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Abstract 

Throughout our history, humanity has been developing and progressing technology in order to help us 

better understand the world in which we live. As climate change becomes an increasingly urgent global 

crisis, scientists have been tasked with developing models for better understanding the complex dynamics 

involved, as well as to more accurately forecast the long term effects on our environment. With respect 

to sea level rise, both our knowledge of these dynamics and the accuracy of these models can be improved 

through the routine collection of crucial data concerning glacier ice thickness and bedrock topology. To 

accomplish this, innovative solutions are being developed by groups of inter-disciplinary research teams,  

combining fields such as earth-science, radar systems, data science, and aerospace engineering. Through 

this collaboration, we have the potential to leverage breakthroughs in unmanned systems technology and 

miniaturized, specialized sensors for comprehensive, precise, and routine data collection of key polar 

research objectives. 

As Unmanned Aerial Systems (UASs) have become more reliable research platforms in recent years, they 

now have the capability to perform these remote sensing operations at a reduced cost compared to 

manned operations, while also providing repeatable, precision tracking capabilities along flight lines, 

enabling the surveying of tightly-spaced grids, and removing human flight crews from hazardous polar 

environments. However, the payload, range, and wind constraints for these platforms severely restrict 

their operational sensing footprint. Additionally, UASs generally have a much smaller wingspan compared 

to manned aircraft typically used in Earth Science missions, which becomes a challenging factor for 

incorporating efficient directive antennas at the low operating frequencies required for glacial sounding. 

The aim of this work is to address these issues and to enhance mission efficiency and the overall quality 

of data collection for these operations through the implementation of onboard mission-oriented 
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autonomy that includes cognitive decision-making for intelligent survey operations, adaptive 

functionalities, and a scalable, robust framework for multi-agent operations.  

As opposed to conventional methods for polar research operations which generally involve single-agent 

missions, using standard waypoint guidance and fixed-routes planned by human operators, the unique 

contributions of the developed mission-oriented autonomy in this work include: 

1) Automated flight line generation for rapid and reliable mission planning of tightly-spaced flight 

lines required for cross-track synthetic aperture radar processes and surface clutter suppression, 

with required spacing based on the operating frequency of the onboard radar system. 

2) Implementation of Dubins Path guidance methods into polar research operations for precision 

end-to-end survey of mission flight lines while taking into account the kinematic constraints of 

the fixed wing aircraft, as well as for efficiently traversing to and from a home loiter location 

during mission operations. 

3) Cognitive, real-time optimal path planning through mission flight lines utilizing both deterministic 

and stochastic Traveling Salesman Problem heuristics. 

4) Modifications to these Traveling Salesman Problem heuristics for ensuring safe, feasible, and 

reliable operations in real-time by taking into account aircraft range constraints. 

5) Collaborative Multi-Agent survey operations utilizing space partitioning and Hungarian 

Assignment for distributed task allocation, as well as morphing potential fields for collision 

avoidance. 

6) Modifications for Multi-Agent deployment scheduling to reduce inter-agent interference for 

sensitive radar systems to improve coherency of the collected data, and to rapidly and efficiently 

deploy agents into and out of survey areas. 

7) Modifications for Heterogeneous flight operations for increasing operational capabilities through 

cross-platform collaboration. 
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8) Failsafe features to instill robustness in Multi-Agent operations with respect towards 

accommodating and adapting to single-agent system failures, by automatically re-planning 

collaborative survey operations. 

In this work, the motivation for the creation of this mission-oriented autonomy is discussed, along with 

the methodology of each of the autonomy features, and the framework for implementation onto UAS 

platforms. Case studies are conducted for past and future polar research deployments using unmanned 

systems to assess the potential improvements in operational capabilities and data collection for the 

developed autonomy compared to conventional methods. Finally, the developed autonomy is 

implemented onto an embedded system for preliminary flight testing and validation, as well as used for 

intelligent mission planning for a manned operation.  
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Chapter 1: Introduction 

In order to understand the unique requirements involved in developing autonomy for polar research 

missions, a thorough background of earth-science objectives will first be discussed, followed by the 

technological developments enabling the integration of this work for survey operations. Finally, unique 

operational challenges and considerations will be addressed in order to define the need for the various 

features of the autonomy developed in this work.  

1.1 Remote Sensing of Ice Sheets 

The Earth’s ice sheets are one of the key components in the modeling process for climate change, and 

two crucial factors for updating these models are sea ice volume measurements and outlet glacier basal 

conditions [1]. However, obtaining these measurements have proven to be very challenging due to the 

remoteness of polar regions, the technological challenges of developing high performance ice-penetrating 

radar systems, the integration of these systems onto aircraft, and the sheer scale of the polar surveying 

needed to create accurate climate models. Additionally, routine measurements of these areas are 

desirable for predictive modeling and for better understanding the complex dynamics of these systems.  

As heightened levels of greenhouses gases in the atmosphere cause more thermal energy from solar 

radiation to be stored, the majority of this heat is transferred to the Earth’s oceans. In doing so, the oceans 

effectively act as a buffer against global temperature increases, while leading to other environmental 

concerns [2]. In addition to decimating marine ecosystems and increasing the frequency and strength of 

tropical storms, warmer oceans further contribute to the issue of sea level rise due to the thermal 

expansion of the ocean water. For instance, an increase in global ocean temperatures by a single degree 

Celsius would result in a 2.3 meter increase in sea level [3]. Rising sea levels are projected to have a 
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devastating impact on coastal populations in future decades [4]. Rising ocean temperatures also have 

another problematic effect: hindering the production of sea ice.  

Sea ice is naturally formed through the seasonal freezing of polar ocean water, and is very crucial for 

maintaining the planet’s global temperatures due to its higher relative albedo, or surface reflectivity, over 

surrounding water. Due to their respective albedo factors, an area of ocean water absorbs approximately 

10 times more solar radiation than would the same area of sea ice. A positive feedback cycle is formed by 

this relationship, where rising ocean temperatures reduce the production of sea ice, leading to increased 

absorption of solar radiation, further increasing ocean temperatures [5]. 

The total volume of a portion of sea ice can be approximated by measuring the volume of the ice above 

the surface of the water using altimetry data obtained by satellites and using the density ratio of the ice 

to the surrounding sea water to approximate how much ice lies below. However, these approximations 

can be greatly improved by precisely measuring and accounting for the amount of snow cover that is 

accumulated on the surface of the sea ice.   

Ice sheets, which are defined as continental glaciers over 50,000 km2
 in size, contain nearly 99% of the 

planet’s supply of fresh water [6]. For context, the Greenland ice sheet contains enough water to raise 

global sea levels by 6 meters, while the Antarctic ice sheets could contribute up to 60 meters. The size of 

these glaciers directly depends upon their mass balance, which is the difference in accumulation and 

ablation rates [7]. As snowfall accumulation builds along the surface of the glacier, ice within the glacier 

naturally flows from its summit to its exterior, where it is deposited into the oceans via channels known 

as outlet glaciers. As outlet glaciers are the primary ablation mechanism for the ice sheet, they are of 

particular interest to the scientific community [8]. The flow rates of these outlet glaciers can be highly 

dependent on the bedrock topology and basal conditions, where subglacial water can accumulate and 
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dramatically decrease the friction between the glacier and the bedrock, leading to increased glacial flow 

rates in a condition known as basal sliding [9].  

NASA’s Operation IceBridge was founded in 2009 in order to bridge ice altimetry data collections between 

the polar observation satellite deployments of ICESat (2003-2009) and ICESat-2 (2018-present). Operation 

IceBridge was a program that leveraged a fleet of highly specialized research aircraft carrying an 

assortment of innovative science instruments, including lidar, accumulation radars, infrared cameras, 

multichannel coherent radar depth sounders (MCoRDS), and many others in order to collect 

comprehensive ice sheet data [10]. Most of these deployments have utilized the P-3B and DC-8 aircraft as 

airborne laboratories that have been flown extensively over polar regions to routinely collect an 

assortment of observational data for ice sheets.  

The Center for Remote Sensing of Ice Sheets (CReSIS) was founded in 2005 in order to develop new and 

specialized technologies for polar research and to improve and update climate model predictions [11]. 

The University of Kansas serves as the lead institute for CReSIS, with six collaborating partner institutes. 

The work conducted at CReSIS has contributed to vast innovations in the field of ice and snow radars, as 

well as the structural integration of these specialized sensors onto aircraft, and the operational collection 

of data during seasonal IceBridge deployments. 

1.2 Unmanned Aerial Systems 

As Unmanned Aerial Systems (UASs) become increasingly more capable, reliable, and cost effective, the 

advantages of leveraging these systems grow more apparent. Transitioning from manned to unmanned 

operations can enable precision tracking capabilities along tight grids, which is of particular interest for 

remote sensing operations collecting 3D spatial measurements using airborne sensors. Deploying 

unmanned systems into hazardous environments can remove human operators from unnecessary risk, 

while operational costs can be reduced due to decreased airframe, fuel, runway, and piloting costs. 
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Additionally, the automation of unmanned operations can drastically increase efficiency, as well as 

feasibly enable scaled operations for utilizing collaborating swarms of aerial platforms.  

The increased popularity of UASs can be attributed to a variety of factors enabling their success. 

Advancements in propulsion system performance and efficiency have increased available aircraft thrust 

and decreased energy consumption, leading to increases in available payload and extending aircraft range 

and endurance. Recent breakthroughs in battery technologies have increased the capacitance and energy 

density for onboard batteries, directly increasing flight times and power outputs for the aircraft. The 

capabilities for UASs has dramatically been expanded due to the miniaturization of airborne sensors, 

allowing for their integration onto increasingly smaller platforms. Finally, the exponential advancements 

in microprocessor technology has produced lightweight microprocessors of increasingly small form 

factors, which are capable of running complex, real-time processors aboard UASs, enabling the 

implementation of various levels of autonomous features into these systems.  

UASs have recently been utilized across a wide variety of civil, commercial, and military applications [12-

20]. Infrastructure inspection has greatly benefitted by the introduction of UASs, particularly for obtaining 

precise and comprehensive images of tall and dangerous structures such as bridges, power lines, and wind 

turbines. UASs have aided the agricultural sector through precision crop monitoring and crop dusting, 

while rapid response teams have used UASs to quickly deploy life-saving medicines and healthcare devices 

to individuals experiencing medical emergencies. Stunning aerial views obtained by UASs have been used 

extensively in the real estate sector, in the film making industry, and for media coverage of events. Swarms 

of UASs have recently been used for dazzling aerial light shows, capable of rapidly forming and morphing 

3D structures. Scientists from a myriad of diverse fields have put UASs to use for important data collection, 

including studying and tracking wildlife, collecting information from hazardous areas such as volcanoes, 

and even for archaeological surveying. The quick response capabilities of UASs have been leveraged in 

response to humanitarian crises, such as providing real-time monitoring of areas affected by natural 
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disasters such as hurricanes or earthquakes, as well as monitoring and combating the progression of 

wildfires. UASs have successfully aided in search and rescue efforts to save the lives of individuals lost in 

mountains, adrift at sea, and trapped in warzones.  

In 2007, CReSIS began the construction process for a purpose-driven UAS for polar research [21]. Named 

the “Meridian”, the aircraft was designed, manufactured, and flight tested by students and faculty at the 

University of Kansas. With a wingspan of over 26 feet and a takeoff weight of 1,100 lbs, the aircraft was 

the largest civilian-operated UAS in the world. The aircraft was capable of carrying 120 lbs of payload 

(suitable for the radar system of the time) over a range of 1,750 km, along with a 300 km reserve. 

Removable, modular wings were designed for shipping feasibility, rapid aircraft assembly in the field, and 

to incorporate various array configurations needed for ice-penetrating radars. Due its size, extensive flight 

testing was needed to properly characterize its stability and control characteristics, while precautions 

were taken to ensure the safety of the aircraft and the operators [22]. The aircraft and the flight research 

team from the University of Kansas voyaged on several polar deployments to test the aircraft in its 

intended conditions, including two trips to McMurdo Station, Antarctica, and one trip to Neem, 

Greenland, where the aircraft was successfully flown autonomously overhead and preliminary radar 

testing was conducted. Prior to Meridian flights, a 33% scale YAK-54 model aircraft was used to train the 

RC pilots for takeoff and landing on the runway conditions, as well as for difficulties that arise in 

maintaining visual reference of the aircraft in the harsh polar environment.  

However, following the miniaturization of the radar system into a 5 lb unit, it was then possible to 

incorporate the system into the model aircraft previously used for pilot training. Custom glass-composite 

wings were designed for a 40% scale YAK-54 aircraft, named the “G1X”, and dual frequency HF/VHF 

antennas was designed to be incorporated into the wing platform and airframe [23]. With a 17-foot 

wingspan and an 85-lb takeoff weight, the G1X was capable of carrying the radar system for a total range 

of 100 km. While this range is significantly lower than the Meridian, the operational costs and risks 
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involved were greatly reduced. Additionally, the G1X requires significantly less runway area to operate 

from and can fly at lower speeds, enabling increased maneuverability for closely spaced grids. Using 

invaluable experience gained from the Meridian program, the G1X was deployed to Antarctica in 2014, 

where it performed the first successful sounding of glacial ice using a UAS-based radar [24]. 

Lowering the platform, transport, and operational costs directly led to the feasibility of increasing the 

overall mission reliability by having redundant platforms available at the field. Following design 

improvements, a newer version for the G1X platform was developed with a wingspan of 14.5 feet and a 

takeoff weight of 71 lbs, increasing the aircraft range to 150 km. In the spring of 2016, the KU team 

deployed to Kangerlussuaq, Greenland, with three operational aircraft, two of which were fully outfitted 

with radar and antenna systems, and the third was strictly used for preliminary flight testing and as a 

reserve airframe. During this deployment, KU team successfully collected ice thickness and bedrock 

topology measurements of the Russell Glacier using a 35 MHz radar, through eight over-the-horizon flights 

covering 28 distinct survey lines for a total of over 200 miles of glacial surface [25]. Results were validated 

through comparison with previous measurements of the same area from JPL’s WISE VHF sounder [26-27]. 

Previously missing bedrock information was revealed through the G1X’s HF sounder due to its lower 

sensitivity to both surface roughness and temperate ice attenuation. The five CReSIS UAS deployments 

are shown in Figure 1, while the improved imaging of the Russell Glacier compared to JPL’s WISE Sounder 

[25] is shown in Figure 2. 
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Figure 1: CReSIS UAS Deployments (Photo Credit: KU Flight Research Lab) 
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Figure 2: Comparison of imaging along the Russell Glacier from JPL WIFE HF Sounder (Left) and G1X VHF Sounder (Right) [25] 

1.3 Autonomy Trends 

As increasingly capable microprocessors are implemented onto UASs, the ability now exists to incorporate 

complex onboard processes to enhance mission performance and efficiency. Technological advances now 

allow the shift of unmanned system operations from predominantly deterministic to that of adaptive and 

multi-agent missions, incorporating cognitive, real-time decision making. Conventional methods for polar 

research operations include standard waypoint following guidance, using a fixed route pre-planned by 

human operators. However, countless research works have recently been conducted involving the 
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integration of complex onboard processes onto UASs, including the use of nonlinear model predictive 

controllers, artificial intelligence, visual recognition, and search and track operations [28-30].  

Due to the size of the survey areas and the lack of communication infrastructure in polar regions, the UASs 

are required to predominantly operate in the absence of human direction. Therefore, it is incredibly 

advantageous in terms of mission performance, reliability, and safety for the UAS to have onboard 

capabilities that enable cognitive, real-time decisions when exploring unstructured environments. Similar 

research has been performed for unmanned system operations in communication-denied environments 

has been the focus of much research for areas such as underwater surveying and Mars rovers [31-33].  

Increasing the automation of the mission planning process can be used to shift significant workload from 

the vehicle operators to the onboard autonomy. This shift in workload enables rapid deployment of 

vehicles into survey areas, reduces the possibility of human error while manually inputting ordered 

mission waypoints, and frees up operator attention for other important tasks in the harsh polar 

environment. Additionally, it decreases the number of skilled personnel needed to operate the vehicles, 

and increases the feasibility of scaling the surveying operations by deploying multiple collaborative UASs 

within narrow time windows. Thanks to newly available onboard computational power, UASs in these 

multi-agent operations are now capable of real-time decentralized path planning based on the emergent 

behavior of the collaborating systems, forming and maintaining complex virtual structures to perform 

formation flights, as well as ensuring collision avoidance between airborne platforms with high speed and 

high inertia. Due to the immense advantageous of enhancing overall footprint, increasing mission 

reliability, and distributing payload among systems, multi-agent UASs have become the focus of vast 

recent and ongoing research works. In this work, autonomy features are designed and implemented in 

order to increase the operational capabilities of the UASs, and compensate for their limited footprint due 

to payload, range, and wind restrictions. 
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1.4 Mission Planning and Operational Considerations 

This section breaks down the mission requirements and operational challenges involved in the remote 

sensing of ice sheets. 

1.4.1   Mission Breakdown and Environmental Concerns 

In order to obtain vital ice sheet measurements, UASs are used as a means of maneuvering the radiating 

antenna elements along the desired flight lines, where the resulting backscatter is collected to update 

existing models. These flight lines represent the cross sectional “slices” of interest in the ice sheet, and 

areas between flight lines can be subjected to interpolation techniques. While this data is highly desired 

by scientists, these operations come with numerous challenges.  

The size and shape of the radiating elements, along with weight of the radar system, typically constrain 

the choice of vehicle type to that of a fixed-wing aircraft, which must continuously maintain above a 

minimum airspeed while airborne to prevent aerodynamic stalling and are constrained to a minimum 

turning radius. Additionally, this limits the location of the ground operations to the proximity of a suitable 

runway for the aircraft to take off and land on, which might consist of snow covered, icy, or rugged 

surfaces. This area must also be free of any surrounding features obstructing the climb out and final 

approach phases for the aircraft.   

