencer, see [BahS].

[Spe4]* T. Spencer, University of Nebraska at Omaha, personal communication (1993), and, Upper Bounds for Ramsey Numbers via Linear Programming, manuscript (1994).

[-] A.K. Srivastava, see [GauST].

[-] R.G. Stanton, see [KaSt].

[-] A. Steger, see [McS].

[-] J. Stinehour, see [RST].

[-] M.J. Stewart, see [CRSPS].
Su - Sz

[-] Su Wenlong, see also [ChWXSL, LiaWXCS, LiaWXS, LSL, LSLW, LSS1, LSS2, WSLX1, WSLX2, XWCS].

[-] B. Sudakov, see also [AlKS, ConFS1, ConFS2, ConFS3, ConFS4, ConFS5, ConFS6, FoxSu1, FoxSu2, KoSu].

[-] A. Sudan, see [GGS].

[-] Sun Yongqi, see also [WuSR, WuSZR, ZhaSW].

[SunLi] Sun Yuqin and Li Yusheng, On an Upper Bound of Ramsey Number $r_k(K_m,n)$ with Large n, *Heilongjiang Daxue Ziran Kexue Xuebao*, ISSN 1001-7011, 23 (2006) 668-670.

[-] Surahmat, see also [AliSur, BaSu, BaSNM].

[-] M.M. Sweet, see [FreSw].
[-] T. Szabó, see [AlRoS].
[-] E. Szemerédi, see also [AjKS, AjKSS, CRST, GyRSS, GySS1, GySS2, PoRRS].
[-] P. Szuca, see [DzNS].

T

[-] Tang Xueqing, see [LiTZ].
[-] A. Taraz, see [MoSST].
[-] R. Thomas, see [RöTh].
[-] P.W. Tingley, see [HañT].
[-] I. Tomescu, see [AliBT1, AliBT2, SuBT1, SuBT2, SuBTB].
[-] C.A. Tovey, see [CaET].
[-] A. Tripathi, see [GautST].
[Tr] Trivial results.
[-] N. Trotignon, see [GySeT].
[-] W.T. Trotter Jr., see [CRST].
[-] Kung-Kuen Tse, see also [BaRT, RST, RT].
[-] Z. Tuza, see [GyTu].

U

[-] S. Uttunggadewa, see [SuBAU1, SuBAU2, SuBAU3, SuBUB].

V

[-] J. Verstraëte, see [KosMV1, KosMV2].
[-] L. Volkmann, see [GuoV].

W

[-] Wang Gongben, see [WW, WWY1, WWY2].

[-] Lin-Lin Wang, see [SunWW].

[-] Wang Wei, see [SunYWLX, SunYXL].

[-] Wang Yuandi, see [HWSYZH].

[-] Wang Zhihai, see [SunYW].

[-] Wang Zhi Jian, see [LiWa1, LiWa2].

[-] Wang Zicheng, see [ShaoWX].

[-] A. Widgerson, see [BarRSW].

[-] E.R. Williams, see [AbbW].

[-] R.M. Wilson, see [FraWi].

[-] A. Woldar, see [LaWo1, LaWo2].

[-] Wu Kang, see also [ChWXSL, LiaWXCS, LiaWXS, LSLW, XWCS].

[-] Wu Yali, see also [ZhaSW].

[-] Yi-Li Wu, see [SunWW].

[-] M. Wurtz, see [ShWR].

[-] Xiao Jianhua, see [ShaoWX].

[-] Xie Zheng, see [XX1, XX2, XXER, XXR].

Xu Chengzhang, see also [LiaWXCS].
Jin Xu, see [ShaXBP].
Xu Feng, see [SunYWLX, SunYXL].
Ran Xu, see [ChenCX].

J. Yackel, see [GrY].
Yan Shuda, see [WWY1, WWY2].

Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, The Value of the Ramsey Number $R(C_n, K_4)$ is $3(n - 1) + 1$ ($n \geq 4$), *Australasian Journal of Combinatorics*, 20 (1999) 205-206.

Yang Jian Sheng, see also [BoJY+, HWSYZH].

Z

[-] Zang Wenan, see [LiRZ1, LiRZ2, LiTZ, LiZa1, LiZa2].

[-] Zhang Rui, see also [WuSZR].

[-] Zhang Shu Sheng, see [ZZ1, ZZ2].

[-] Zhang Xiaoxian, see [XieZ].

[-] Zhang Yuming, see [CaLRZ].

[-] Zhang Yunqing, see also [ChenCNZ, ChenCZ1, ChenZZ1, ChenZZ2, ChenZZ3, ChenZZ4, ChenZZ5, ChenZZ6, CheCZN].

[-] Zhang Zhengyou, see [SLZL].

Zheng Wenping, see [SunYLZ1, SunYLZ2].

