50 research outputs found

    CReSIS airborne radars and platforms for ice and snow sounding

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.This paper provides an update and overview of the Center for Remote Sensing of Ice Sheets (CReSIS) radars and platforms, including representative results from these systems. CReSIS radar systems operate over a frequency range of 14–38 GHz. Each radar system's specific frequency band is driven by the required depth of signal penetration, measurement resolution, allocated frequency spectra, and antenna operating frequencies (often influenced by aircraft integration). We also highlight recent system advancements and future work, including (1) increasing system bandwidth; (2) miniaturizing radar hardware; and (3) increasing sensitivity. For platform development, we are developing smaller, easier to operate and less expensive unmanned aerial systems. Next-generation platforms will further expand accessibility to scientists with vertical takeoff and landing capabilities

    Mission-Oriented Autonomy for Intelligent, Adaptive, and Multi-Agent Remote Sensing of Ice Sheets using Unmanned Aerial Systems

    Get PDF
    Throughout our history, humanity has been developing and progressing technology in order to help us better understand the world in which we live. As climate change becomes an increasingly urgent global crisis, scientists have been tasked with developing models for better understanding the complex dynamics involved, as well as to more accurately forecast the long term effects on our environment. With respect to sea level rise, both our knowledge of these dynamics and the accuracy of these models can be improved through the routine collection of crucial data concerning glacier ice thickness and bedrock topology. To accomplish this, innovative solutions are being developed by groups of inter-disciplinary research teams, combining fields such as earth-science, radar systems, data science, and aerospace engineering. Through this collaboration, we have the potential to leverage breakthroughs in unmanned systems technology and miniaturized, specialized sensors for comprehensive, precise, and routine data collection of key polar research objectives. As Unmanned Aerial Systems (UASs) have become more reliable research platforms in recent years, they now have the capability to perform these remote sensing operations at a reduced cost compared to manned operations, while also providing repeatable, precision tracking capabilities along flight lines, enabling the surveying of tightly-spaced grids, and removing human flight crews from hazardous polar environments. However, the payload, range, and wind constraints for these platforms severely restrict their operational sensing footprint. Additionally, UASs generally have a much smaller wingspan compared to manned aircraft typically used in Earth Science missions, which becomes a challenging factor for incorporating efficient directive antennas at the low operating frequencies required for glacial sounding. The aim of this work is to address these issues and to enhance mission efficiency and the overall quality of data collection for these operations through the implementation of onboard mission-oriented autonomy that includes cognitive decision-making for intelligent survey operations, adaptive functionalities, and a scalable, robust framework for multi-agent operations. As opposed to conventional methods for polar research operations which generally involve single-agent missions, using standard waypoint guidance and fixed-routes planned by human operators, the unique contributions of the developed mission-oriented autonomy in this work include: 1) Automated flight line generation for rapid and reliable mission planning of tightly-spaced flight lines required for cross-track synthetic aperture radar processes and surface clutter suppression, with required spacing based on the operating frequency of the onboard radar system. 2) Implementation of Dubins Path guidance methods into polar research operations for precision end-to-end survey of mission flight lines while taking into account the kinematic constraints of the fixed wing aircraft, as well as for efficiently traversing to and from a home loiter location during mission operations. 3) Cognitive, real-time optimal path planning through mission flight lines utilizing both deterministic and stochastic Traveling Salesman Problem heuristics. 4) Modifications to these Traveling Salesman Problem heuristics for ensuring safe, feasible, and reliable operations in real-time by taking into account aircraft range constraints. 5) Collaborative Multi-Agent survey operations utilizing space partitioning and Hungarian Assignment for distributed task allocation, as well as morphing potential fields for collision avoidance. 6) Modifications for Multi-Agent deployment scheduling to reduce inter-agent interference for sensitive radar systems to improve coherency of the collected data, and to rapidly and efficiently deploy agents into and out of survey areas. 7) Modifications for Heterogeneous flight operations for increasing operational capabilities through cross-platform collaboration. 8) Failsafe features to instill robustness in Multi-Agent operations with respect towards accommodating and adapting to single-agent system failures, by automatically re-planning collaborative survey operations. In this work, the motivation for the creation of this mission-oriented autonomy is discussed, along with the methodology of each of the autonomy features, and the framework for implementation onto UAS platforms. Case studies are conducted for past and future polar research deployments using unmanned systems to assess the potential improvements in operational capabilities and data collection for the developed autonomy compared to conventional methods. Finally, the developed autonomy is implemented onto an embedded system for preliminary flight testing and validation, as well as used for intelligent mission planning for a manned operation

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Aeronautics and Space Report of the President

    Get PDF
    Nineteen eighty-eight marked the United States' return to space flight with two successful space shuttle launches in September and December, as well as six successful expendable rocket launches. Meanwhile, many other less spectacular but important contributions were made in aeronautics and space by the 14 participating government organizations. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Department of Defense; (3) Department of Commerce; (4) Department of Energy; (5) Department of the Interior; (6) Department of Agriculture; (7) Federal Communications Commission; (8) Department of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Department of State; (13) Arms Control and Disarmament Agency; and (14) United States Information Agency

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided
    corecore