Mission operations typically consist of a takeoff procedure (1), the entrance of the system into an 

overhead home loiter circle (2), the deployment of the system over the horizon (3), the surveying of the 

mission flight lines (4), the return of the system into the overhead home loiter circle (5), the landing of 

the system on the runway (6), and finally, the extraction of the collected data (7). The overhead home 

loiter serves as a way for the aircraft to maintain airspeed while undergoing final checks of system 

diagnostics (for both the autopilot and radar systems) before the system is deployed to the flight lines, as 

well as a rendezvous point for the aircraft to return to before beginning landing procedures.  
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The remoteness of the surrounding area constraining the location of the ground operators, coupled with 

the length of these flight lines, necessitates over-the-horizon (OTH) operations in which telemetric links 

may be intermittent or lost altogether based on range and line-of-sight restrictions, such as ridges. The 

success of these missions then depends on the ability of the UAS to operate correctly in the absence of 

continuous human direction. 

The windows of opportunity for operations in these regions are limited due to a variety of factors. While 

UAS operations are generally limited to operating below wind and gust thresholds defined by the airframe 

and propulsion system, the buildup of dense, cold air across the ice sheet, coupled with the differential 

elevation of its summit and terminus, lead to strong katabatic winds that can prevent operations for 

several days at a time. Other weather conditions that may prevent operations include snowfall and fog, 

impairing visual tracking of the aircraft from the ground station and potentially leading to icing conditions 

on the wings or pitot tube. Local area temperatures may drop below the operating threshold for aircraft 

avionics, control systems, onboard batteries, and the operating crew. Finally, seasonal daytime variations 

in these polar regions may also limit operational windows.   

Due to these challenges, the efficiency of operations when suitable conditions are available is vital to the 

success of polar research deployments. Therefore, the demands for the onboard UAS autonomy include 

determining an efficient route to traverse the flight lines, following efficient trajectories when 

transitioning between flight lines, maintaining tight tracking of the flight lines, and making intelligent 

mission decisions in the absence of operator supervision, including ensuring a safe return to the operating 

area. These capabilities are crucial to enhancing sensing footprint, minimizing operational time, and 

improving mission reliability.  
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1.4.2   Synthetic Aperture Radar (SAR) Processes 

The radar backscatter data collected from the aircraft while tracking a flight line is post-processed by 

synthetic aperture techniques in order to obtain fine-resolution imaging in the along-track direction. 

Synthetic aperture radar (SAR) has utilized for a wide variety of airborne radar platforms in order to use 

the motion of the radar system over the target area as a means of synthesizing a very large array along 

the direction of the motion. Vast improvements in SAR processing techniques for glacial ice has been 

made by researchers at CReSIS to produce coherent images from data collected during Operation 

IceBridge [34-37].  

However one important consideration for SAR processing is that the angular motion of the radiating 

platform can cause distortion in the resulting images. While some compensation techniques can be 

applied to mitigate the effect of angular perturbations, steady-level flight is desired to be maintained by 

the autopilot of the aircraft while tracking the flight lines in order to obtain more coherent images. 

Additionally, as the maximum directivity of the aircraft antenna is typically designed to align with the Z-

body axis for the aircraft, very low aircraft pitch and roll angles are desired while tracking flight lines. For 

aircraft carrying omnidirectional antennas (such as the bowtie-dipole on the G1X system), the off-nadir 

angle for the azimuth direction of the antenna can be disregarded (in this case the pitch axis of the 

aircraft).  

Due to rugged terrain surfaces, ice-penetrating radars frequently experience surface clutter, which is the 

phenomenon of off-nadir signals reflecting off of surrounding terrain surfaces and returning to the receive 

antenna at the same instance as the desired basal reflection. The resulting signal-to-noise ratio of the 

surface clutter to the basal return is significantly large due to the difference between the free-space and 

the interglacial attenuation that is applied to the respective signals [38]. In order to mitigate the effect of 

surface clutter, researchers typically fly a series of closely-spaced passes along the desired flight lines and 
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apply clutter-suppression techniques to the overall data in order to produce coherent images along the 

flight line.  

Additionally, by separating the individual passes by a quarter of the operating wavelength, synthetic 

aperture techniques can be applied in the cross-track direction in order to improve resolution in that axis, 

which is typically limited due to the aperture length restrictions on the UAS platform. Various 

beamforming techniques can be applied to the data to take into account the tracking errors along the 

flight lines [39].  

1.4.3   Multi-Agent Operations 

The limited footprint of UASs can be dramatically compensated for through the use of collaborating, multi-

agent operations. However, multi-agent operations can increase the number of necessary personnel 

needed to prepare and monitor the vehicles, as well as introduce the possibility of inter-agent collision, 

thus requiring the implementation of a collision avoidance mechanism. Additional considerations must be 

made when incorporating numerous, sensitive radar systems into a confined airspace. For snow 

accumulation radars, which typically radiate from 2-8 GHz, a highly directive antenna can be integrated 

onto the UAS platforms and can therefore operate in the same general area without experiencing cross-

platform interference. However, glacial sounding applications require much lower frequencies (typically 

below 55 MHz), which necessitate the use of a very long, low-directivity antenna. These antennas have a 

very wide radiation pattern, and could result in cross-platform interference with a sufficiently large signal-

to-noise ratio that could mask the desired basal returns. In these instances, only one UAS platform should 

be radiating at a single instance in order to ensure coherent data collection during distributed operations.  
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Chapter 2: Autonomy Methodology 

In this chapter, the methodology behind the eight unique features of this mission-oriented autonomy will 

be discussed. 

2.1 Automated Flight Line Generation 

The first component of the mission-oriented autonomy developed in this work involves the automated 

generation of closely-spaced lines during sensor-driven mission planning for polar flight operations. The 

necessity of these closely-spaced lines for cross-track synthetic aperture processes and for clutter 

suppression are described in Section 1.4, where the spacing between these lines should be equal to one-

quarter of the wavelength of the operating radar system. The automated generation of these lines 

reduces the workload on the human operators (who would otherwise have to manually input the 

waypoints for each line in the cluster), and reduces the chance of error corresponding to that manual 

process. Reducing this workload on the operator also enables them to direct their focus onto other 

portions of the flight operations and overall can increase operational efficiency and safety.  

The flight line centroid about which the automated cluster will be generated can be described as a line 

segment formed between points A =  {A𝑁, A𝐸} and B =  {B𝑁, B𝐸} in a North-East local frame, using feet 

as the units relative to the origin location. These points can be converted from geodetic coordinates into 

a local frame using a transformation such as shown below in Equation 2.1, where an origin location O =

 {O𝐿𝑎𝑡 , O𝐿𝑜𝑛} is defined and the transformation factors 𝐹𝐿𝑎𝑡 and 𝐹𝐿𝑜𝑛 refer to the conversions for latitude 

and longitude degrees into feet in the local frame. Note that the factors 𝐹𝐿𝑎𝑡 and 𝐹𝐿𝑜𝑛 vary based on the 

geodetic location, but in this work these factors are used based on the origin location O and assumed 

constant for the surrounding mission area. In order to determine the direction in which to generate lines, 

the heading angle for the flight line is determined using Equation 2.2, while the unit vector perpendicular 

to this heading is determined using Equation 2.3. To determine the required spacing, the wavelength of 
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the radar system can be calculated based on its operating frequency in Hz, as shown in Equation 2.4, 

where “c” refers to the speed of light in m/s.  

[A, B]𝐿𝑜𝑐𝑎𝑙 =  [(𝐴𝐿𝑎𝑡 − 𝑂𝐿𝑎𝑡) ∗ 𝐹𝐿𝑎𝑡 , (𝐴𝐿𝑜𝑛 −𝑂𝐿𝑜𝑛) ∗ 𝐹𝐿𝑜𝑛]         Eq. 2.1 

𝜓𝐴𝐵 =  𝑎𝑡𝑎𝑛2 (
𝐵𝐸−𝐴𝐸

𝐵𝑁−𝐴𝑁
)              Eq. 2.2 

V̂ABP =  [cos (ψAB +
π

2
) , sin (ψAB +

π

2
)]         Eq. 2.3 

𝜆 =  
𝑓

𝑐
            Eq. 2.4 

The pseudocode for generating the number of flight lines (or rather, the number of passes) 𝑁𝑃 for each 

centroid (A0, 𝐵0) is shown below. Example clusters are generated and shown in Figure 3 and Figure 4 for 

7 and 8 lines, respectively. Note that the spacing factor 𝜂𝜆 is typically set to 0.25 but can vary depending 

on operational constraints and interpolation methods. 

𝒇𝒐𝒓 𝒊 = 𝟏:𝑵𝑷 

              𝑨𝒊 = 𝑨𝟎 + 𝜼𝝀𝝀 (𝒊 −
𝑵𝑷+𝟏

𝟐
) 𝑽̂𝑨𝑩𝑷  

              𝑩𝒊 = 𝑩𝟎 + 𝜼𝝀𝝀(𝒊 −
𝑵𝑷+𝟏

𝟐
) 𝑽̂𝑨𝑩𝑷  

end for 
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Figure 3: Automated Flight Line Generation Example, NP = 7 

 

 

Figure 4: Automated Flight Line Generation Example, NP = 8 
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The cluster generation can then be performed on any number of centroids for their respective number of 

passes 𝑁𝑃. Figure 5 shows an example of three centroid flight lines, where Figure 6 shows the resulting 

clusters for a 55 MHz operating frequency and desired cluster 𝑁𝑃 values of 4,5, and 6 from (left to right). 

 

Figure 5: Automated Flight Line Generation - Cluster Centroids 

 

Figure 6: Automated Flight Line Generation - Resulting Clusters 
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2.2 Dubins Path Guidance 

In order to quickly and efficiency transition onto survey flight lines, the aircraft ideally should follow an 

optimal path along which the aircraft will arrive at the start of the flight line in the shortest amount of 

time, with the respective flight line heading. Approaching along this trajectory would allow for full end-

to-end coverage of the flight line with minimal off-track errors and aircraft bank angles. Additionally, the 

curvature of candidate paths are kinematically constrained by the minimum turning radius of the fixed-

wing aircraft. The generation of this optimal path can be achieved by utilizing Dubins Paths architectures. 

2.2.1   Dubins Paths 

First introduced by Lester Dubins in 1957, Dubins Paths are the curves of minimum length between two 

points with prescribed initial and terminal headings in a two-dimensional plane, where the curve is 

subjected to a maximum curvature constraint and the path must be traversed forwards. In [40], Dubins 

proved that these optimal paths can be constructed by utilizing simple architectures involving 

combinations of straight line segments and arcs of maximum curvature. Later extensions of these paths 

included additional constraints or variations, namely backwards motion being incorporated into what are 

known as Reeds-Shepp curves [41]. Since their introduction, Dubins Paths have been used for their 

optimality in a wide variety of unmanned applications, including aerial vehicles [42-44], ground rovers [45-

47], water surface vehicles [48], and underwater vehicles [49]. 

In this work, the inputs into the Dubins Path construction algorithms include the aircraft position in the 

north-east local frame, P1  =  {P1𝑁, P1𝐸}, the aircraft heading angle (ψ1), the position of the starting point 

of the flight line, P2  =  {P2𝑁, P2𝐸}, the heading angle of the flight line (ψ2), and the minimum turning 

radius of the aircraft (𝑅𝑀𝑖𝑛). This minimum turning radius can be calculated using the inertial ground 

speed Vg and the maximum bank angle 𝜙Max, as shown in Equation 2.5. These inputs are shown in Figure 

7 in an example scenario for an approach onto a flight line. As will be demonstrated in Section 2.2.2., the 
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optimal path for this scenario can be determined by constructing a series of candidate paths from 

predefined architectures and choosing the shortest existing solution. 

𝑅𝑀𝑖𝑛 =
𝑉𝐺

𝑔 tan𝜙𝑀𝑎𝑥
              Eq. 2.5 

 

Figure 7: Dubins Path Example Scenario 

2.2.2   Dubins Path Architectures  

The distance-optimal path along which the aircraft can approach flight lines will consist of one of six 

predefined architectures outlined in this section. These architectures can be constructed using unique 

combinations of line segments and arcs of the minimum turning radius in either the clockwise (CW) or 

counter-clockwise directions (CCW). More commonplace terminology can be substituted that denotes 

line segments as straight (S), clockwise maneuvers as right-hand turns (R), and counter-clockwise 

maneuvers as left-hand turns (L) [50].  
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The first Dubins Path architecture consists of a clockwise arc, which exits on a tangential line segment, 

and enters onto another clockwise arc. This path is also referred to as an “RSR” architecture. The initial 

and terminal arcs lie on circles 𝐶1 and 𝐶2, respectively, which are of radii 𝑅𝑀𝑖𝑛. The center locations for 

𝐶1 and 𝐶2 can be determined by projecting points 𝑃1 and 𝑃2 a distance  𝑅𝑀𝑖𝑛 in the direction 90° clockwise 

from their respective headings, shown below in Equations 2.6 and 2.7. The heading of the tangent line 

between the arcs can be determined as parallel to the heading between the circle centers, due to their 

common radii, as shown in Equation 2.8. The length of this path can then easily be calculated by summing 

the length of the arc segments and the length of the tangent line, shown in Equation 2.9, where the Ѡ   0
2𝜋 

function denotes a wrapping function of the angle between 0 and 2π. Note that this path architecture 

exists for all scenarios, as the atan2 function in Equation 2.8 is valid across the domain for circles 𝐶1 and 

𝐶2. An example scenario for a Dubins Path of architecture “Type 1” is shown in Figure 8.  

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 +

𝜋

2
)⟩         Eq. 2.6 

𝐶2 = 𝑃2 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓2 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓2 +

𝜋

2
)⟩         Eq. 2.7 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)    Eq. 2.8 

𝐿1 = ‖𝐶2 − 𝐶1‖ + 𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓12 –  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓1 –  
𝜋

2
}⟩ 

+ 𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓2 −  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓12 −  
𝜋

2
}⟩                        Eq. 2.9 
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Figure 8: Dubins Path Architecture Type 1 (RSR) Example 

Similarly, a “Type 2” architecture consists of a counter-clockwise arc, which exits on a tangential line 

segment, and enters onto another counter-clockwise arc. This path is also referred to as an “LSL” 

architecture. Similar inputs and notation as in Type 1 are used in construction, except for the circles 𝐶1 

and 𝐶2 being positioned in the direction 90° counter-clockwise from the initial and terminal headings 

(Equations 2.10 and 2.11). Similar logic to the previous architecture is used to compute the tangent 

heading (Equation 2.12) and the total length of the path (Equation 2.13). Note that this path architecture 

exists for all scenarios, as the atan2 function in Equation 2.12 is valid across the domain for circles 𝐶1 and 

𝐶2. An example scenario for a Dubins Path of architecture Type 2 is shown in Figure 9. 

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 −

𝜋

2
)⟩         Eq. 2.10 

𝐶2 = 𝑃2 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓2 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓2 −

𝜋

2
)⟩         Eq. 2.11 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)    Eq. 2.12 
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𝐿2 = ‖𝐶2 − 𝐶1‖ + 𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓1 +  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓12 +  
𝜋

2
}⟩ 

+ 𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓12 +  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓2 +  
𝜋

2
}⟩                        Eq. 2.13 

 

Figure 9: Dubins Path Architecture Type 2 (LSL) Example 

The Dubins Path “Type 3” architecture involves a clockwise circle, which exits on a tangential line segment, 

and enters onto a counter-clockwise arc. This architecture is also referred to as an “RSL” architecture. 

Circles  𝐶1 and 𝐶2 are constructed according to their respective arc orientations, as shown in Equations 

2.14 and 2.15. The heading of the tangent line between the circles can be determine by using the heading 

between the centers (𝜓12) and trigonometric relations between the radii and the distance between the 

centers (𝐶12), as shown in Equations 2.16, 2.17, and 2.18. The total length of the path can then be 

calculated by summing the length of the tangent line (determined from trigonometric relations between 

the radii and the distance between the centers) and the length of the arcs, shown in Equation 2.19. Note 

that this Type 3 architecture does not exist for conditions where the distance between circles 𝐶1 and 𝐶2 
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is smaller than twice the radius 𝑅𝑀𝑖𝑛, as Equation 2.18 would produce an imaginary result, or rather, the 

circles 𝐶1 and 𝐶2 would overlap and an inner tangent between the circles would not exist. This existence 

criteria is shown below in Equation 2.20. An example scenario for a Dubins Path of architecture Type 3 is 

shown in Figure 10. 

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 +

𝜋

2
)⟩         Eq. 2.14 

𝐶2 = 𝑃2 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓2 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓2 −

𝜋

2
)⟩         Eq. 2.15 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)            Eq. 2.16 

𝐶12 = ‖𝐶2 − 𝐶1‖             Eq. 2.17 

𝜓𝑇𝑎𝑛 = 𝜓12 +  𝑠𝑖𝑛−1 (
2𝑅

𝐶12
)               Eq. 2.18 

𝐿3 = √𝐶12
2  − 4𝑅2 + 𝑅Ѡ   0

2𝜋 ⟨Ѡ   0
2𝜋 {𝜓𝑇𝑎𝑛 −  

𝜋

2
} −Ѡ   0

2𝜋 {𝜓1 −  
𝜋

2
}⟩ 

+𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓𝑇𝑎𝑛 +  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓2 +  
𝜋

2
}⟩         Eq. 2.19 

𝐿3 𝐷𝑁𝐸 𝑖𝑓 (𝐶12 <  2𝑅)                        Eq. 2.20 
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Figure 10: Dubins Path Architecture Type 3 (RSL) Example 

The Dubins Path “Type 4” architecture involves a counter-clockwise circle, which exits on a tangential line 

segment, and enters onto a clockwise arc. This architecture is also referred to as an “LSR” architecture. 

Circles  𝐶1 and 𝐶2 are constructed according to their respective arc orientations, as shown in Equations 

2.21 and 2.22. The heading of the tangent line between the circles, the total length of the path, and the 

existence criteria of Type 4 can be determine using similar trigonometric relations with Type 3 but 

modified for the respective orientations of the circles, shown below in Equations 2.23-2.27. An example 

scenario for a Dubins Path of architecture Type 4 is shown in Figure 11. 

