2,961 research outputs found

    Optimal Radiometric Calibration for Camera-Display Communication

    Full text link
    We present a novel method for communicating between a camera and display by embedding and recovering hidden and dynamic information within a displayed image. A handheld camera pointed at the display can receive not only the display image, but also the underlying message. These active scenes are fundamentally different from traditional passive scenes like QR codes because image formation is based on display emittance, not surface reflectance. Detecting and decoding the message requires careful photometric modeling for computational message recovery. Unlike standard watermarking and steganography methods that lie outside the domain of computer vision, our message recovery algorithm uses illumination to optically communicate hidden messages in real world scenes. The key innovation of our approach is an algorithm that performs simultaneous radiometric calibration and message recovery in one convex optimization problem. By modeling the photometry of the system using a camera-display transfer function (CDTF), we derive a physics-based kernel function for support vector machine classification. We demonstrate that our method of optimal online radiometric calibration (OORC) leads to an efficient and robust algorithm for computational messaging between nine commercial cameras and displays.Comment: 10 pages, Submitted to CVPR 201

    A stabilized adaptive appearance changes model for 3D head tracking

    Get PDF
    A simple method is presented for 3D head pose estimation and tracking in monocular image sequences. A generic geometric model is used. The initialization consists of aligning the perspective projection of the geometric model with the subjects head in the initial image. After the initialization, the gray levels from the initial image are mapped onto the visible side of the head model to form a textured object. Only a limited number of points on the object is used allowing real-time performance even on low-end computers. The appearance changes caused by movement in the complex light conditions of a real scene present a big problem for fitting the textured model to the data from new images. Having in mind real human-computer interfaces we propose a simple adaptive appearance changes model that is updated by the measurements from the new images. To stabilize the model we constrain it to some neighborhood of the initial gray values. The neighborhood is defined using some simple heuristic

    Orion Optical Navigation for Loss of Communication Lunar Return Contingencies

    Get PDF
    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return

    A Robust Quasi-dense Matching Approach for Underwater Images

    Get PDF
    While different techniques for finding dense correspondences in images taken in air have achieved significant success, application of these techniques to underwater imagery still presents a serious challenge, especially in the case of “monocular stereo” when images constituting a stereo pair are acquired asynchronously. This is generally because of the poor image quality which is inherent to imaging in aquatic environments (blurriness, range-dependent brightness and color variations, time-varying water column disturbances, etc.). The goal of this research is to develop a technique resulting in maximal number of successful matches (conjugate points) in two overlapping images. We propose a quasi-dense matching approach which works reliably for underwater imagery. The proposed approach starts with a sparse set of highly robust matches (seeds) and expands pair-wise matches into their neighborhoods. The Adaptive Least Square Matching (ALSM) is used during the search process to establish new matches to increase the robustness of the solution and avoid mismatches. Experiments on a typical underwater image dataset demonstrate promising results

    Prediction of Viking lander camera image quality

    Get PDF
    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances

    Emergency Communications Network for Disaster Management

    Get PDF
    In recent years, from the majority of field experiences, it has been learned that communications networks are one of the major pillars for disaster management. In this regard, the exploitation of different space technology applications to support the communications services in disasters plays an important role, in the prevention and mitigation of the natural disasters effects on terrestrial communications infrastructures. However, this chapter presents the design and implementation of an emergency communications network for disaster management, based on a topology that integrates communications satellites with remote sensing satellites into an emergency communications network to be activated in disaster events, which affect public or private terrestrial communications infrastructures. Likewise, to design the network, different technical and operational specifications are considered; among which are: the emergency operational strategies implementation to maneuver remote sensing satellites on orbit for optimal images capture and processing, as well as the payload and radio frequencies characterization in communications satellites to implement communications technology tools useful for disaster management. Therefore, this emergency communications network allows putting in operation diverse communications infrastructures for data and images exchange, making available the essential information to accomplish a fast response in disasters or to facilitate the communications infrastructures recuperation in emergencies situations
    corecore