Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz
local lemma to show the following two results about colourings c of the edges
of the complete graph K_n. If for each vertex v of K_n the colouring c assigns
each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a
copy of G in K_n which is properly edge-coloured by c. This improves on a
result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4),
409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2
edges of K_n, then there is a copy of G in K_n such that each edge of G
receives a different colour from c. This proves a conjecture of Frieze and
Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a
framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007]
for applying the local lemma to random injections. In order to improve the
constants in our results we use a version of the local lemma due to Bissacot,
Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page