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 −

𝜋

2
)⟩         Eq. 2.21 

𝐶2 = 𝑃2 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓2 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓2 +

𝜋

2
)⟩         Eq. 2.22 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)            Eq. 2.23 
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𝐶12 = ‖𝐶2 − 𝐶1‖                  Eq. 2.24 

𝜓𝑇𝑎𝑛 = 𝜓12 −  𝑠𝑖𝑛−1 (
2𝑅

𝐶12
)               Eq. 2.25 

𝐿4 = √𝐶12
2  − 4𝑅2 + 𝑅Ѡ   0

2𝜋 ⟨Ѡ   0
2𝜋 {𝜓1 +  

𝜋

2
} −Ѡ   0

2𝜋 {𝜓𝑇𝑎𝑛 +  
𝜋

2
}⟩ 

+𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓2 −  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓𝑇𝑎𝑛 −  
𝜋

2
}⟩                     Eq. 2.26 

𝐿4 𝐷𝑁𝐸 𝑖𝑓 (𝐶12 <  2𝑅)                           Eq. 2.27 

 

Figure 11:  Dubins Path Architecture Type 4 (LSR) Example 

The Dubins Path “Type 5” architecture involves three arc segments, beginning with a counter-clockwise 

circle, transitioning onto a clockwise circle, then back onto a counter-clockwise circle that has a tangent 

intersecting with the start of the flight line. This architecture is also referred to as an “LRL” architecture, 

and can be utilized for tight maneuvers between closely-spaced flight lines, as is common in polar research 

applications (Section 1.4.2 and Section 2.1). Circles 𝐶1 and 𝐶2 are constructed according to their CCW 
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orientations, as shown in Equations 2.28 and 2.29, while circle 𝐶3 is positioned an equal distance 2R from 

circles 𝐶1 and 𝐶2, using methods given below in Equations 2.30-2.33. The length of the path is then 

determined by a summation of the three arc lengths, shown in Equation 2.34. Note that path Type 5 does 

not exist if distance between circles 𝐶1 and 𝐶2 is greater than four times the radius 𝑅𝑀𝑖𝑛, as it would 

violate the domain of the inverse cosine function in Equation 2.32, or rather, it would not be possible to 

intersect the two circles with a third circle of the similar radius. A larger circle could be used to complete 

the architecture, but this would not result in an optimal path. This existence criteria is shown below in 

Equation 2.35. An example scenario for a Dubins Path of architecture Type 5 is shown in Figure 12. 

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 −

𝜋

2
)⟩         Eq. 2.28 

𝐶2 = 𝑃2 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓2 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓2 −

𝜋

2
)⟩         Eq. 2.29 

ψ12 = 𝑎𝑡𝑎𝑛2 (
C2E−C1E

C2N−C1N
)                Eq. 2.30 

𝐶12 = ‖𝐶2 − 𝐶1‖          Eq. 2.31 

ψ13 =  ψ12 −  cos−1 (
C12

4R
)                   Eq. 2.32 

C3 = C1 + 2R〈cos(ψ13) ,  sin(ψ13)〉                      Eq. 2.33 

L5 = R(

|Ѡ   0
2π{𝑎𝑡𝑎𝑛2(P1 − C1) −  𝑎𝑡𝑎𝑛2(C3 − C1) }|

 + |Ѡ   0
2π{𝑎𝑡𝑎𝑛2(C2 − C3) −  𝑎𝑡𝑎𝑛2(C1 − C3) }|

+ |Ѡ   0
2π{𝑎𝑡𝑎𝑛2(C3 − C2) −  𝑎𝑡𝑎𝑛2(P2 − C2) }|

)             Eq. 2.34 

𝐿5 𝐷𝑁𝐸 𝑖𝑓 (𝐶12 <  4𝑅)                          Eq. 2.35 
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Figure 12: Dubins Path Architecture Type 5 (LRL) Example 

Finally, the Dubins Path “Type 6” architecture involves three arc segments, beginning with a clockwise 

circle, transitioning onto a counter-clockwise circle, then back onto a clockwise circle that has a tangent 

intersecting with the start of the flight line. This architecture is also referred to as an “RLR” architecture, 

and can similarly be utilized for tight maneuvers between closely-spaced flight lines. Circles 𝐶1 and 𝐶2 are 

constructed according to their CW orientations, as shown in Equations 2.36 and 2.37. Circle 𝐶3 is 

constructed in Equations 2.38-2.41 using similar methods used for Type 5, although the directions are 

modified for the respective circle orientations. The length for the total path is again the summation of the 

three arc lengths composing the path (Equation 2.42), and similar existence criterion to Type 5 is defined 

in Equation 2.43. An example scenario for a Dubins Path of architecture Type 6 is shown in Figure 13. 

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 +

𝜋

2
)⟩         Eq. 2.36 

𝐶2 = 𝑃2 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓2 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓2 +

𝜋

2
)⟩         Eq. 2.37 
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ψ12 = 𝑎𝑡𝑎𝑛2 (
C2E−C1E

C2N−C1N
)                Eq. 2.38 

𝐶12 = ‖𝐶2 − 𝐶1‖          Eq. 2.39 

ψ13 =  ψ12 +  cos−1 (
C12

4R
)                Eq. 2.40 

C3 = C1 + 2R〈cos(ψ13) ,  sin(ψ13)〉                  Eq. 2.41 

L6 = R(

|Ѡ   0
2π{𝑎𝑡𝑎𝑛2(C3 − C1) −  𝑎𝑡𝑎𝑛2(P1 − C1) }| +

 |Ѡ   0
2π{𝑎𝑡𝑎𝑛2(C1 − C3) −  𝑎𝑡𝑎𝑛2(C2 − C3) }|

+ |Ѡ   0
2π{𝑎𝑡𝑎𝑛2(𝑃2 − C2) −  𝑎𝑡𝑎𝑛2(C3 − C2) }|

)         Eq. 2.42 

𝐿6 𝐷𝑁𝐸 𝑖𝑓 (𝐶12 <  4𝑅)                        Eq. 2.43 

 

Figure 13: Dubins Path Architecture Type 6 (RLR) Example 

Following construction of all Dubins path candidates, the optimal path can be determined by selecting the 

minimum length path from the existing candidates, as shown in Equation 2.44. Note that non-existent 

paths architectures would be removed from the array of valid candidate paths. An example scenario for 
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P1  =  {0,0}, ψ1 = 0, P2  =  {50,550}, ψ2 =
𝜋

2
, and 𝑅𝑀𝑖𝑛 = 200, is given below in Figure 14, where each 

of the path architectures are generated. Note that this example is a rare situation in which all six paths 

exist. Table 1 shows the lengths of each of these candidate paths, where it can be seen that Path 3 is the 

optimal choice. 

 

Figure 14: Dubins Example Scenario - All Candidate Paths 
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𝐿𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑚𝑖𝑛{𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝐿6}    Eq. 2.44 

Table 1: Dubins Example Scenario - All Candidate Path Lengths 

Path Type Path 1 

(RSR) 

Path 2 

(LSL) 

Path 3 

(RSL) 

Path 4 

(LSR) 

Path 5 

(LRL) 

Path 6 

(RLR) 

Total Distance (feet) 1,952 2,989 702 1,736 1,065 2,431 

 

2.2.3   Home Loiter Modifications 

As mission operations for fixed-wing aircraft typically involve the use of a “home loiter” circle near the 

takeoff/landing area, the entrance into these loiters ideally should also follow an optimal path in order to 

increase operational efficiency. These optimal paths can be constructed via a simple modification of the 

Dubins path algorithms provided previously. Shown in an example below in Figure 15, this problem 

involves creating an optimal path from the aircraft position (P1  =  {P1𝑁, P1𝐸}) and heading (ψ1) that 

merges onto a circle centered around coordinate P2  =  {P2𝑁, P2𝐸}, which radius 𝑅𝑀𝑖𝑛, where the 

curvature of the path is also kinematically constrained by the aircraft minimum turning radius. 
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Figure 15: Dubins Home – Example Scenario 

The Type 1 architecture for Dubins Paths introduced earlier can be modified for this application, by simply 

replacing circle center 𝐶2 with the desired loiter center 𝑃2. This architecture utilizes a clockwise arc, 

tangents onto a line segment, and then begins to loiter around point 𝑃2 in a clockwise direction. The 

equations for constructing this path are shown below in Equations 2.45-2.49, where 𝜃1 indicates the angle 

of the required arc around circle 𝐶1, which will be used in the path selection criteria. This criteria is 

selected in order to prioritize smooth transitions onto the loiter circle during flight operations. Note that 

this Type 1 architecture exists for all scenarios. 

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 +

𝜋

2
)⟩         Eq. 2.45 

𝐶2 = 𝑃2                Eq. 2.46 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)     Eq. 2.47 
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𝐿1 = ‖𝐶2 − 𝐶1‖ + 𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓12 –  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓1 –  
𝜋

2
}⟩       Eq. 2.48 

  𝜃1 = Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓12 –  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓1 –  
𝜋

2
}⟩           Eq. 2.49 

The Type 2 architecture for Dubins Paths can be similarly modified, as shown below in Equations 2.50-

2.54. This architecture utilizes a counter-clockwise arc, tangents onto a line segment, and then begins to 

loiter around point 𝑃2 in a counter-clockwise direction. Note that this Type 2 architecture exists for all 

scenarios. 

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 −

𝜋

2
)⟩         Eq. 2.50 

𝐶2 = 𝑃2               Eq. 2.51 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)       Eq. 2.52 

𝐿2 = ‖𝐶2 − 𝐶1‖ + 𝑅Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓1 +  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓12 +  
𝜋

2
}⟩         Eq. 2.53 

  𝜃2 = Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓1 +  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓12 +  
𝜋

2
}⟩           Eq. 2.54 

Similarly, the Type 3 architecture for Dubins Paths can be similarly modified, as shown below in Equations 

2.55-2.62. This architecture utilizes a clockwise arc, tangents onto a line segment, and then begins to loiter 

around point 𝑃2 in a counter-clockwise direction. Note that this Type 3 architecture does not exists for 

scenarios in which the distance between the circles 𝐶1 and 𝐶2 is greater than twice the radius 𝑅𝑀𝑖𝑛.  

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 +
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 +

𝜋

2
)⟩         Eq. 2.55 

𝐶2 = 𝑃2                  Eq. 2.56 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)            Eq. 2.57 
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𝐶12 = ‖𝐶2 − 𝐶1‖             Eq. 2.58 

𝜓𝑇𝑎𝑛 = 𝜓12 +  𝑠𝑖𝑛−1 (
2𝑅

𝐶12
)                   Eq. 2.59 

𝐿3 = √𝐶12
2  − 4𝑅2 + 𝑅Ѡ   0

2𝜋 ⟨Ѡ   0
2𝜋 {𝜓𝑇𝑎𝑛 −  

𝜋

2
} −Ѡ   0

2𝜋 {𝜓1 −  
𝜋

2
}⟩            Eq. 2.60 

𝜃3 = Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓𝑇𝑎𝑛 −  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓1 −  
𝜋

2
}⟩              Eq. 2.61 

𝐿3, 𝜃3 𝐷𝑁𝐸 𝑖𝑓 (𝐶12 <  2𝑅)                           Eq. 2.62 

Finally, the Type 4 architecture for Dubins Paths can be similarly modified, as shown below in Equations 

2.63-2.70. This architecture utilizes a counter-clockwise arc, tangents onto a line segment, and then begins 

to loiter around point 𝑃2 in a clockwise direction. Note that this Type 4 architecture does not exists for 

scenarios in which the distance between the circles 𝐶1 and 𝐶2 is greater than twice the radius 𝑅𝑀𝑖𝑛.  

𝐶1 = 𝑃1 + 𝑅 ⟨𝑐𝑜𝑠 (𝜓1 −
𝜋

2
) ,  𝑠𝑖𝑛 (𝜓1 −

𝜋

2
)⟩           Eq. 2.63 

𝐶2 = 𝑃2                 Eq. 2.64 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)             Eq. 2.65 

𝐶12 = ‖𝐶2 − 𝐶1‖          Eq. 2.66 

𝜓𝑇𝑎𝑛 = 𝜓12 −  𝑠𝑖𝑛−1 (
2𝑅

𝐶12
)                 Eq. 2.67 

𝐿4 = √𝐶12
2  − 4𝑅2 + 𝑅Ѡ   0

2𝜋 ⟨Ѡ   0
2𝜋 {𝜓1 +  

𝜋

2
} −Ѡ   0

2𝜋 {𝜓𝑇𝑎𝑛 +  
𝜋

2
}⟩          Eq. 2.68 

𝜃4 = Ѡ   0
2𝜋 ⟨Ѡ   0

2𝜋 {𝜓1 +  
𝜋

2
} −Ѡ   0

2𝜋 {𝜓𝑇𝑎𝑛 +  
𝜋

2
}⟩                   Eq. 2.69 

𝐿4, 𝜃4 𝐷𝑁𝐸 𝑖𝑓 (𝐶12 <  2𝑅)                       Eq. 2.70 
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While it is possible to generate Dubins Paths of architecture Types 5 and 6 for entering onto a home loiter 

circle, the paths would never be an optimal choice as unless there is a required entrance point and loiter 

direction, which does not apply to this application, and as such is not demonstrated here. 

An example is given below in Figure 16 in which an aircraft at location P1  =  {500,0} and heading ψ1 = 0  

must enter into a loiter about position P2  =  {100,400} with radius 𝑅𝑀𝑖𝑛 = 200. Note that this is a unique 

scenario in which Types 1-4 all exist. Table 2 displays the resulting lengths and arcs for each of the paths, 

and Equation 2.71 shows that the criteria for selecting the optimal path in this work is not the minimal 

length path, but the path requiring the least angular arc of circle C1. This prevents unnecessary maneuvers 

in flight operations and smoother transitions into the loiter. Note that in this example, while Type 3 is the 

minimal length path, Type 1 requires less angular tracking of circle C1, and is thus our optimal path choice. 

 

Figure 16: Dubins Home Example - Candidate Paths 
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Table 2: Dubins Home Example Analysis 

Path Type 1 2 3 4 

Length of Path (L), feet 983 1,546 957 1,543 

Arc 1 Angle (𝜃1), degrees 153 236 216 270 

 

𝜃𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑚𝑖𝑛{𝜃1, 𝜃2, 𝜃3, 𝜃4}     Eq. 2.71 

However, in some operations it may be desirable to loiter around a location at a radius not necessarily 

equal to the minimum turning radius of the aircraft. Namely for this application, it may be desirable to 

transition onto and between flight lines using the minimum turning radius 𝑅𝑀𝑖𝑛, but to use a larger radius 

for the home loiter in order to reduce the required steady state bank angle during the loiter. Similar 

procedure as before can be used for the Dubins Paths onto the loiters, however the calculation for the 

tangent heading between the circles 𝐶1 and 𝐶2 needs to be determined using Direct Common Tangents 

(for Types 1 and 2) and Transverse Common Tangents (for Types 3 and 4).  

Direct common tangents between two circles of unique radii can be determine by first determining the 

so called “Focus Point” of the circles, via Equation 2.72. Figure 17 shows an example of direct common 

tangents, where the focus point 𝐹𝑃 can be used to determine the tangent headings (shown in green) of 

segments 𝐴1𝐴2 (for Type 1) or 𝐵1𝐵2 (for Type 2) architectures if the radius of the home loiter location is 

larger than the minimum turning radius of the aircraft. The tangent headings can be determined using 

Equation 2.73 (with sign depending on Type 1/2 architectures), and similar procedure as before can be 

used to determine the lengths of the paths and the required angular arcs around circle 𝐶1. Note that these 

paths will exist in all scenarios in which the smaller circle is not fully encompassed inside of the larger 

circle. 
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𝐹𝑃 = {
𝐶2𝑅1− 𝐶1𝑅2

𝑅1−𝑅2
}     Eq. 2.72 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)+ −⁄  𝑠𝑖𝑛−1 (

𝑅1

|𝐶1−𝐹𝑃|
)           Eq. 2.73 

 

Figure 17: Direct Common Tangents 

Similarly, Dubins Paths Types 3 and 4 can be constructed for arbitrary radii using transverse common 

tangents, as shown in Figure 18. The location of the focus point can be determined using Equation 2.74, 

while the heading of the tangent line can be determined using Equation 2.75 (with sign depending on 

Type 3/4 architectures). Note that the existence criteria for Types 3 and 4 are a function of radii 𝑅1 and 

𝑅2, as shown in Equation 2.76. 

𝐹𝑃 = {
𝐶2𝑅1+ 𝐶1𝑅2

𝑅1+𝑅2
}     Eq. 2.74 

𝜓12 = 𝑎𝑡𝑎𝑛2 (
𝐶2𝐸−𝐶1𝐸

𝐶2𝑁−𝐶1𝑁
)+ −⁄  𝑠𝑖𝑛−1 (

𝑅2

|𝐶2−𝐹𝑃|
)           Eq. 2.75 
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𝐿3,4, 𝜃3,4 𝐷𝑁𝐸 𝑖𝑓 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝐶12 < (𝑅1 + 𝑅2)           Eq. 2.76 

 

Figure 18: Transverse Common Tangents 

Once all possible paths are constructed using this methodology for  arbitrary radii, similar criteria as before 

is used to determine the optimal path for the aircraft to follow onto the loiter circle. 

2.3 TSP Heuristics 

Intelligent route planning through the desired survey flight lines can be used to significantly increase 

mission efficiency for polar research operations. The order in which the flight lines are traversed can 

directly determine the required operational time, and therefore an optimal path through the flight lines 

is desired. However, conventional mentions for these missions simply consist of a pre-planned route 

determined by the human operators based on personal intuition, limiting the efficiency of the routes with 

respect to more optimal solutions. Solving for more efficient paths using automated methods could help 

further reduce operator workload to simply selecting the desired flight lines along the glacier for which 
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data collection is desirable. The automated routing methods developed in this work can be utilized to run 

offline prior to the mission deployment and hard-coded into fixed, ordered waypoints for a COTS autopilot 

systems. However, in this work these routing algorithms are utilized onboard the aircraft in real-time to 

provide the capabilities for intelligent mission re-planning in order to adapt to changing mission elements. 

