4,711 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated

    Partitioning random graphs into monochromatic components

    Full text link
    Erd\H{o}s, Gy\'arf\'as, and Pyber (1991) conjectured that every rr-colored complete graph can be partitioned into at most r1r-1 monochromatic components; this is a strengthening of a conjecture of Lov\'asz (1975) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into rr monochromatic components is possible for sufficiently large rr-colored complete graphs. We start by extending Haxell and Kohayakawa's result to graphs with large minimum degree, then we provide some partial analogs of their result for random graphs. In particular, we show that if p(27lognn)1/3p\ge \left(\frac{27\log n}{n}\right)^{1/3}, then a.a.s. in every 22-coloring of G(n,p)G(n,p) there exists a partition into two monochromatic components, and for r2r\geq 2 if p(rlognn)1/rp\ll \left(\frac{r\log n}{n}\right)^{1/r}, then a.a.s. there exists an rr-coloring of G(n,p)G(n,p) such that there does not exist a cover with a bounded number of components. Finally, we consider a random graph version of a classic result of Gy\'arf\'as (1977) about large monochromatic components in rr-colored complete graphs. We show that if p=ω(1)np=\frac{\omega(1)}{n}, then a.a.s. in every rr-coloring of G(n,p)G(n,p) there exists a monochromatic component of order at least (1o(1))nr1(1-o(1))\frac{n}{r-1}.Comment: 27 pages, 2 figures. Appears in Electronic Journal of Combinatorics Volume 24, Issue 1 (2017) Paper #P1.1

    Spanning embeddings of arrangeable graphs with sublinear bandwidth

    Full text link
    The Bandwidth Theorem of B\"ottcher, Schacht and Taraz [Mathematische Annalen 343 (1), 175-205] gives minimum degree conditions for the containment of spanning graphs H with small bandwidth and bounded maximum degree. We generalise this result to a-arrangeable graphs H with \Delta(H)<sqrt(n)/log(n), where n is the number of vertices of H. Our result implies that sufficiently large n-vertex graphs G with minimum degree at least (3/4+\gamma)n contain almost all planar graphs on n vertices as subgraphs. Using techniques developed by Allen, Brightwell and Skokan [Combinatorica, to appear] we can also apply our methods to show that almost all planar graphs H have Ramsey number at most 12|H|. We obtain corresponding results for graphs embeddable on different orientable surfaces.Comment: 20 page

    Embedding Metrics into Ultrametrics and Graphs into Spanning Trees with Constant Average Distortion

    Full text link
    This paper addresses the basic question of how well can a tree approximate distances of a metric space or a graph. Given a graph, the problem of constructing a spanning tree in a graph which strongly preserves distances in the graph is a fundamental problem in network design. We present scaling distortion embeddings where the distortion scales as a function of ϵ\epsilon, with the guarantee that for each ϵ\epsilon the distortion of a fraction 1ϵ1-\epsilon of all pairs is bounded accordingly. Such a bound implies, in particular, that the \emph{average distortion} and q\ell_q-distortions are small. Specifically, our embeddings have \emph{constant} average distortion and O(logn)O(\sqrt{\log n}) 2\ell_2-distortion. This follows from the following results: we prove that any metric space embeds into an ultrametric with scaling distortion O(1/ϵ)O(\sqrt{1/\epsilon}). For the graph setting we prove that any weighted graph contains a spanning tree with scaling distortion O(1/ϵ)O(\sqrt{1/\epsilon}). These bounds are tight even for embedding in arbitrary trees. For probabilistic embedding into spanning trees we prove a scaling distortion of O~(log2(1/ϵ))\tilde{O}(\log^2 (1/\epsilon)), which implies \emph{constant} q\ell_q-distortion for every fixed q<q<\infty.Comment: Extended abstrat apears in SODA 200

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201
    corecore