7 research outputs found

    Shorter fixation durations for up-directed saccades during saccadic exploration: A meta-analysis

    Get PDF
    Utilizing 23 datasets, we report a meta-analysis of an asymmetry in presaccadic fixation durations for saccades directed above and below eye fixation during saccadic exploration. For inclusion in the meta-analysis, saccadic exploration of complex visual displays had to have been made without gaze-contingent manipulations. Effect sizes for the asymmetry were quantified as Hedge’s g. Pooled effect sizes indicated significant asymmetries such that during saccadic exploration in a variety of tasks, presaccadic fixation durations for saccades directed into the upper visual field were reliably shorter than presaccadic fixation durations for saccades into the lower visual field. It is contended that the asymmetry is robust and important for efforts aimed at modelling when a saccade is initiated as a function of ensuing saccade direction

    Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex

    No full text
    Human visual cortex does not represent the whole visual field with the same detail. Changes in receptive field size, population receptive field (pRF) size and cortical magnification factor (CMF) with eccentricity are well established, and associated with changes in visual acuity with eccentricity. Visual acuity also changes across polar angle. However, it remains unclear how RF size, pRF size and CMF change across polar angle. Here, we examine differences in pRF size and CMF across polar angle in V1, V2 and V3 using pRF modeling of human fMRI data. In these visual field maps, we find smaller pRFs and larger CMFs in horizontal (left and right) than vertical (upper and lower) visual field quadrants. Differences increase with eccentricity, approximately in proportion to average pRF size and CMF. Similarly, we find larger CMFs in the lower than upper quadrant, and again differences increase with eccentricity. However, pRF size differences between lower and upper quadrants change direction with eccentricity. Finally, we find slightly smaller pRFs in the left than right quadrants of V2 and V3, though this difference is very small, and we find no differences in V1 and no differences in CMF. Moreover, differences in pRF size and CMF vary gradually with polar angle and are not limited to the meridians or visual field map discontinuities. PRF size and CMF differences do not consistently follow patterns of cortical curvature, despite the link between cortical curvature and polar angle in V1. Thus, the early human visual cortex has a radially asymmetric representation of the visual field. These asymmetries may underlie consistent reports of asymmetries in perceptual abilities

    Investigation of the modulation of spatial frequency preferences with attentional load within human visual cortex

    Full text link
    Performance in visual tasks improves with attention, and this improvement has been shown to stem, in part, from changes in sensory processing. However, the mechanism by which attention affects perception remains unclear. Considering that neurons within the visual areas are selective for basic image statistics, such as orientation or spatial frequency (SF), it is plausible that attention modulates these sensory preferences by altering their so-called ‘tuning curves’. The goal of this project is to investigate this possibility by measuring and comparing the SF tuning curves across a range of attentional states in humans. In Experiment 1, a model-driven approach to fMRI analysis was introduced that allows for fast and efficient estimation of population spatial frequency tuning (pSFT) for individual voxels within human visual cortices. Using this method, I estimated pSFTs within early visual cortices of 8 healthy, young adults. Consistent with previous studies, the estimated SF optima showed a decline with retinotopic eccentricity. Moreover, my results suggested that the bandwidth of pSFT depends on eccentricity, and that populations with lower SF peaks possess broader bandwidths. In Experiment 2, I proposed a new visual task, coined the Numerosity Judgement Paradigm (NJP), for fine-grained parametric manipulation of attentional load. Eight healthy, young adults performed this task in an MRI scanner, and the analysis of the BOLD signal indicated that the activity within the putative dorsal attention network was precisely modulated as a function of the attentional load of the task. In Experiment 3, I used the NJP to modulate attentional load, and exploited the model-based approach to estimate pSFTs under different attentional states. fMRI results of 9 healthy, young adults did not reveal any changes in either peak or the bandwidth of the pSFTs with attentional load. This study yields a full visuocortical map of spatial frequency sensitivity and introduces a new paradigm for modulating attentional load. Although under this paradigm I did not find any changes in SF preferences within human visual areas with attentional load, I cannot preclude the possibility that changes emerge under different attentional manipulations

    Estimating the subjective perception of object size and position through brain imaging and psychophysics

    Get PDF
    Perception is subjective and context-dependent. Size and position perception are no exceptions. Studies have shown that apparent object size is represented by the retinotopic location of peak response in V1. Such representation is likely supported by a combination of V1 architecture and top-down driven retinotopic reorganisation. Are apparent object size and position encoded via a common mechanism? Using functional magnetic resonance imaging and a model-based reconstruction technique, the first part of this thesis sets out to test if retinotopic encoding of size percepts can be generalised to apparent position representation and whether neural signatures could be used to predict an individual’s perceptual experience. Here, I present evidence that static apparent position – induced by a dot-variant Muller-Lyer illusion – is represented retinotopically in V1. However, there is mixed evidence for retinotopic representation of motion-induced position shifts (e.g. curveball illusion) in early visual areas. My findings could be reconciled by assuming dual representation of veridical and percept-based information in early visual areas, which is consistent with the larger framework of predictive coding. The second part of the thesis sets out to compare different psychophysical methods for measuring size perception in the Ebbinghaus illusion. Consistent with the idea that psychophysical methods are not equally susceptible to cognitive factors, my experiments reveal a consistent discrepancy in illusion magnitude estimates between a traditional forced choice (2AFC) task and a novel perceptual matching (PM) task – a variant of a comparison-of-comparisons (CoC) task, a design widely seen as the gold standard in psychophysics. Further investigation reveals the difference was not driven by greater 2AFC susceptibility to cognitive factors, but a tendency for PM to skew illusion magnitude estimates towards the underlying stimulus distribution. I show that this dependency can be largely corrected using adaptive stimulus sampling

    Visual perception and attention and their neurochemical and microstructural brain correlates in healthy and pathological ageing

    Get PDF
    Visual perception and attention declines with normal ageing, however their neural and cognitive mechanisms in healthy and pathological ageing are yet to be fully understood. This thesis aimed to provide a characterisation of normal age-related differences across the visual perception and attention hierarchy, identify their underlying neural correlates, and assess how normal ageing contrasts with pathological ageing in Dementia with Lewy bodies (DLB)
    corecore