2.3.1   Traveling Salesman Problem 

The optimal mission route can be determined by finding the order in which to survey the flight lines that 

results in the shortest length path. However, determining this order introduces one of the most well-

known and extensively studied transportation problems, known as the “Traveling Salesman Problem” 

(TSP). In this problem, a salesman must travel to each of a list of “N” number of cities exactly once and 

must do so by taking the shortest path [51,52]. The naïve solution to this problem is to simply generate 

every possible permutation of the N cities and to find the route with the shortest distance. However, this 

strategy quickly becomes impractical for anything more than a handful of cities, as the total possible 

permutations to search grows rapidly as the factorial of N. For this reason, TSP is categorized as a 

combinational optimization problem with an NP-hard complexity, denoting that a truly optimal solution 

cannot be computed in polynomial time. However, mathematicians have devised many heuristics that can 

be utilized to quickly obtain approximate solutions to the global optimal. As the performance of these 

heuristics typically depends on their computational run times, this work will apply several different 

heuristics and analyze the tradeoffs between their results and required run times, and assess their 

suitability for real time UAS applications.  

The traditional TSP problem can be solved by viewing the list of cities as a complete, edge-weighted graph, 

G = {V,E}, where the vertices are the city locations and the edges correspond to roads connecting the 

cities. The weighting applied to each edge in the graph can directly correspond to the distance of the road 

between the respective cities, denoting the “cost” of traveling between the respective cities. The optimal 
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solution of the TSP can then be reduced to finding the minimum length Hamiltonian path through the 

graph, along which each vertex is visited exactly once.  

However, several modifications are made in this work in order to account for the differences between 

traditional TSP (involving distinct locations to travel to) and polar research applications (involving flight 

lines to survey). The cities populating the vertices of the graph are replaced by the series of waypoint pairs 

constructing the desired flight lines 𝑉 = {𝑊11,𝑊12… ,𝑊𝑁1,𝑊𝑁2}, where the first subscript represents the 

line number, and the seconds subscript represents the ordered pair. Each of these individual waypoints 

can be described by a North and East component: 𝑊𝑖 = {𝑊𝑖𝑁 ,𝑊𝑖𝐸}. The edge weightings between these 

waypoints is determined by calculating the length of the Dubins Path (see Section 2.2) between the 

respective waypoints, with initial and terminal headings corresponding to their respective flight line 

headings. As shown in Equation 2.76, the edge cost 𝐸𝑖𝑗  from 𝑊𝑖 to 𝑊𝑗 is calculated using the length of the 

Dubins Path 𝐷𝑖𝑗 resulting from 𝑊𝑖 to 𝑊𝑗, with initial heading exiting the flight line corresponding to 𝑊𝑖, 

and terminal heading entering onto the flight line corresponding to 𝑊𝑗. If however, 𝑊𝑖 and 𝑊𝑗 are pairs 

constructing a similar flight line, the edge cost is set to zero in order to constrain the route to incorporate 

the end-to-end flight line surveys. That is, graph exploration traverses onto a new waypoint vertex, its 

next immediate vertex is constrained to be the other waypoint in the pair constructing the flight line. Note 

that for a series of “N” flight lines, there will be 2N waypoints in the graph, and by including this waypoint-

pair constraint, the total number of possible permutations for the waypoint orderings is on the order of 

2𝑁(𝑁!). A final constraint is imposed that the route must begin at the current aircraft location and finish 

at the home waypoint, both are which are treated as an initial and terminal vertex in the graph. 

𝐸𝑖𝑗 = 𝐷𝑖𝑗              Eq. 2.76 
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2.3.2   Heuristics 

Researchers have applied many methods towards solving TSP problems, including both exact and 

approximate methods. While still taking considerable amounts of computational time, exact methods 

such as the Held-Karp algorithm [53] have been shown to solve the TSP problem with a computational 

complexity of O(n22n), which is a vast improvement from O(N!), but still considerably long for relatively 

large N. On the other hand, approximate methods, or heuristics, have been shown to quickly produce 

near-optimal solutions suitable from an engineering standpoint. These heuristics include dynamic 

programming, genetic algorithms, neural networks, tabu search, and simulated annealing, among many 

others [54-56]. 

Approximate methods for solving TSP can be further divided into two sub-categories with various benefits 

and drawbacks: Deterministic and Stochastic methods. Deterministic methods can be used to quickly and 

reliably produce repeatable solutions to the problem, producing a “good” estimate of the optimal solution 

in a reasonable computational time. However, the performance of a deterministic method can be 

constrained by their respective search methods getting trapped in local optima. On the other hand, 

stochastic methods utilize probabilistic search methods and random exploration in order to extensively 

explore the search space. These methods have the potential to find better solutions than deterministic 

methods, although they generally have longer computational run times, and do not guarantee a “good” 

solution as an end-result. However, utilizing both method types in parallel could result in achieving an 

acceptable baseline solution from the deterministic method while also possibly finding an even better 

solution from the stochastic method. In this work, two variations of Greedy heuristics have been 

implemented in order to quickly obtain baseline deterministic TSP solutions, while Ant Colony 

Optimization is utilized for its stochastic exploration potential. 
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2.3.3   Forward Greedy Heuristic 

The first heuristic utilized in this work is a Forward Greedy method, which will be used for its simplicity, 

reliability, and quick computation runtime. This heuristic will utilize “greedy” methods, in which the local 

optima is iteratively chosen in order to approximate the global optima. This heuristic begins at the current 

aircraft position, and iteratively adds the nearest flight line to create the route. Note that this method is 

also referred to as the “nearest-neighbor” heuristic in traditional TSP methods, where it is likewise used 

as a benchmark to describe the relative performance improvements that can be obtained by more 

complex and computationally costly methods. The pseudocode for the Forward Greedy heuristic is given 

below. 

Forward-Greedy Pseudocode: 

Initialize Route at the Current UAS Location 

While Flight Lines Remaining 

Select Closest Flight Line 

Update Route Order 

Update UAS position 

Update Remaining Flight Lines 

End While 

Return Route Order 

2.3.4   Global Greedy Heuristic 

The second heuristic utilized in this work is referred to as the Global Greedy method, in which greedy 

methods are utilized with several different initial conditions in order to generate candidate routes. The 

Global Greedy method begins a candidate route at each of the flight lines in the graph, iteratively 

connecting the closest vertices to its endpoints until a route is created through the flight lines. 

Additionally, the Forward Greedy method is utilized to create a candidate route. The final candidate route 

is created using a Backwards Greedy method, which begins at the home loiter and routes through the 
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flight lines and back to the aircraft initial position using greedy methods. The Global Greedy algorithm 

then uses the shortest of these (N+2) candidate routes for N flight lines. While more computational 

expensive than the Forward Greedy method, the Global Greedy method is used in this work to achieve 

improved results, as different local optima are discovered using different initial conditions for the greedy 

algorithms. The pseudocode for the Global Greedy heuristic is given below. 

Global-Greedy Pseudocode 

Perform Forward-Greedy Algorithm 

for i = 1:N_Flight_Lines 

Initialize Candidate Route at Flight Line i 

While Flight Lines Remaining 

Select Closest Flight Line to Current Route 

Update Candidate Route Order 

Update Remaining Flight Lines 

End While 

Store Candidate Route 

End for 

Perform Backwards-Greedy Algorithm 

Return Minimum Length Route from Candidate Routes 

2.3.5   Ant Colony Optimization 

The third and final heuristic used in this work is Ant Colony Optimization (ACO), which is a biologically-

inspired approach that utilizes virtual “ants” that stochastically explore the graph based on “pheromone” 

levels along edges [57-60]. These pheromones levels affect the probability that the ant will choose the 

respective edge between the vertices. Initial pheromone levels can be either constructed as uniform, or 

initialized as the inverse of the Dubins path lengths between the respective edges, as in Equation 2.77. 

Note that this method initially creates higher pheromones along the shorter routes, aiding the ants in the 

initial generations of graph exploration. Following an iteration of ant exploration through the graph, the 
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performance of the resulting route is used to update the pheromone levels along the edges that were 

chosen, as shown in Equation 2.78, where 𝐿𝑘 is the length of the current ant’s route and 𝐿∗ is the current 

best overall route discovered. Future generations of ants will then have a higher likelihood of exploring 

shorter routes, and after many generations of ant exploration, efficient routes can be determined from 

very complex graphs. Tuning parameters for ACO include a pheromone reinforcement factor Q and a 

pheromone decay rate ρ, which is used to prevent the excess buildup of pheromones that could 

wrongfully constrain the exploration onto a single path (Equation 2.79). The benefit of ACO is that through 

its probabilistic searching, optimal routes that seem counter-intuitive can be discovered. However, as 

mentioned in Section 2.3.2, this stochastic method does not guarantee a “good” solution, and typically 

requires much longer computational time and tuning in order to provide better results than the greedy 

methods. The pseudocode used for ACO is given below.  

𝜎𝑖𝑗 =  
1

𝐷𝑖𝑗
             Eq. 2.77 

𝜎𝑖𝑗 = 𝜎𝑖𝑗 + 𝑄 ∗
𝐿∗

𝐿𝑘
     Eq. 2.78 

𝜎𝑖𝑗 = 𝜎𝑖𝑗 ∗ (1 − 𝜌)      Eq. 2.79 

Ant Colony Optimization Pseudocode 

Initialize Pheromones Levels 

For i = 1:N_generations 

For j = 1:N_ants 

 Initialize ant 

 Perform stochastic ant exploration of graph 

 Determine route length 

End For 

Update pheromones along route based on ant route length 

Apply pheromone decay factor to entire graph 
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End For 

Return Route with minimum length 

2.4 Fuel-Constrained Route Planning 

In order to improve mission reliability for over-the-horizon polar research missions, the real-time routing 

algorithms in this work have been modified to take into account vehicle range constraints, ensuring that 

the aircraft can safely return to the home loiter location before running out of fuel. In the event that a 

mission planned for the vehicle cannot feasibly accomplished due to aircraft range limitations, the 

onboard autonomy should determine what alternative actions to take. In this case, the autonomy will 

decide which of the flights lines can be feasibly surveyed and what order in which to do so. This capability 

both provides a safety net for mission planning operators, as well as could reduce mission planning 

workload altogether by simply inputting all the desired flight lines for a large glacial area and having the 

aircraft iteratively survey them over a series of flights. However, it should be noted that the safety 

assurances in a practical application of these methods is directly correlated with the accuracy of an 

onboard real-time range estimator. 

2.4.1   Flight Line Utility Weightings 

As the scientific value of the collected data can vary depending on the survey flight line, the relative 

importance of the flight lines should be considered when making decisions on which subset of lines to 

survey in fuel-constrained missions. To incorporate this, a “utility” weighting factor has been introduced 

into the fuel-constrained routing algorithms in this work, describing the relative desirability of the flight 

lines for data collection. This utility factor is used to augment the cost function used for the graph edges, 

as shown below in Equation 2.80, where the Dubins path length between 𝑊𝑖 and 𝑊𝑗 is divided by the 

utility for the flight line associated with 𝑊𝑗 . As the utility weighting factors are equal to or greater than 1, 

this directs graph exploration towards flight lines of higher utility via a reduction in the costs of the 
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connecting graph edges. Note that the goal of the fuel-constrained TSP algorithms used in this work is not 

to determine a feasible path that has the most flight lines, but rather to find a feasible path that captures 

the highest net utility. The feasibility of adding a flight line to a route is determined by calculating the new 

total length of the route and ensuring that it is less than the remaining range estimate. This total length is 

determined by adding the length of the Dubins path onto each of the flight lines in the route, the length 

of the flight lines themselves, and the Dubins path from the last flight line to the home loiter circle, as 

shown below in Equation 2.81. 

𝐸𝑖𝑗 = 
𝐷𝑖𝑗

𝑈𝑗
           Eq. 2.80 

𝑅𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ≥ ∑ (𝐷𝑖,𝑖−1 + 𝐿𝑖)
𝑖=𝑛
𝑖=1 + 𝐷𝐻𝑛   Eq. 2.81 

2.4.2   Fuel-Constrained Forward Greedy Heuristic 

The Forward Greedy heuristic described in Section 2.3.3 has been modified to incorporate fuel-

constrained mission routing in the pseudocode provided below. In this method, the route begins at the 

aircraft’s current location, and iteratively adds the graph edge with the lowest cost until no more flight 

lines can be feasibly added to the route without preventing the aircraft from feasibly returning to the 

home loiter circle within the remaining range constraint. 

Fuel-Constrained Forward-Greedy Pseudocode: 

Modify Graph Edges based on Flight Line Utility Weightings 

Initialize Route Order 

Initialize Route Utility 

Initialize Remaining Range 

Initialize Feasible Flight Lines 

While Flight Lines Remaining 

 Update Remaining Flight Lines based on Remaining Range 

Select Flight Line Based on Minimum Graph Edge Value 



46 
 

Update Route Order 

 Update Route Utility 

Update UAS position 

Update Remaining Range 

Update Remaining Flight Lines based on Selection 

End While 

Return Route Order 

2.4.3   Fuel-Constrained Global Greedy Heuristic 

The Global Greedy heuristic described in Section 2.3.4 has been modified to incorporate fuel-constrained 

mission routing in the pseudocode provided below. This approach creates candidate routes using greedy 

methods following the edge weighting modifications and flight line feasibility assessments, and chooses 

the candidate route with the highest net utility. Note that for two routes returning similar utility, the 

shorter of the routes is selected. As before, one candidate route is initialized at each of the respective 

flight lines, while two additional candidate routes are constructed using a Fuel-Constrained Forward 

Greedy method and a Fuel-Constrained Backwards Greedy method.  

Fuel-Constrained Global Greedy Pseudocode: 

Modify Graph Edges based on Flight Line Utility Weightings 

Perform Fuel-Constrained Forward-Greedy Algorithm 

For i = 1:N_Flight_Lines 

Initialize Candidate Route at Flight Line i 

Initialize Route Utility 

Initialize Remaining Range 

Initialize Feasible Flight Lines 

While Flight Lines Remaining 

 Update Remaining Flight Lines based on Remaining Range 

Select Flight Line Based on Minimum Graph Edge Value 

Update Candidate Route Order 
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Update Candidate Route Utility 

Update Remaining Flight Lines 

Update Remaining Range 

End While 

Store Candidate Route 

End For 

Perform Fuel-Constrained Backwards-Greedy Algorithm 

Return highest utility Route from all candidate Routes 

2.4.4   Fuel-Constrained Ant Colony Optimization 

The Ant Colony Optimization algorithms described in Section 2.3.5 have likewise been modified to 

incorporate fuel-constraints and flight line utility weightings, and the pseudocode for this fuel-constrained 

ACO method can be found below. Notable differences from the standard ACO include the modification of 

the initial pheromone levels using the flight line utility weightings (Equation 2.82), and using the total 

route utility (𝑈𝑘) to update the pheromones based on the current highest route utility achieved (𝑈∗), as 

shown in Equation 2.83. Similar decay rate is used for the pheromones (Equation 2.84). Note that the ant 

exploration through the graph is fuel-constrained by updating the feasible flight lines remaining after each 

selection. 

𝜎𝑖𝑗 =  
𝑈𝑗

𝐷𝑖𝑗
             Eq. 2.82 

𝜎𝑖𝑗 = 𝜎𝑖𝑗 + 𝑄 ∗
𝑈𝑘

𝑈∗
     Eq. 2.83 

𝜎𝑖𝑗 = 𝜎𝑖𝑗 ∗ (1 − 𝜌)      Eq. 2.84 

Fuel-Constrained Ant Colony Optimization Pseudocode 

Initialize Pheromones and Modify using Utility Weightings 

Initialize Remaining Range 

For i = 1:N_generations 



48 
 

For i = 1:N_ants 

 Perform range constrained stochastic ant exploration of graph 

 Determine overall route utility 

End For 

Update pheromones based on route utilities 

End For 

Return highest utility Route from all candidate Routes 

2.5 Multi-Agent Collaborative Surveying 

Numerous benefits can be achieved by incorporating multi-agent operations into polar research missions. 

Notably, vast glacial regions could be more rapidly surveyed if multiple vehicles are utilized to compensate 

for limited sensor footprint and vehicle range constraints. Additionally, standard operations could be 

accomplished more quickly, which is very advantageous given limited windows of opportunity in polar 

environments. From an operational cost standpoint, several smaller systems have the capability to 

significantly outperform a single larger system in terms of data collection, due to the dramatic correlation 

in unmanned vehicle cost with wingspan. Finally, the overall mission reliability is enhanced by introducing 

multiple systems into the operations, as a single system failure would not terminate the entire operational 

capabilities of the research deployment. 

However, incorporating multi-agent operations introduces increased complexity into the autonomy 

framework, namely the intelligent allocation of mission flight lines amongst the agents and integrating 

collision avoidance methods into aircraft path planning. In this section, the methodology for scalable 

multi-agent collaborative surveying will be discussed. This methodology involves a decentralized approach 

for global task assignment, in which each agent uses the information available to it about the other agents 

positions and mission statuses in order to determine the best course of action.  
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2.5.1   Hungarian Assignment 

The balanced assignment problem is a combinational optimization problem in which N agents must be 

uniquely assigned to perform N tasks in an optimal way. The assignment problem can be viewed in a 

mathematical sense as determining the matching with minimum edge weight sum of a bipartite weighted 

graph [61]. As there are (N!) number of possible assignments, determining the optimal solution using a 

brute force method is generally not practical. In this work, Hungarian Assignment methods will be used in 

order to achieve optimal assignment in real-time. 

Hungarian Assignment is a combinational optimization algorithm that can be used to solve the assignment 

problem in polynomial time, with a computational complexity of O(n3), a significant reduction from the 

general assignment problem. For this reason, Hungarian Assignment has been utilized in many 

applications for teams of unmanned systems [62-64].  

A detailed step-by-step process for the matrix manipulation required in Hungarian Assignment can be 

found in [65], and is summarized in the following example in Figure 19 for a balanced assignment, in which 

the number of available agents is equal to the number of available tasks. In this example, four unmanned 

aircraft agents A1-A4 must be optimally assigned to four flight line survey tasks T1-T4. Note that the 

aircraft are kinematically constrained by their minimum turning radius.  
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Figure 19: Balanced Hungarian Assignment - Example Scenario 

Using the minimum distance Dubins path length from each aircraft to the beginning of each flight line (See 

Section 2.2), a cost matrix of size 4x4 is formed in Figure 20, describing the cost (in units of feet) of each 

agent with each task. Note that our goal is to find the optimal matching between the agents and tasks 

resulting in the least possible sum cost of the assignments. 

 

Figure 20: Balanced Hungarian Assignment Example - Initial Cost Matrix 
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In the first step of Hungarian Assignment, the minimum value element of each row is determined, and 

this value is subtracted from its entire respective row,  as shown below in Figure 21. This will create at 

least N zeros in the matrix.  

