5,683 research outputs found

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Ancient and historical systems

    Get PDF

    Intelligent Computational Transportation

    Get PDF
    Transportation is commonplace around our world. Numerous researchers dedicate great efforts to vast transportation research topics. The purpose of this dissertation is to investigate and address a couple of transportation problems with respect to geographic discretization, pavement surface automatic examination, and traffic ow simulation, using advanced computational technologies. Many applications require a discretized 2D geographic map such that local information can be accessed efficiently. For example, map matching, which aligns a sequence of observed positions to a real-world road network, needs to find all the nearby road segments to the individual positions. To this end, the map is discretized by cells and each cell retains a list of road segments coincident with this cell. An efficient method is proposed to form such lists for the cells without costly overlapping tests. Furthermore, the method can be easily extended to 3D scenarios for fast triangle mesh voxelization. Pavement surface distress conditions are critical inputs for quantifying roadway infrastructure serviceability. Existing computer-aided automatic examination techniques are mainly based on 2D image analysis or 3D georeferenced data set. The disadvantage of information losses or extremely high costs impedes their effectiveness iv and applicability. In this study, a cost-effective Kinect-based approach is proposed for 3D pavement surface reconstruction and cracking recognition. Various cracking measurements such as alligator cracking, traverse cracking, longitudinal cracking, etc., are identified and recognized for their severity examinations based on associated geometrical features. Smart transportation is one of the core components in modern urbanization processes. Under this context, the Connected Autonomous Vehicle (CAV) system presents a promising solution towards the enhanced traffic safety and mobility through state-of-the-art wireless communications and autonomous driving techniques. Due to the different nature between the CAVs and the conventional Human- Driven-Vehicles (HDVs), it is believed that CAV-enabled transportation systems will revolutionize the existing understanding of network-wide traffic operations and re-establish traffic ow theory. This study presents a new continuum dynamics model for the future CAV-enabled traffic system, realized by encapsulating mutually-coupled vehicle interactions using virtual internal and external forces. A Smoothed Particle Hydrodynamics (SPH)-based numerical simulation and an interactive traffic visualization framework are also developed

    ACT-GAN: Radio map construction based on generative adversarial networks with ACT blocks

    Full text link
    The radio map, serving as a visual representation of electromagnetic spatial characteristics, plays a pivotal role in assessment of wireless communication networks and radio monitoring coverage. Addressing the issue of low accuracy existing in the current radio map construction, this paper presents a novel radio map construction method based on generative adversarial network (GAN) in which the Aggregated Contextual-Transformation (AOT) block, Convolutional Block Attention Module (CBAM), and Transposed Convolution (T-Conv) block are applied to the generator, and we name it as ACT-GAN. It significantly improves the reconstruction accuracy and local texture of the radio maps. The performance of ACT-GAN across three different scenarios is demonstrated. Experiment results reveal that in the scenario without sparse discrete observations, the proposed method reduces the root mean square error (RMSE) by 14.6% in comparison to the state-of-the-art models. In the scenario with sparse discrete observations, the RMSE is diminished by 13.2%. Furthermore, the predictive results of the proposed model show a more lucid representation of electromagnetic spatial field distribution. To verify the universality of this model in radio map construction tasks, the scenario of unknown radio emission source is investigated. The results indicate that the proposed model is robust radio map construction and accurate in predicting the location of the emission source.Comment: 11 pages, 10 figure

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    Deep Learning Techniques for Geospatial Data Analysis

    Full text link
    Consumer electronic devices such as mobile handsets, goods tagged with RFID labels, location and position sensors are continuously generating a vast amount of location enriched data called geospatial data. Conventionally such geospatial data is used for military applications. In recent times, many useful civilian applications have been designed and deployed around such geospatial data. For example, a recommendation system to suggest restaurants or places of attraction to a tourist visiting a particular locality. At the same time, civic bodies are harnessing geospatial data generated through remote sensing devices to provide better services to citizens such as traffic monitoring, pothole identification, and weather reporting. Typically such applications are leveraged upon non-hierarchical machine learning techniques such as Naive-Bayes Classifiers, Support Vector Machines, and decision trees. Recent advances in the field of deep-learning showed that Neural Network-based techniques outperform conventional techniques and provide effective solutions for many geospatial data analysis tasks such as object recognition, image classification, and scene understanding. The chapter presents a survey on the current state of the applications of deep learning techniques for analyzing geospatial data. The chapter is organized as below: (i) A brief overview of deep learning algorithms. (ii)Geospatial Analysis: a Data Science Perspective (iii) Deep-learning techniques for Remote Sensing data analytics tasks (iv) Deep-learning techniques for GPS data analytics(iv) Deep-learning techniques for RFID data analytics.Comment: This is a pre-print of the following chapter: Arvind W. Kiwelekar, Geetanjali S. Mahamunkar, Laxman D. Netak, Valmik B Nikam, {\em Deep Learning Techniques for Geospatial Data Analysis}, published in {\bf Machine Learning Paradigms}, edited by George A. TsihrintzisLakhmi C. Jain, 2020, publisher Springer, Cham reproduced with permission of publisher Springer, Cha
    corecore