 

Figure 21: Balanced Hungarian Assignment Example - Step 1 

Step 2 of Hungarian Assignment involves taking the resulting matrix from Step 1, and  determining the 

minimum valued element from each column, and subtracting this value from its entire respective column, 

as shown below in Figure 22. 

 

Figure 22: Balanced Hungarian Assignment Example - Step 2 

Using the resulting matrix from previous steps, Step 3 involves determining if all of the zeros in the 

resulting matrix can be covered in no less than N rows or columns. If all of the zeros can only be covered 

by N rows/columns, then one should proceed to Step 5, as an optimal assignment is possible in the matrix. 

If not, proceed to Step 4 for some additional matrix manipulation. An example of this coverage is shown 
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below in Figure 23, where it is shown that all of the zeros in this example matrix can be covered in N-1 

rows/columns.  

 

Figure 23: Balanced Hungarian Assignment Example - Step 3 

Because the matrix failed the coverage criteria in Step 3, an optimal assignment cannot yet be found. In 

Step 4, the minimum valued element is determined from the uncovered region of the rows/columns used 

in the Step 3 coverage process. Next, this value is subtracted from all the uncovered cells, as well as added 

to any intersections in the rows/columns used for the coverage. An example of this is shown below in 

Figure 24.  
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Figure 24: Balanced Hungarian Assignment Example - Step 4 

Following Step 4, the process returns to the Step 3 coverage assessment, and these matrix manipulation 

steps are iterated until an optimal assignment is determined that results in a zero sum assignment. The 

coverage assessment in Step 3 is shown below in Figure 25, where it can be seen that all zeros in the 

matrix can only be covered in N rows/columns, and therefore an optimal assignment is possible, and the 

Hungarian Assignment process can proceed to Step 5. 

 

Figure 25: Balanced Hungarian Assignment Example - Step 3 - Repeated 
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In Step 5 of the Hungarian Assignment process, an optimal assignment is determined from the matrix. 

This is achieved by determining which rows/columns contain only a single zero, and iteratively assigning 

these agents to the respective tasks. If for any reason there remains multiple zeros in all columns/rows, 

then there exists multiple solutions with a sum zero cost, all of which are optimal. An example for making 

the assignment using the matrix is shown below in Figure 26.  

 

Figure 26: Hungarian Assignment Example - Step 5 

The resulting assignment from Step 5 can then be mapped back to the initial cost matrix to produce the 

optimal assignment, as shown below in Figure 27. Note that the total sum of the costs associated with the 

optimal assignment in this example is 2,743 feet. 
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Figure 27: Hungarian Assignment Example - Mapping to Initial Cost Function 

By utilizing brute-force methods, it can be determined that the solution resulting from Hungarian 

Assignment is in fact the optimal assignment of the agents to the tasks. Figure 28 shows the total cost of 

the N! possible assignments between the four agents and the four tasks in this example, of which the 

minimum total cost is the one determined from the Hungarian Assignment process. Note that the 

assignment permutations refers to the order in which the tasks T1-T4 are assigned to the agents A1-A4. 

 

Figure 28: Optimal Assignment  - Brute Force Validation 
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The Hungarian Assignment result produced in this example is shown below in Figure 29. 

 

Figure 29: Balanced Hungarian Assignment - Example Scenario Result 

2.5.2   Unbalanced Assignment 

Hungarian Assignment inherently works for balanced assignment problems, where there is an equal 

number of agents and tasks, for which the assignment cost matrix is square. However, this is not usually 

the case during mission operations. However, the Hungarian Assignment process can be modified in order 

to incorporate unbalanced assignment problems. This is done by introducing synthetic agents or tasks in 

order to augment the cost matrix into a square matrix. The square matrix can then be subjected to the 

Hungarian Assignment steps detailed in the previous section, and the resulting assignment can be mapped 

back to the initial unbalanced matrix to produce the optimal assignment. Note that any synthetic 

agent/tasks assignments in the resulting square matrix  are simply disregarded in the final solution. The 
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unbalanced Hungarian Assignment process is detailed in this section for the example scenario shown in 

Figure 30, where an optimal assignment of four agents to three tasks must be made.  

 

Figure 30: Unbalanced Hungarian Assignment - Example Scenario 

As before, a cost matrix is formed for each agent and task using the respective minimum length Dubins 

Path from the aircraft initial conditions to the beginning of each flight line. This cost matrix (in units of 

feet) is then augmented into a square matrix by introducing a synthetic fourth agent, shown in Figure 31. 
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Figure 31: Unbalanced Hungarian Assignment - Augmenting Cost Matrix 

The resultant square matrix is then subjected to the Hungarian Assignment steps 1-5 detailed in the 

previous section. The resulting matrix and assignment is shown in Figure 32. 

 

Figure 32: Unbalanced Hungarian Assignment - Optimal Solution Selection 

The resulting assignment can then be mapped back to the initial unbalanced cost matrix, where it can be 

noted that the total sum of the costs associated with the optimal assignment in this example is 2,817 feet. 
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Figure 33: Unbalanced Hungarian Assignment - Mapping Back to Initial Cost Matrix 

Using Brute-Force methods, the total cost of every possible assignment between the four agents and the 

three flight lines can be calculated, and from these candidates in Figure 34 it can be proven that the 

assignment created using the unbalanced Hungarian Assignment is the optimal solution. Note that the 

assignment permutations refers to the order of the agents A1-A4 that is assigned to the flight lines T1-T3. 

 

Figure 34: Unbalanced Hungarian Assignment - Brute Force Validation 

The resulting optimal solution for this unbalanced assignment example is shown in Figure 35, where 

Agent 1 is simply not assigned to one of the three flight lines. 
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Figure 35: Unbalanced Hungarian Assignment  - Example Scenario Result 

Note that for scenarios in which there are a larger number of flights lines than agents, synthetic agents 

are introduced in order to develop an optimal assignment using the Hungarian Assignment methods. 

However this has the potential to create very large matrices, requiring increasing computational expense 

to determine optimal solutions. Various methods can be utilized in certain scenarios order to reduce the 

size of the assignment matrix, saving computational runtime for the assignment. The simplest of these 

methods is for scenarios in which there is a single agent/task that must be matched to multiple 

agents/tasks, in which case a cost vector can be created for the assignment and the minimum valued 

element can be used for the assignment, avoiding the Hungarian Assignment matrix processes altogether. 

More complex methods for matrix reduction involves identifying overlapping candidate assignments for 

each agent/task and eliminating other agents/tasks that would inevitably be matched with synthetic 

agents/tasks in the unbalanced Hungarian Assignment process. 
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2.5.3   Iterative Optimal Assignment 

Due to the assignment between agents and flight lines generally being unbalanced during flight 

operations, the Hungarian Assignment in this work is applied iteratively, with only the minimum cost 

selection of the optimal assignment being used in each iteration. That is, after an optimal assignment is 

determined between the number of available agents and flight lines, only the minimal cost assignment is 

actually used to assign a flight line to an agent. If the assignment is feasible based on the remaining range 

for the agent, that agent’s position, heading, initial costs, and remaining range are updated accordingly to 

that of the completed assigned flight line, and this updated information is used to perform subsequent 

Hungarian Assignment iterations. If the assignment is not feasible based on fuel constraints, the agent is 

removed from future assignment iterations. By using Hungarian Assignment iteratively in this way, an 

approximate to the global optimal assignment is selecting local optimal solutions. 

The motivation for this single-selection iteration is demonstrated in the following example shown in Figure 

36, where four agents must survey five flight lines in an optimal manner, with minimum turning radii of 

200 feet. 
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Figure 36: Iterative Hungarian Assignment - Example Scenario 

The initial assignment cost matrix for this example scenario is shown in Figure 37, as well as the optimal 

solution following the unbalanced Hungarian Assignment  processes outlined in Section 2.5.2, which 

introduces a synthetic agent A5. This optimal solution is shown in Figure 38.  

 

Figure 37: Initial Cost Matrix and Optimal Solution 
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Figure 38: First Iteration Hungarian Results 

However, only the minimum cost selection is made and applied to the agents/tasks. In this scenario, Agent 

1 (A1) is assigned to Flight Line 1 (T1), and the next iteration of Hungarian Assignment is performed using 

updated position, heading, initial cost, and remaining range for Agent 1. This instance that the next 

iteration is applied to is shown in Figure 39.  
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Figure 39: Iterative Hungarian Assignment - First Selection 

The assignment cost matrix and optimal solution for the remaining flight lines is shown in Figure 40. Note 

that the cost for Agent 1 has been updated to reflect the distance already traveled from the initial starting 

point through the survey of Flight Line 1. This cost is added to the Dubins Path length to each of the 

remaining flight lines T2-T5 in order to construct the A1 row in the cost matrix. This optimal assignment 

for the remaining lines is shown in Figure 41. Following four more iterations of Hungarian Assignment 

where only the minimum assignment is applied and the respective agent costs are updated, the resulting 

final assignment is determined. 
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Figure 40: Hungarian Assignment - 2nd Iteration Result 

 

Figure 41: Hungarian Assignment - Second Iteration Result 

However, if all four flight lines from the first iteration assignment had been used to assign flight lines to 

the agents, the resulting flight line allocation and survey operation would differ. Figure 42 shows the 

scenario in which all four assignments were applied following the first iteration of Hungarian Assignment, 

in which case a second iteration of Hungarian Assignment would only determine which of the agents 

should survey the remaining flight line T3. The cost matrix for this new scenario is shown in Figure 43, 
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where it can be seen that either Agent 1 or Agent 4 are valid optimal assignments due to the symmetric 

Dubins Path lengths. 

 

Figure 42: Multiple-Assignment applied to 1st Iteration 

 

Figure 43: Multiple-Assignment - Second Iteration Cost Matrix 

The resulting difference between single and multiple assignments per iteration of Hungarian Assignment 

can be seen in Figure 44, where ultimately the difference lies in Agent 3 being assigned flight line T3 

instead of the initially closer flight line T4, as the difference is compensated by Agent 1’s Dubins Path 
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length to the respective remaining flight line (T4 vs T3). This example highlights the motivation in this work 

to use iterative single-assignment Hungarian processes in order to better approximate the global optimal 

assignment between agents and mission flight lines. 

 

Figure 44: Single vs Multiple Assignment per Iteration 

2.5.4   Clustering Algorithms 

As mentioned in Section 2.1, many of these polar research missions consist of groups of closely spaced 

parallel flight lines. While these groups of lines are beneficial in terms of capturing more coherent and 

higher resolution imaging, increasing the number of total flight lines dramatically increases the 

computational expense of the Hungarian Assignment used for allocating the lines amongst the agents. For 

this reason, space partitioning is used on the entire flight lines set in order to subdivide them into 

“clusters”. This is accomplished by determining the headings of the individual flight lines and grouping 

closely-spaced parallel lines into clusters, defined by a centroid flight line and the number of lines in the 

cluster. Once the flight lines have been grouped into these clusters, Hungarian Assignment is used to 

allocate entire clusters amongst the agents, using the iterative assignment method described in Section 

2.5.3. Shown below in Equation 2.85, the cost function used for the clusters in the Hungarian Assignment 
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matrices can be defined as the summations of lengths of the Dubins Path onto the beginning of the 

cluster’s centroid flight line (𝐷1), the number of flight lines in the cluster (𝑁𝐹𝐿) multiplied by the total 

length of the flight lines (𝐿𝐹𝐿), and the number of times the aircraft must turn around between sweeps in 

the cluster (𝑁𝐹𝐿 − 1) multiplied by the length of the Dubins Path for this maneuver (𝐷𝑇). By doing this, 

the true “cost” of surveying the entire cluster is incorporated into the assignment problem. Note that the 

length of the Dubins Paths in the clusters are a direct function of the respective agent’s minimum turning 

radius. Using the automated flight line generation example in Section 2.1, Figure 45 shows an example of 

how using space partitioning can reduce 15 flight lines into 3 clusters, significantly reducing the complexity 

of the assignment among the agents.  

𝐽𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐷1 + 𝑁𝐹𝐿𝐿𝐹𝐿 + (𝑁𝐹𝐿 − 1)𝐷𝑇   Eq. 2.85 

 

Figure 45: Clustering Example 

Note that while the space partitioning described in this section is done to significantly reduce the 

computational complexity of the real-time multi-agent assignment, it also has several benefits for flight 

operations due to the effective separation of the agents from unique cluster assignments. For example, 

preventing the allocation of flight lines within the same cluster to multiple agents reduces the chance of 

accidental collision between aircraft while surveying the lines. This would also prevent unnecessary 
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avoidance maneuvers if collision avoidance methods are utilized, such as the Morphing Potential Fields 

described in Section 3.5. While safely avoiding collision, those methods would result in loss of coherent 

data due to the off-track positions and high bank angles required for the avoidance maneuver. 

Additionally, the onboard radar systems would conceivably receive more noise from nearby agents if 

radiating together in close proximity, so assigning entire clusters to the agents would create more 

separation between the systems and improve the data collection integrity. Finally, an entire cluster should 

ideally be surveyed by a single agent in order to prevent unknown factors from causing discrepancies in 

post-processing synthetic aperture methods.  

2.5.5   Collaborative Surveying 

The processes for the multi-agent collaborative surveying autonomy developed in this work can be 

summarized the autonomy roadmap shown in Figure 46. 

 

Figure 46: Collaborative Surveying Autonomy Roadmap 
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2.6 Multi-Agent Scheduling 

While the developed autonomy for multi-agent operations outlined in Section 2.5 has the potential to 

vastly increase the capabilities of polar research operations, considerations must be made when 

incorporating numerous, sensitive radar systems into a confined airspace. For snow accumulation radars, 

which typically radiate from 2-18 GHz, a highly directive antenna can be integrated onto the UAS platforms 

and can therefore operate in the same general area without experiencing cross-platform interference 

[66]. However, glacial sounding applications require much lower frequencies (typically below 55 MHz), 

which necessitate the use of a very long, low-directivity antenna. Given the limited available space along 

the wing planforms of small UAS, these antennas have a very wide radiation pattern and multi-agent 

operations could possibly result in cross-platform interference with a sufficiently large signal-to-noise 

ratio that would mask the desired basal returns. If this interference is above an acceptable threshold, it is 

desirable for only one UAS platform to be radiating at a single instance for these systems in order to 

ensure coherent data collection during operations. 

However, the overall efficiency of the surveying operation can be improved through intelligent flight line 

assignment and deployment scheduling of systems into the survey area [67-69]. This can be achieved 

using a similar assignment framework as outlined in Section 2.5, but only physically deploying one of the 

systems into the field at a time. The Hungarian Assignment is performed using all available agents and 

remaining mission flight lines, however only the deployed agent is assigned its respective flight lines to 

survey, while other agent await deployment. The agent performing the over-the-horizon operation will 

continue to track flight lines until the fuel constrained assignment commands the deployed agent to 

return to its respective home loiter position. When the deployed aircraft finishes its last survey line, it can 

signal the onboard radar system to cease transmitting, and the subsequent agent is immediately deployed 

to survey the remaining flight lines. The returned agent is then removed from the decentralized Hungarian 

Assignment process for flight line assignment and agent deployment scheduling.  
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By incorporating similar assignment and routing frameworks as collaborative surveying, the operating 

system is effectively making flight line assignments based on the yet-to-be-deployed agents being 

available for subsequent surveying of the remaining mission flight lines. For homogenous platforms, the 

ordering of the system deployments is arbitrary, and in this work follows sequential ordering of the unique 

agent-identifier numberings. The timing of subsequent agent deployment is made as soon as the deployed 

agent is transmitting a “return to home” status. Agents awaiting deployment should ideally be grounded 

in order to preserve fuel, but fixed-wing platforms can be placed into an autonomous loiter immediately 

prior to the return of deployed agents. However, this deployment scheduling autonomy is best suited for 

next-generation polar research VTOL platforms, which can even be actively charging while awaiting 

automated deployment. Following return from surveying operations, agents can even transfer collected 

radar data to ground station operators, clear their available storage space, and recharge for subsequent 

deployments. Depending on the number of available systems and their respective endurance and charging 

rates, these survey operations could be performed continuously while environmental factors allow. 

2.7 Multi-Agent Heterogeneous Operations 

The decentralized Hungarian Assignment processes utilized in this work can easily be modified for survey 

operations using heterogeneous unmanned systems. This is done be modifying the cost functions used 

for flight line allocation from the required distance to the required time for the agent to survey the flight 

line. The two vehicle-specific parameters driving this survey time are the vehicle ground speed and the 

minimum turning radius. As the Dubins Path length from the agent to a flight line is a direct function of 

the aircraft’s minimum turning radius, smaller, more mobile aircraft are inherently more suitable for tight 

grids. On the other hand, larger, faster aircraft are more preferable for long stretches of survey lines. By 

modifying the cost function, the Hungarian Assignment processes can be used to intelligently allocate the 

flight lines according to the agents based on these considerations. The equation used in heterogeneous 

multi-agent operations is given in Equation 2.86, where the cost function J is dependent on the Dubins 



72 
 

Path Length 𝐷𝐿 and the aircraft ground speed 𝑉𝐺. Note that this heterogeneous modification can be used 

for both collaborative survey or for scheduled deployment missions. If multi-rotor systems are integrated 

in future polar research missions, note that they no turning radius constraints, and therefore their Dubins 

Path lengths would simply consist of the linear distance to the flight line start points. 

𝐽 =  
𝐷𝐿

𝑉𝐺
,    𝑤ℎ𝑒𝑟𝑒 𝐷𝐿 = 𝑓(𝑅𝑀𝑖𝑛)     Eq. 2.86 

2.8 Robustness Towards System Failures and Communication Constraints 

The introduction of multi-agent systems inherently increases the operational capabilities of polar research 

missions at the cost of increasing the required autonomy complexity. In order to properly take advantage 

of these benefits, the developed autonomy should incorporate robustness towards foreseeable issues 

during flight operations. In this work, contingencies for onboard system failures have been incorporated 

into the onboard autonomy. 

Following the detection of onboard system failures, the malfunctioning systems have been designed to 

notify other agents, and subsequently cease flight line surveying and attempt to return to their home 

loiter. If the agent was tracking a flight line and did not complete it, the flight line is designated as 

incomplete by the other agents, and is added back to the list of remaining flight lines to survey. The 

Hungarian Assignment process is updated in order to allocate the remaining flight lines among the 

remaining agents, now that the malfunctioning agent is no longer available to aid in the flight line 

surveying. Note that the decentralized nature of the autonomy in this work is critical to this operational 

robustness.  
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Chapter 3: Autonomy Integration 

In this chapter, the methodology for integrating the developed autonomy into an autopilot system for an 

unmanned aircraft will be discussed.  

3.1 6-DoF Aircraft Equations of Motion 

In this work, nonlinear aircraft six-degree-of-freedom equations of motion are utilized for simulation 

purposes and for controller design. The stability and control derivatives used in these equations of motion 

are obtained from dynamic models developed in an aircraft modeling software known as Advanced 

Aircraft Analysis (AAA) [70] in which the aircraft is perturbed about a steady state trim, level-flight 

condition. The software uses a combination of high fidelity physics-based and semi-empirical methods 

based on vast databases of historical aircraft relations, trends, and design philosophy outlined in [71].  

The aircraft state vector is shown in Equation 3.1, and consists of the total airspeed, angle of attack, 

sideslip angle, inertial Euler angles, and the angular rates in the body frame, respectively. The control 

vector is shown in Equation 3.2, and includes throttle, elevator, aileron, and rudder deflections, 

respectively.  

𝑥 =  

[
 
 
 
 
 
 
 
 
𝑉𝑇
𝛼
𝛽
𝜑
𝜃
𝜓
𝑃
𝑄
𝑅 ]
 
 
 
 
 
 
 
 

            Eq. 3.1 

𝑢 =  [

𝛿𝑇
𝛿𝐸
𝛿𝐴
𝛿𝑅

]            Eq. 3.2 
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In this work, servo dynamics are modeled using first order delays between the previous control states and 

commanded values from the aircraft control block in order to more realistically model the delay in 

actuator deflection experienced in real flight. These delays are modeled below in Equation 3.3, and are 

used for propagating control states using integration schemes such as RK-4.   

[
 
 
 
 
𝛿̇𝑇
𝛿̇𝐸
𝛿̇𝐴
𝛿̇𝑅]
 
 
 
 

= [

𝐴𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒
𝐴𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟
𝐴𝐴𝑖𝑙𝑒𝑟𝑜𝑛
𝐴𝑅𝑢𝑑𝑑𝑒𝑟

] [

𝛿𝑇
𝛿𝐸
𝛿𝐴
𝛿𝑅

] + [

𝐵𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒
𝐵𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟
𝐵𝐴𝑖𝑙𝑒𝑟𝑜𝑛
𝐵𝑅𝑢𝑑𝑑𝑒𝑟

]

[
 
 
 
 
𝛿𝑇𝑐𝑚𝑑
𝛿𝐸𝑐𝑚𝑑
𝛿𝐴𝑐𝑚𝑑
𝛿𝑅𝑐𝑚𝑑]

 
 
 
 

    Eq. 3.3 

Velocities in the body frame are derived by transforming the total velocity by the airflow angles (angle of 

attack and sideslip), as shown below in Equation 3.4. 

[ 
𝑈
𝑉
𝑊
 ] = 𝑉𝑇 [

cos𝛼 cos𝛽
sin𝛽

sin𝛼 cos𝛽
]    Eq. 3.4 

Non-dimensional force coefficients and stability-frame moment coefficients are derived using a linearized 

build-up method of perturbations from the trim conditions. The following equations obtain these 

coefficients for lift, drag, and side force, as well as roll, pitch, and yaw moments in the stability frame, 

respectively.  

𝐶𝐿 = 𝐶𝐿1 + 𝐶𝐿𝛼(𝛼 − 𝛼𝑇𝑟𝑖𝑚) + 𝐶𝐿𝑞(𝑄 − 𝑄𝑇𝑟𝑖𝑚) (
𝑐̅

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝐿𝛼̇𝛼̇ (

𝑐̅

2𝑈𝑇𝑟𝑖𝑚
) + 

𝐶𝐿𝑈 (
𝑈− 𝑈𝑇𝑟𝑖𝑚

𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝐿𝛿𝐸(𝛿𝐸 − 𝛿𝐸𝑇𝑟𝑖𝑚)        Eq. 3.5 

𝐶𝐷 = 𝐶𝐷0 + 
𝐶𝐿
2

𝜋𝐴𝑅𝑒
                     Eq. 3.6 

𝐶𝑌 = 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝑃(𝑃 − 𝑃𝑇𝑟𝑖𝑚) (
𝑏

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑌𝑅(𝑅 − 𝑅𝑇𝑟𝑖𝑚) (

𝑏

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑌𝛿𝐴

𝛿𝐴 + 𝐶𝑌𝛿𝑅
𝛿𝑅          Eq. 3.7 

𝐶𝑙
𝑆 = 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝑃(𝑃 − 𝑃𝑇𝑟𝑖𝑚) (

𝑏

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑙𝑅(𝑅 − 𝑅𝑇𝑟𝑖𝑚) (

𝑏

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑙𝛿𝐴

𝛿𝐴 + 𝐶𝑙𝛿𝑅
𝛿𝑅            Eq. 3.8 
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𝐶𝑀
𝑆 = 𝐶𝑀1 + 𝐶𝑀𝛼(𝛼 − 𝛼𝑇𝑟𝑖𝑚) + 𝐶𝑀𝑄(𝑄 − 𝑄𝑇𝑟𝑖𝑚) (

𝑐̅

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑀𝑈 (

𝑈 − 𝑈𝑇𝑟𝑖𝑚
𝑈𝑇𝑟𝑖𝑚

) +  

𝐶𝑀𝛿𝐸
(𝛿𝐸 − 𝛿𝐸𝑇𝑟𝑖𝑚) +   2𝐶𝑀1 (

𝑈−𝑈𝑇𝑟𝑖𝑚

𝑈𝑇𝑟𝑖𝑚
) + (𝐶𝑀𝑇𝑈

+ 2𝐶𝑀𝑇1
) (

𝑈−𝑈𝑇𝑟𝑖𝑚

𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑀𝑇𝛼

(𝛼 − 𝛼𝑇𝑟𝑖𝑚)   Eq. 3.9 

𝐶𝑁
𝑆 = 𝐶𝑁𝛽𝛽 + 𝐶𝑁𝑃(𝑃 − 𝑃𝑇𝑟𝑖𝑚) (

𝑏

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑁𝑅(𝑅 − 𝑅𝑇𝑟𝑖𝑚) (

𝑏

2𝑈𝑇𝑟𝑖𝑚
) + 𝐶𝑁𝛿𝐴

𝛿𝐴 + 𝐶𝑁𝛿𝑅
𝛿𝑅  Eq. 3.10 

Normalized coefficients for aerodynamic forces in the body frame are derived by transforming lift and 

drag coefficients into the body frame, as shown below in Equation 3.11.  

[

𝐶𝑋𝐴
𝐶𝑌𝐴
𝐶𝑍𝐴

] =  [

𝐶𝐿 sin𝛼 − 𝐶𝐷 cos 𝛼
𝐶𝑌

−𝐶𝐿 cos 𝛼 − 𝐶𝐷 sin𝛼
]    Eq. 3.11 

Normalized moment coefficients in the body frame are determined by transforming the stability-frame 

moment coefficients by the angle of attack, shown below in Equation 3.12. 

[

𝐶𝑙
𝐶𝑀
𝐶𝑁

] =  [

𝐶𝑙
𝑆 cos 𝛼 − 𝐶𝑁

𝑆 sin𝛼

𝐶𝑀
𝑆

𝐶𝑙
𝑆 sin𝛼 + 𝐶𝑁

𝑆 cos𝛼

]      Eq. 3.12 

The total thrust force is approximated using Equation 3.13, where values for the 2nd order coefficients are 

derived from experimental data obtained from propulsion testing of the aircraft engines.  

𝑇 = 𝑋𝑇0 + 𝑋𝑇1𝛿𝑇 + 𝑋𝑇2𝛿𝑇
2      Eq. 3.13 

Gravitational accelerations in the body frame are determined through Euler-angle transformations, shown 

in Equation 3.14. 

[
𝐺𝑋
𝐺𝑌
𝐺𝑍

] =  𝐺 [
− sin 𝜃

sin𝜑 cos𝜃
cos𝜑 cos 𝜃

]        Eq. 3.14 

The dynamic pressure experienced by the airframe is calculated from the density and total airspeed, 

shown below in Equation 3.15.   
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𝑞̅ =  
1

2
𝜌𝑉𝑇

2          Eq. 3.15 

Accelerations in the body frame due to aerodynamic and propulsive forces are obtained using their 

respective normalized coefficients and the aircraft mass, shown below in Equation 3.16.  

[
𝐴𝑋
𝐴𝑌
𝐴𝑍

] =  [

𝐶𝑋𝐴 𝑞̅𝑆 + 𝑇

𝐶𝑌𝐴 𝑞̅𝑆

𝐶𝑍𝐴 𝑞̅𝑆
]𝑚−1    Eq. 3.16 

Total moment calculations due to aerodynamic and propulsive moments are determined using their 

respective normalized coefficients, as shown below in Equation 3.17, where 𝑙𝑇 indicates the moment arm 

along the Z-body axis between the thrust centerline and the center of gravity of the aircraft.  

[
𝐿
𝑀
𝑁
 ] =  [

𝐶𝑙𝑞̅𝑆𝑏
𝐶𝑚𝑞̅𝑆𝑐̅ − 𝑇𝑙𝑇

𝐶𝑛𝑞̅𝑆𝑏
]     Eq. 3.17 

Derivatives for aircraft body velocities are calculated using respective aerodynamic and propulsive 

accelerations, gravitational accelerations, body velocities, and body rotational velocities, as shown below 

in Equation 3.18.  

[
𝑈̇
𝑉̇
𝑊̇

] =  [
𝐴𝑋 + 𝐺𝑋 + 𝑅𝑉 − 𝑄𝑊
𝐴𝑌 + 𝐺𝑌 − 𝑅𝑈 + 𝑃𝑊
𝐴𝑍 + 𝐺𝑍 + 𝑄𝑈 − 𝑃𝑉

]    Eq. 3.18 

Finally, using these calculations, the state derivatives can be determined and used to propagate the 

aircraft states using integration schemes such as RK-4. The state derivatives can be calculated using the 

following equations.  

𝑉̇𝑇 = 
𝑈𝑈̇+𝑉𝑉̇+𝑊𝑊̇

𝑉𝑇
              Eq. 3.19 

𝛼̇ =
𝑈𝑊̇− 𝑊𝑈̇

𝑈2+𝑊2             Eq. 3.20 
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𝛽̇ =  
𝑉(𝑈2+𝑊2)−𝑉(𝑈𝑈̇+𝑊𝑊̇)̇

𝑉𝑇
2√𝑈2+𝑊2

         Eq. 3.21 

𝜑̇ = 𝑃 + (𝑅 cos𝜑 + 𝑄 sin𝜑) tan𝜃            Eq. 3.22 

𝜃̇ = 𝑄 cos𝜑 − 𝑅 sin𝜑        Eq. 3.23 

𝜓̇ =  (𝑄 sin𝜑 + 𝑅 cos𝜑) cos 𝜃           Eq. 3.24 

𝑃̇ =  
𝐼𝑍𝑍𝐿+𝐼𝑋𝑍𝑁−(𝐼𝑋𝑍(𝐼𝑌𝑌−𝐼𝑋𝑋−𝐼𝑍𝑍)𝑃+(𝐼𝑋𝑍

2 +𝐼𝑍𝑍(𝐼𝑍𝑍−𝐼𝑌𝑌))𝑅)𝑄

𝐼𝑋𝑋𝐼𝑍𝑍−𝐼𝑋𝑍
2                Eq. 3.25 

𝑄̇ =
𝑀−(𝐼𝑋𝑋−𝐼𝑍𝑍)𝑃𝑅−𝐼𝑋𝑍(𝑃

2− 𝑅2)

𝐼𝑌𝑌
            Eq. 3.26 

𝑅̇ =  
𝐼𝑋𝑍𝐿+𝐼𝑋𝑋𝑁+(𝐼𝑋𝑍(𝐼𝑌𝑌−𝐼𝑋𝑋−𝐼𝑍𝑍)𝑅+(𝐼𝑋𝑍

2 +𝐼𝑋𝑋(𝐼𝑋𝑋−𝐼𝑌𝑌))𝑃)𝑄

𝐼𝑋𝑋𝐼𝑍𝑍−𝐼𝑋𝑍
2      Eq. 3.27 

3.2 Aircraft Platforms 

In this section, the aircraft platforms used for simulation and flight test validation will be discussed.  

3.2.1   CReSIS Unmanned Aircraft Platforms 

The developed autonomy in this work will be demonstrated in simulations using CReSIS UAS platforms 

from both past and future deployments in order to assess improvements in operational capabilities and 

performance. The G1X platforms, shown in Figure 47, are a class of modified 40% scale Yak-54 model 

aircraft that have been repurposed as research platforms by the University of Kansas for polar missions 

and flight test research. The G1X platforms, along with 33% scale YAK-54 models, have been successfully 

operated at both the Greenland and Antarctic ice caps, and their deployment history is outlined in Section 

1.2. The role of these  platforms transitioned from mere pilot training to payload-carrying mission systems 

following the miniaturization of the onboard radar system.  
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For polar research deployments, the autopilot system utilized was a COTS system developed by 

AeroVironment (formerly Pulse Aerospace), a local company founded by KU Aerospace Graduates who 

were vital in the development and testing of the Meridian aircraft [21]. For flight control research, the KU 

Flight Research lab has also developed a custom autopilot system for the G1X systems that has been 

utilized for flight test validation of research projects including optimal control, detect-and-avoid, and 

cascading autopilot control systems [72]. 

 

Figure 47: G1X Aircraft (Photo Credit: KU Flight Research Lab) 

The CReSIS UAS team has chosen a series of twin-boom configuration VTOL unmanned systems, 

developed by Mugin UAV Systems, for upcoming deployments to the Helheim Glacier. The incorporation 

of VTOL capabilities are necessary for operations in this region due to the rugged terrain surrounding the 

outlet glacier. Two sizes of platforms are being developed for these operations, with the size tradeoff 

involving incorporated cost and risk, as well as associated antenna frequency and overall mission 

endurance. The Mugin-2930 platform, shown in Figure 48, is being developed by the CReSIS UAS team for 

the initial trial deployment to the region, while the larger Mugin-4450 platform is being developed for 
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subsequent deployment for extensive data collection. The Mugin-4450 platform incorporates a similar 

design and configuration as the Mugin-2930, but is scaled in size based on the increased wingspan, and is 

structurally reinforced appropriately to carry increased payload weight and volume. 

 

Figure 48: Mugin-2930 VTOL (Photo Credit: KU Flight Research Lab) 

Flight control of the Mugin systems will be achieved using ArduPilot QuadPlane software aboard a Pixhawk 

Cube unit. Ardupilot is an open source autopilot project with various functionality and flight modes for a 

myriad of unmanned aircraft configurations, as well as other unmanned robotic platforms such as rovers, 

surface, and underwater vehicles. The QuadPlane package incorporates both fixed-wing and multi-rotor 

flight modes, as well as uses the multi-rotors to assist fixed-wing flight for transitioning between flight 

modes, stall prevention, and aircraft stability robustness. It also has extensive functionalities for various 

mission profiles, and has a user-friendly ground station interface known as Mission Planner.  The Pixhawk 

Cube is a commercially available all-in-one flight control unit with triple redundant, vibration isolated, and 
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internally heated IMUs. The Pixhawk Cube has 14 PWM servo outputs, and has the ability to integrate 

various sensors such as Differential GPS and altimeters, which would improve our polar mission 

capabilities. Future validation for the developed autonomy aboard the Mugin systems is planned to be 

achieved utilizing a cascading autopilot design. In  this framework, an onboard computer running the 

autonomy will command PWM (pulse-width modulation) signals into the Pixhawk system corresponding 

to roll, pitch, and airspeed commands, and the ArduPilot flight control system will regulate these aircraft 

states using the various motors and control surfaces of the aircraft. This cascading autopilot framework is 

shown in Figure 49, where an Arduino board is used to switch between manual flight control commands 

and the autonomous commands from the onboard computer, generating the corresponding PWM signals 

as inputs into the Pixhawk flight control unit. 

 

Figure 49: Cascading Autopilot Framework 

3.2.2   Surrogate Platforms  

Flight testing validation of the developed autonomy in this work is conducted using SkyHunter platforms, 

which are small commercially available fixed-wing platforms commonly used for FPV applications. The 

SkyHunter is a twin-boom configuration aircraft composed of EPO foam, and the KU Flight Research Lab 
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has been utilizing these platforms for multi-agent research since 2017. The relatively high payload to 

weight ratio of these platforms makes them extremely suitable for implementing various airborne sensor 

packages, and their reduced airframe cost and size minimizes the associated risks involved in local flight 

testing operations. Because of this, the KU Flight Research Lab has utilized these aircraft for low-cost, low-

risk flight testing of airborne collision avoidance, formation flight, and advanced propulsion systems [73]. 

Additional aerodynamic and structural modifications have been made by the KU Flight Research Team in 

order to improve flight performance and system reliability [74].  

The SkyHunter platforms incorporate a Pixhawk Cube unit for data acquisition and PWM generation. An 

onboard computer running the developed autonomy is used to generate commands corresponding to the 

desired PWM signals for motor and control surface deflections. The Pixhawk flight control unit toggles 

control commands from the RC pilot and the onboard computer based on the “RC_OVERRIDE” flag in its 

PX4 firmware. The SkyHunter aircraft is shown in Figure 50. 

 

Figure 50: SkyHunter UAS (Photo Credit: KU Flight Research Lab) 
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3.2.3   Platforms Characteristics 

Key characteristics of the platforms used in this work are presented in Table 3, where aircraft dynamic 

modes were determined using AAA dynamic modeling software. 

Table 3: Platform Characteristics 

Characteristic G1X Mugin-2930 Mugin-4450 SkyHunter 

Wingspan 14.5 feet 9.6 feet 14.6 feet 5.9 feet 

Takeoff Weight 73 lbs 55 lbs 90 lbs 8.5 lbs 

Trim Airspeed  65 knots 48 knots 61 knots 30 knots 

Range 82 nmi 72 nmi 435 nmi 15 nmi 

Aspect Ratio 6.85 9.5 8.4 9.47 

Wing Area 24.66 ft2 9.4 ft2 25.4 ft2 4.79 ft2 

Payload Capacity 5 lbs 13 lbs 30 lbs 1 lb 

Endurance 75 minutes 90 minutes 7 hours 30 minutes 

Propulsion Type ICE Electric/ICE ICE Electric 

 

3.3 Lateral Guidance  

The role of the lateral guidance in this work is to determine the desired sideslip (𝛽𝑐𝑚𝑑) and roll angle 

(𝜙𝑐𝑚𝑑) that the aircraft should obtain in order to precisely track the desired lateral trajectory (Equation 

3.28). In this work, the sideslip command is always set to zero in order to achieve coordinated turns 
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(Equation 3.29). The method for determining the roll angle command depends on the desired trajectory 

type, which will be discussed in the following subsections. 

𝐺𝐿𝑎𝑡 = [
𝛽𝑐𝑚𝑑
𝜙𝑐𝑚𝑑

]      Eq. 3.28 

𝛽𝑐𝑚𝑑 =  0             Eq. 3.29 

3.3.1   Loiter Guidance 

For tracking the home loiter circle, the aircraft utilizes a nonlinear guidance method introduced in [75], 

which projects a reference point R a fixed distance L1C ahead of the aircraft onto the desired trajectory. 

This method then uses the reference point location to determine the required lateral acceleration needed 

to intercept the point. In order to track a circular trajectory defined by center C = {CN, CE} and radius CR, 

the aircraft first determines the distance from the aircraft position P = {PN, PE} to the center C (Equation 

3.30), and then determines the unit vector from C to P (Equation 3.31) to create projection point D 

(Equation 3.32). Next, the heading angle from P to C is found (Equation 3.33) and used to solve for the 

relative heading change from the aircraft’s heading (Equation 3.34). In order to place point R onto the 

circumference of the circle a fixed distance L1C away from P, the angular change from 𝜓𝑃𝐶  can be found 

by using the law of cosines and the three known legs of the triangle (Equations 3.35). Using the relative 

heading between the aircraft heading and C, the tracking orientation of the circle is determined to be 

either clockwise or counterclockwise, and this determination is used to apply the angular change needed 

to appropriately place point R (Equation 3.36). This heading is then used to determine the unit vector 

(Equation 3.37), and place point R (Equation 3.38). However, note that if the aircraft is not within L1C of 

the circumference of the circle, point R is simply placed L1C towards point D. Once the reference point R 

has been placed, the heading from the aircraft position to point R is determined (Equation 3.39), and used 

to determine the required heading change and is saturated between ±
π

2
 (Equation 3.40). This resulting 
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angle is then used to calculated the required lateral acceleration needed to intercept point R (Equation 

3.41). Finally, this lateral acceleration can be translated into an aircraft bank angle command (Equation 

3.42). These lateral guidance equations for the loiter tracking are provided below, as well as depicted in 

Figure 51. 

𝐷𝐶 = ‖𝐶 − 𝑃‖           Eq. 3.30 

𝑉̂𝐶𝑃 =  
𝑃−𝐶

‖𝑃 −𝐶‖
              Eq. 3.31 

𝐷 = 𝐶 + 𝐶𝑅𝑉̂𝐶𝑃             Eq. 3.32 

𝜓𝑃𝐶 = 𝑎𝑡𝑎𝑛2 (
𝐶𝐸−𝑃𝐸

𝐶𝑁−𝑃𝑁
)                    Eq. 3.33 

η𝐶 = 𝑊−𝜋
   𝜋[𝜓𝐴 − 𝜓𝑃𝐶]            Eq. 3.34 

𝜃𝑅 = cos
−1 (

𝐶𝑅
2 + 𝐷𝐶

2 − 𝐿1𝐶
2

2𝑅𝐷𝐶
)                   Eq. 3.35 

𝜓𝐶𝑅 =  {
𝑊−𝜋

   𝜋[(𝜓𝑃𝐶 +  𝜋) + 𝜃𝑅]    𝑖𝑓(η𝐶 < 0)

𝑊−𝜋
   𝜋[(𝜓𝑃𝐶 +  𝜋) − 𝜃𝑅]    𝑖𝑓(η𝐶 ≥ 0)

                               Eq. 3.36 

𝑉̂𝐶𝑅 = ⟨cos(𝜓𝐶𝑅) , sin(𝜓𝐶𝑅)⟩                                    Eq. 3.37 

𝑅 =  {

𝑃 + 𝐿1𝐶𝑉̂𝐶𝑃           𝑖𝑓(𝐷𝐶 ≤  (𝐶𝑅 − 𝐿1𝐶))                       

𝑃 − 𝐿1𝐶𝑉̂𝐶𝑃           𝑖𝑓(𝐷𝐶 ≥  (𝐶𝑅 + 𝐿1𝐶))                       

𝐶 + 𝐶𝑅𝑉̂𝐶𝑅             𝑖𝑓((𝐶𝑅 − 𝐿1𝐶)) < 𝐷𝐶 < (𝐶𝑅 + 𝐿1𝐶))

                    Eq. 3.38 

𝜓𝑅 = 𝑎𝑡𝑎𝑛2(
𝑅𝐸−𝑃𝐸

𝑅𝑁−𝑃𝑁
)       Eq. 3.39       

η𝐿𝑎𝑡 = 𝑠𝑎𝑡−𝜋/2
   𝜋/2[𝑊−𝜋

   𝜋[𝜓𝑅 − 𝜓𝐴] ]                Eq. 3.40         

𝑎𝑐𝑚𝑑 =
2𝑉𝐺

2sin (η𝐿𝑎𝑡)

𝐿1𝐶
         Eq. 3.41 
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   𝜑𝑐𝑚𝑑 = 𝑠𝑎𝑡𝜑𝑀𝑖𝑛
𝜑𝑀𝑎𝑥 (tan−1 (

𝑎𝑐𝑚𝑑

𝑔
))           Eq. 3.42 

 

Figure 51: Circular Lateral Guidance Graphic 

3.3.2   Flight Line Guidance 

When the aircraft is surveying a mission flight line, tight tracking and low oscillations are desired. For this 

reason, L2+ methods are used for lateral guidance [76]. In order to track a line segment defined by starting 

point A = {AN, AE} and endpoint B = {BN, BE}, the aircraft first determines the trackline unit vector 𝑉̂𝑇𝐿  in 

the local frame from point A to point B (Equation 3.43). This unit vector is then used to project the 

aircraft’s position onto the line as point D (Equation 3.44). The distance from the aircraft to point D is then 

determined (Equation 3.45), along with the unit vector from the aircraft to point D (Equation 3.46). If the 

distance to point D is greater than the trackline projection length parameter L1TL, then point R is simply 

projected a distance L1TL along the unit vector from the aircraft towards the projection point D. Otherwise, 
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point R is placed L1TL away from the aircraft and onto the line, by projecting ahead of point D along 

trackline AB a distance determined using Pythagorean theorem (Equation 3.47). Note that this projection 

length parameter L1TL is differentiated from the L1C parameter used for curved trajectories. Once point R 

has been placed, the heading from the aircraft position to point R is determined (Equation 3.48), and the 

desired heading change η𝐿𝑎𝑡  is found and saturated between ±
𝜋

2
  (Equation 3.49). This angle is then used 

to determine the required lateral acceleration using the tuning parameter T*, which accounts for the delay 

due to the roll mode of the aircraft, as well as the flight controller. Additionally, an integral term is applied 

to the resulting lateral acceleration in order to reduce the steady state tracking error to zero (Equation 

3.50). Note that this integral is reset to zero following completion of the flight line. Finally, once the lateral 

acceleration command has been determined, it is used to calculate the commanded aircraft bank angle 

and is saturated between the minimum and maximum desired bounds (Equation 3.51). These equations 

for flight line lateral guidance are provided below, as well as depicted in Figure 52.  

𝑉̂𝑇𝐿 =
𝐵−𝐴

‖𝐵−𝐴‖
                                                      Eq. 3.43 

𝐷 =
𝑉̂𝑇𝐿𝑉̂𝑇𝐿

𝑇

𝑉̂𝑇𝐿
𝑇 𝑉̂𝑇𝐿

𝑃 +  (𝐼 −
𝑉̂𝑇𝐿𝑉̂𝑇𝐿

𝑇

𝑉̂𝑇𝐿
𝑇 𝑉̂𝑇𝐿

)𝐴                    Eq. 3.44 

𝐷𝑇𝐿 = ‖𝐷 − 𝑃‖                                           Eq. 3.45 

𝑉̂𝑃𝐷 =
𝐷−𝑃

‖𝐷−𝑃‖
                                            Eq. 3.46 

 𝑅 =  {
𝑃 + 𝐿1𝑇𝐿𝑉̂𝑃𝐷                          𝑖𝑓(𝐷𝑇𝐿 ≥ 𝐿1𝑇𝐿)

𝐷 + 𝑉̂𝑇𝐿√𝐿1𝑇𝐿
2 − 𝐷𝑇𝐿

2           𝑖𝑓(𝐷𝑇𝐿 < 𝐿1𝑇𝐿)
                               Eq. 3.47 

𝜓𝑅 = 𝑎𝑡𝑎𝑛2(
𝑅𝐸−𝑃𝐸

𝑅𝑁−𝑃𝑁
)                                  Eq. 3.48 

η𝐿𝑎𝑡 = 𝑠𝑎𝑡−𝜋/2
  𝜋/2

{𝑤𝑟𝑎𝑝−𝜋
   𝜋[𝜓𝑅 − 𝜓𝐴]}    `  Eq. 3.49 
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𝑎𝑐𝑚𝑑 =
2𝑉𝐺sin (η𝐿𝑎𝑡)

𝑇∗
+𝐾𝐼 ∫𝐷𝑇𝐿                     Eq. 3.50 

𝜑𝑐𝑚𝑑 = 𝑠𝑎𝑡𝜑𝑀𝑖𝑛
𝜑𝑀𝑎𝑥 {𝑡𝑎𝑛−1 (

𝑎𝑐𝑚𝑑

𝑔
)}                                                          Eq. 3.51 

 

Figure 52: Flight Line Lateral Guidance Graphic 

3.3.3   Dubins Path Guidance 

The lateral guidance method used for tracking Dubins Paths in this work is a modified version of the 

nonlinear trajectory guidance methods for curved trajectories outlined in Section 3.3.1. However, instead 

of using a fixed distance between the aircraft and the reference point, the reference point is simply placed 

at location of the end of the first arc in the Dubins Path. By doing this, the resulting lateral acceleration 

command is equal to the centripetal acceleration of the first arc component in the Dubins Path. An 

example projection of the reference point onto the Dubins Path for architecture Type 3 is shown in Figure 

53. 
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Figure 53: Dubins Path Guidance Example Graphic 

3.3.4   Switching Logics 

The switching logic between the various trajectory types are discussed in this section. Firstly, when the 

aircraft traverses to the home loiter circle, it initially follows the tracking of the home Dubins Paths 

described in Section 2.2.3. While following this Dubins Path, the aircraft utilizes the Dubins Path guidance 

methods outlined in Section 3.3.3. However, when the aircraft arrives within twice the radius of the home 

loiter circle, it transitions to the loiter guidance methods described in Section 3.3.1 in order to smoothly 

loiter around the home location. This criteria is shown in Equation 3.52, using terminology from Section 

3.3.1 and Figure 51. 

𝐷𝐶 < 2𝐶𝑅           Eq. 3.52 

The next switching logic that needs to be defined is when the aircraft transitions from following the Dubins 

Paths approaching the mission flight lines to surveying the flight lines themselves. For this, two criteria 
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must be met: (1) The aircraft must be within a distance DSW of the flight line start location, and (2) the 

summation of the angles comprising the arcs in the Dubins Path must be less than θSW. Once both of 

these criteria (shown in Equation 3.53) are satisfied, the aircraft beings to track the flight line using 

methods outlined in Section 3.3.2. Figure 54 depicts the distance criteria, while Figure 55 shows an 

example of why the angular criteria is also necessary to prevent premature tracking logic switches, as it is 

necessary for the aircraft to track the Dubins Path as long as possible in order to arrive at the beginning 

of the flight line with the required heading angle.  

(𝐷12 < 𝐷𝑆𝑊)    &&   ( ∑ |𝐶𝑖𝜃| <  𝜃𝑆𝑊 )
𝑁𝜃
𝑖=1    Eq. 3.53 

 

Figure 54: Flight Line Reached Criteria 1 Example 
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Figure 55: Flight Line Reached Criteria 2 Example 

For end-to-end surveying of the mission flight, the aircraft should continue tracking the flight line until it 

has crossed the flight line endpoint. More specifically, the criteria for finishing a flight line is when the 

aircraft crosses the half-plane formed by the flight line endpoint. The satisfying criterion for finishing 

straight-line tracking logic is outlined below, for line segments formed by start and endpoints A = {AN, AE}, 

and B = {BN, BE}, respectively. First, the heading of the flight line is determined using a four-quadrant 

arctangent function (Equation 3.54), then used to determine the unit vector of the flight line (Equation 

3.55). This unit vector is used to project the position of the aircraft P = {PN, PE} onto the flight line (Equation 

3.56), and this projected position D and flight line heading ψTL is compared with the endpoint position to 

determine if it has crossed the half-plane (Equation 3.57). The half-plane criteria is shown in Figure 56.  

𝜓𝑇𝐿 = 𝑎𝑡𝑎𝑛2 (
𝐵𝐸−𝐴𝐸

𝐵𝑁−𝐴𝑁
)          Eq. 3.54 

𝑉̂𝑇𝐿 = ⟨cos(𝜓𝑇𝐿) , sin(𝜓𝑇𝐿)⟩               Eq. 3.55 
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𝐷 =
𝑉̂𝑇𝐿𝑉̂𝑇𝐿

𝑇

𝑉̂𝑇𝐿
𝑇 𝑉̂𝑇𝐿

𝑃 +  (𝐼 −
𝑉̂𝑇𝐿𝑉̂𝑇𝐿

𝑇

𝑉̂𝑇𝐿
𝑇 𝑉̂𝑇𝐿

)𝐴                        Eq. 3.56 

𝑆𝑇𝐿 =  

{
 
 

 
 
1                     𝑖𝑓 

{
 

 
𝐷𝐸 ≤  𝐵𝐸          𝑖𝑓(−𝜋 < 𝜓𝑇𝐿 < 0)

𝐷𝑁 ≥  𝐵𝑁          𝑖𝑓(𝜓𝑇𝐿 = 0)               

𝐷𝐸 ≥  𝐵𝐸           𝑖𝑓(0 < 𝜓𝑇𝐿 < 𝜋)    

𝐷𝑁 ≤  𝐵𝑁         𝑖𝑓(𝜓𝑇𝐿 = 𝜋)         
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         

             Eq. 3.57 

 

Figure 56: Flight Line Survey - End Condition Graphic 

3.4 Longitudinal Guidance 

The role of the longitudinal guidance in this work is to provide the desired total velocity (𝑉𝑇) and pitch 

angle (𝜃) that the aircraft should obtain in order to precisely track the desired altitude and airspeed 

(Equation 3.58). In this work, the commanded total velocity is always set to the trim airspeed for the 

vehicle (Equation 3.59).  

𝐺𝐿𝑜𝑛 = [
𝑉𝑇𝑐𝑚𝑑
𝜃𝑐𝑚𝑑

]     Eq. 3.58 

𝑉𝑇𝑐𝑚𝑑 = 𝑉𝑇𝑇𝑟𝑖𝑚     Eq. 3.59 
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For the longitudinal plane, an altitude command is generated by the path planning either using standard 

waypoint altitudes or terrain tracking methods. A PD control scheme is applied to this desired altitude in 

order to smoothly minimize the altitude error. First, the sign and magnitude of the altitude error rate 

ℎ̇𝑒𝑟𝑟𝑜𝑟  is determined using the velocity in the Z axis of the inertial frame 𝑉𝑍𝐼 and comparing the 

commanded altitude ℎ𝑐𝑚𝑑 with the current altitude h (Equation 3.60). Next, a proportional and derivative 

gain PG and DG are used to calculate a commanded climb rate (Equation 3.61), which is then saturated 

between a minimum and maximum allowable climb rate command bounds (Equation 3.62). Using the 

inertial ground speed 𝑉𝐺, the commanded flight path angle is calculated (Equation 3.63) [75], and the trim 

angle of attack 𝛼𝑡𝑟𝑖𝑚 is accounted for to calculate the resulting commanded aircraft pitch angle (Equation 

3.64). Finally, the output pitch angle command is saturated within allowable bounds (Equation 3.65). 

ℎ̇𝑒𝑟𝑟𝑜𝑟 = {
𝑉𝑍𝐼                           𝑖𝑓(ℎ𝑐𝑚𝑑 ≥ ℎ)   

−𝑉𝑍𝐼                            𝑖𝑓(ℎ𝑐𝑚𝑑 < ℎ)       
     Eq. 3.60 

ℎ̇𝑐𝑚𝑑 = (ℎ𝑐𝑚𝑑 − ℎ)𝑃𝐺 + (ℎ̇𝑒𝑟𝑟𝑜𝑟)𝐷𝐺                                    Eq. 3.61 

ℎ̇𝑐𝑚𝑑 = 𝑠𝑎𝑡ℎ̇𝑐𝑚𝑑𝑀𝑖𝑛

ℎ̇𝑐𝑚𝑑𝑀𝑎𝑥{ℎ̇𝑐𝑚𝑑}                               Eq. 3.62 

𝛾𝑐𝑚𝑑 = tan
−1 (

ℎ̇𝑐𝑚𝑑

𝑉𝐺
)                              Eq. 3.63 

  𝜃𝑐𝑚𝑑 = 𝛾𝑐𝑚𝑑 + 𝛼𝑡𝑟𝑖𝑚                                                                   Eq. 3.64 

𝜃𝑐𝑚𝑑 = 𝑠𝑎𝑡𝜃𝑐𝑚𝑑𝑀𝑖𝑛

𝜃𝑐𝑚𝑑𝑀𝑎𝑥{𝜃𝑐𝑚𝑑}                                           Eq. 3.65 

3.5 Aircraft Control Architecture  

The purpose of the aircraft control architecture is to determine the necessary control surface deflections 

required in order to maintain the desired aircraft state commands determined by the aircraft guidance 

logic. In this work the longitudinal and lateral-directional states are assumed to be decoupled, and a 
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classical LQR longitudinal controller and a Non-Zero Set Point LQR (NZSP-LQR) lateral-directional control 

scheme are used to regulate the aircraft state about a trim condition (Equation 3.66 and Equation 3.67), 

where the augmented longitudinal states contain state errors and integral errors from the guidance 

commands [72,78,79]. The control matrices for the longitudinal and lateral-directional state spaces are 

shown in Equation 3.68 and Equation 3.69, representing throttle and elevator, and aileron and rudder, 

respectively. Optimal gain matrices KLon and KLat are calculated to minimize the cost function described by 

(Equation 3.70), given predefined values for the state costs Q and control costs R. The resulting perturbed 

LQR control outputs are then combined with the trim control deflections to calculate the total control 

outputs, shown in Equation 4.71 and 4.72, where a stability-augmented pitch rate feedback is added for 

improved longitudinal control. Finally, saturation bounds are applied to the resulting control outputs and 

their respective rates, shown in Equations 3.73 and 3.74. 

𝑥𝑙𝑜𝑛 =  

[
 
 
 
 
 

𝑈
𝛼
𝜃
𝑞

∫𝑈𝑒𝑟𝑟𝑜𝑟
∫𝜃𝑒𝑟𝑟𝑜𝑟 ]

 
 
 
 
 

             Eq. 3.66 

𝑥𝑙𝑎𝑡 =  [

𝛽
𝜑
𝑝
𝑟

]         Eq. 3.67 

𝑢𝑙𝑜𝑛 = [
𝛿𝑇
𝛿𝐸
]          Eq. 3.68 

𝑢𝑙𝑎𝑡 = [
𝛿𝐴
𝛿𝑅
]       Eq. 3.69 

𝐽 =  ∫(𝑥𝑇𝑄𝑥 +  𝑢𝑇𝑅𝑢)𝑑𝑡     Eq. 3.70 
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[
𝛿𝑇
𝛿𝐸
] = [

𝛿𝑇𝑡𝑟𝑖𝑚
𝛿𝐸𝑡𝑟𝑖𝑚

] +  𝐾𝐿𝑜𝑛

[
 
 
 
 
 
 
𝑈𝑐𝑚𝑑 − 𝑈
𝛼𝑡𝑟𝑖𝑚 −  𝛼
𝜃𝑐𝑚𝑑 −  𝜃
𝑄𝑡𝑟𝑖𝑚 −𝑄
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             Eq. 3.74 

3.6 Morphing Potential Collision Avoidance 

The collision avoidance mechanism applied in this work are morphing potential fields, which are a 

modified form of artificial potential fields where the shape of the potential is morphed as a function of 

the relative position and velocity between the aircraft and obstacle. This approach was developed 

specifically for fixed-wing aircraft avoidance, where high velocity and high inertia properties require 

avoidance maneuvers to begin early, but are desired to minimize the deviation from the original flight 

path [80,81]. While standard artificial potential fields produce uniform spatial potential about the obstacle 

(as shown in Equation 3.75), MPFs shift the potential by a factor S in the direction of the relative positions 

(Equation 3.76), where the morphing term Г is determined using the relative velocity angle 𝜂𝑉 between 

the aircraft and obstacles (Equation 3.77), where Г0 ∈ (0,1] and ηV ∈ [−π, π].  
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𝑝𝑓 = 𝐴𝑒𝑥𝑝 {−(
‖𝑝⃗𝑂𝑏𝑗−𝑝⃗0‖

𝜎
)
2

}     Eq. 3.75 

𝑚𝑝𝑓 = 𝑒𝑥𝑝 {−Г(
‖𝑝⃗𝑂𝑏𝑗−𝑝⃗0+𝑆‖

𝜎
)
2

}    Eq. 3.76 

Г =  (1 − Г0) sin
2 𝜂𝑉 + Г0;            Eq. 3.77 

The resulting potential field generated from Equation 3.76 is then used to modify the guidance commands 

for the aircraft in order to safely avoid collision with other agents or fixed obstacles. Morphing potential 

fields were originally integrated and flight test validated using a virtual leader framework and moving 

point guidance [82-84]. However, in this work the resultant potential field will be used to modify the 

reference point R in the lateral-directional frame, as well as the commanded altitude in the longitudinal 

frame to obtain 3D avoidance of the obstacle. This is shown below in Equation 3.78, where 𝜒𝑅 and 𝛾𝑅 

represent angles from the resultant potential gradients in the lateral and longitudinal frames, respectively. 

The resulting components of the potential is then multiplied by the aircraft inertial speed, 𝑉𝐼, and a gain 

factor, 𝐺𝑀𝑃𝐹. It should be noted that as potential fields can be commutatively added, potential fields 

created from multiple obstacles can be combined to generate appropriate avoidance maneuvers.  

[

𝑅𝑁
𝑅𝐸
ℎ𝑐𝑚𝑑

] =  [

𝑅𝑁0
𝑅𝐸0
ℎ𝑐𝑚𝑑0

 ] + 𝐺𝑀𝑃𝐹𝑉𝐼 [

cos 𝛾𝑅 cos 𝜒𝑅
cos 𝛾𝑅 sin𝜒𝑅

sin 𝛾𝑅
]    Eq. 3.78 

3.7 MATLAB Simulink Framework 

The autonomy in this work has been developed and tested in a MATLAB-Simulink environment. MATLAB 

is a mathematical computing software popular among engineers and scientists for its syntax simplicity, 

matrix manipulation capabilities, plotting functionalities, and available toolboxes for various research 

applications. Simulink is a MATLAB simulation framework used for model-based design. The Simulink 

models developed in this work involve the use of the nonlinear 6-Degree-of-Freedom aircraft equations 
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of motion outlined in Section 3.1, as well as the dynamic models developed in AAA modeling software for 

the vehicles described in Section 3.2. State propagation occurs through an RK-4 integration scheme 

applied at a rate of 20 Hz. The autonomy developed in this work was first extensively tested and validation 

through simulations in the Simulink environment prior to its transition onto an embedded system for flight 

test validation. 

As can been seen in Figure 57 and Figure 58, the Simulink block diagrams are partitioned into three major 

components: The Aircraft Autonomy, State Propagation, and Telemetry Emulation blocks. The Aircraft 

Autonomy block contains all the functions created to execute the developed autonomy on the embedded 

system outlined in Section 3.8. These functions are called from external libraries, which allows the 

developers to troubleshoot individual function issues outside of the Simulink environment. These 

functions take sensor information, mission objectives, telemetry information from other agents, and 

parameter selection information from autonomy, guidance, and control buses in order to ultimately make 

decisions and develop commanded outputs to the aircraft control surfaces. These control surface 

commands are sent to the State Propagation block, which uses them along with the simulation initial 

conditions to propagate the aircraft states, and emulate sensor readings for the Aircraft Autonomy block. 

Each aircraft in the simulation environment has its own set of Aircraft Autonomy and State Propagation 

blocks. A single Telemetry Emulation block is utilized in multi-agent Simulink models to collect and 

distribute the telemetry signals from agent to agent. 

The logging iteration for state information, control commands, and autonomy decisions are set to a 

different rate than the 20 Hz state propagation in order to reduce the necessary memory allocations 

required for long duration simulations. Additionally, the computationally expensive autonomy functions 

for multi-agent flight line allocation and for real-time routing algorithms have been set to a separate 

iteration rate to emulate the implementation on the embedded system (see Section 3.8).  
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Figure 57: Single Agent Framework 

 

Figure 58: Multi-Agent Simulink Framework 
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3.8 ROS Integration  

Following validation in the MATLAB-Simulink environment, the developed autonomy in this work was 

implemented onto a real-time system using an ROS (Robot Operating System) framework. ROS is a meta-

operating system with a “system-of-systems” software architecture that incorporates numerous, unique 

processes, referred to as “nodes”, that execute asynchronously, parsing information through common 

databases, termed “topics”. Messaging protocols between nodes and topics occur through “subscribing” 

(reading) and “publishing” (writing) operations. ROS is an open-source robotics middleware that greatly 

benefits from code re-use, sensor integration compatibility, and hardware-agnostic nature, thus making 

it an ideal fit for research teams. The MATLAB codes developed for the autonomy in this work have been 

auto-coded into C++ libraries that the ROS nodes can call. In this work, ROS software is implemented onto 

an NVIDIA Jetson Nano unit for flight test validation of the developed autonomy onboard a SkyHunter 

UAS. A Pixhawk Cube unit is used as a data acquisition board for sensor readings, as well as a PWM 

generator for controlling the aircraft control surface actuators. The Pixhawk unit utilizes PX4 firmware, 

communicating to the companion computer through Mavros, and uses its Offboard functionality for 

executing autonomous control of the aircraft. In-flight system diagnostics are monitored through a 

modified Q_GCS ground station interface, through which the desired aircraft trajectory is plotted in real 

time. System parameter modifications and other mission commands are sent to the agents through 

parameters used in waypoint uploads from the ground station. The data types for various topics have 

been developed to be scalable sizes based on the number of flight lines, as well as the number of agents, 

in the survey operation. These sizing parameters can also be adjusted during operations. Finally, 

hardware-in-the-loop testing is conducted to validate the software and hardware integrity of the ROS 

package prior to flight testing operations. 

Eight unique ROS nodes are created in this work in order to execute the necessary autopilot processes on 

a real-time platform. The names and roles of these nodes are outlined below.  
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1) Flight_Line_Manager 

 Reads input mission flight lines from ground station telemetry messages, populates into 

“Flight Lines” topic  

 Handles and updates the “Flight Lines Remaining” topic depending on “Deploy” and 

“Return to Home” commands from the ground station, as well as the “Flight Lines 

Finished” topic 

2) Aircraft_States_Manager 

 Collects readings from various sensors through their respective topics and populates 

“Aircraft States” topic after converting values into the correct coordinate frames and units 

3) Telemetry_In_Manager 

 Handles the collection of telemetric communications from other agents through 

respective telemetry nodes, and publishes messages to “Telemetry_In” topic 

4) Swarm_Information_Manager 

 Reads in telemetry information from “Telemetry_In” topic and populates 

“Swarm_Information_Matrix” for flight line assignment and collision avoidance purposes 

 Creates estimates for other agent information in the event of intermittent 

communications 

5) Autonomy_Node 

 Performs distributive real-time flight line allocation for multi-agent operations and 

performs TSP routing for surveying the assigned flight lines for the respective agent. The 

resulting order to survey the flight lines is published in the “Route” topic  

6) GNC_Node 
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 Uses information from “Aircraft_States” and “Route” topics, the GNC_Node performs all 

guidance and control processes in order to output states and control surfaces commands 

necessary for the aircraft to track the desired trajectory 

7) Telemetry_Out_Manager 

 Generates the telemetry message containing position, velocity, fuel and kinematic 

constraints, and mission status information that is broadcast to other agents  

8) HIL_Node 

 Propagates aircraft states using an RK-4 integration scheme for hardware-in-the-loop 

testing, publishing emulated sensor information to the respective topics 

In this framework, the core processes for intelligent surveying occur in the Autonomy_Node and 

GNC_Node, while all the other nodes are considered as peripherals. These peripheral nodes are 

responsible for simple tasks, and therefore are run at 40 Hz update rates in order to ensure information 

is available to the core nodes. The GNC_Node publishes control output commands at a 20 Hz rate for 

aircraft stability and precision tracking, while the Autonomy_Node runs at a much slower rate (1 Hz) due 

to the computational complexity of Hungarian Assignment and TSP heuristics. Note that the peripheral 

nodes are constructed in such a way that they can be modified for various aircraft, sensors, and telemetry 

units, while the core nodes can remain unmodified for transitioning the embedded systems across various 

aircraft and avionic configurations. 
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Chapter 4: Case Study Simulations 

In this chapter, case studies will be performed on both past and future CReSIS unmanned polar research 

deployments in order to assess the potential benefit of the developed autonomy on operational 

capabilities.  

4.1 Case Study – Russell Glacier 2016 Comparison 

In this section, an analysis is conducted on the 2016 CReSIS UAS deployment to the Russell Glacier in order 

to demonstrate the improvements the developed autonomy could have on polar operations. Details 

about the timeline, objectives, and achievements of this deployment can be found in Section 1.2, while 

details about the G1X aircraft utilized in these operations can be found in Section 3.2.  

4.1.1   Automated Flight Line Generation 

During the 2016 Russell Glacier deployment, 8 over-the-horizon flights were conducted in which radar 

data was gathered along three unique areas of the outlet glacier. The first of these was an area where the 

collected radar imaging from the UAS could be validated by comparing with previously known bedrock 

topology of the area. The second area had gaps in the known bedrock topology, and the UAS radar imaging 

could be used to fill these gaps. Finally, the third area had little to no previously known information about 

the bedrock topology, and the UAS radar imaging could be used to map this area. These three areas were 

referred to as the “Good”, “Medium”, and “Bad” lines, respectively, by the operating crew to denote the 

level of confidence in the previously known bedrock topology from JPL WISE [25]. Radar imaging was 

collected along distinct flight lines over these areas during the first 7 over-the-horizon flights, while the 

8th flight consisted of repeating previously flown lines to assess radar imaging consistency. Of these 7 flight 

operations, Flights 1-2 surveyed 6 flight lines along the “Good” area, Flights 3-4 surveyed 8 flight lines 

along the “Medium” area, and Flights 5-7 surveyed 10 flight lines along the “Bad” area. These flight lines 
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are shown in Figure 59, where the “Good”, “Medium”, and “Bad” areas are the bottom, middle, and top 

line clusters, respectively. 

  

Figure 59: Russell Glacier 2016 – Mission Flight Lines - All Flights 

Waypoint information for these flights were chosen by CReSIS and sent to the operating team as KML 

files, which consist of geographic coordinates in degree-minute-second format. These waypoints then had 

to be individually converted into decimal format and manually input into the flight controller’s ground 

station by the operating crew prior to each flight. By analyzing the waypoints from the aircraft log data, 

the centroids for these flight lines in each area were reconstructed, and are listed below in Table 4. Note 

that the average spacing between the flight lines slightly varies from the desired half-wavelength and 

quarter-wavelength spacing for the flight areas, and that the wavelength used in this analysis corresponds 

to the 35 MHz operating frequency of the radar system utilized in this deployment. Possible reason for 

these discrepancies in spacing include human error during waypoint positioning in the KML file, 

conversion errors from DMS to decimal formats, and human error during manual inputting the waypoints 
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into the ground station. Additional effort was applied by the operating crew to ensure that the waypoint 

manually input were logistically correct, namely that none of the waypoint longitudes were positive 

(leading the aircraft to the Western hemisphere), and that the waypoint altitudes were suitable for the 

terrain (to  avoid crashing into the surface of the glacier). These two factors were very important due to 

the fact that the aircraft would operate outside of the range of the telemetry units and that there was no 

feedback to the ground station for terrain clearance. 

Table 4: Russell Glacier Flight Line Information 

Flight Area Good Lines Medium Lines Bad Lines 

Distance (km) 8.89 km 8.89 km 11.86 km 

Latitude 1 (degrees N) 67.0919855 67.0965979 67.1015807 

Longitude 2 (degrees E) -50.2327605 -50.2337748 -50.2159535 

Altitude 1 (m AMSL) 620 630 630 

Latitude 2 (degrees N) 67.0976477 67.102262 67.1093212 

Longitude 2 (degrees E) -50.0281193 -50.0290914 -49.9430035 

Altitude 2 (m AMSL) 823 823 823 

Number of Lines 6 8 10 

Average Spacing as 

fraction of Wavelength 

0.5792 0.2336 0.2333 

 

For these reasons, an automated way of precisely generating flight lines along these centroids was 

developed for these operations and is outlined in Section 2.1. Using the information from Table 4 on 

centroid locations, desired spacing, and number of lines, the automated flight line generation algorithms 
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were able to quickly recreate these flight lines with the appropriate spacing. The resulting lines from the 

automated flight line generation is shown in Figure 60. 

 

Figure 60: Russell Glacier 2016 - All Lines Automated Generation 

4.1.2   Lateral Tracking Comparison 

The tracking performance of the aircraft for the survey flight lines was assessed using data from Flight 3 

of the 2016 Russell Glacier deployment in order to determine the potential benefits of the developed 

autonomy. The survey flight line objectives in Flight 3 involved four tightly-spaced flight lines in the 

“Medium” area, and a home loiter circle where the operating crew was located. This mission scenario is 

shown in Figure 61.  
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Figure 61: Flight 3 Mission Scenario 

Using the flight data collected from the aircraft flight controller, the tracking performance of the system 

in terms of the end-to-end coverage of each of the survey flight lines was analyzed. The aircraft tracking 

for the commercial off the shelf (COTS) autopilot system used in the 2016 deployment is shown in Figure 

62. Note that the standard waypoint tracking methods and guidance logic for general UAS applications 

used are not suitable for the tightly spaced flight lines, as the aircraft misses a significant portion of the 

beginning of each flight line following each turning maneuver. Additionally, a significant steady-state off-

track positioning error occurs along the stretch of the flight line, as the aircraft never truly converges onto 

the desired path (possibly due to crosswind). The end-to-end coverage of each flight line was assessed in 

terms of distance from the desired survey line (Figure 63), heading error from the flight line heading 

(Figure 64), and the bank angle of the aircraft (Figure 65). Note that the data for this analysis is only 

collected between the two endpoints of each flight line (i.e. does not include turning maneuvers until the 

aircraft crosses the beginning of the flight line), and vertical partitions have been used to indicate the 
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flight line number. Note that for ideal radar imaging, the aircraft would be directly over the desired survey 

line, flying with the proper heading, with low bank angles to maximize the directivity of the antenna in 

the nadir direction. 

 

Figure 62: Flight 3 - COTS Tracking Analysis 
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Figure 63: Distance from Flight Line – COTS Autopilot 

 

Figure 64: Heading Error Analysis – COTS Autopilot 



108 
 

 

Figure 65: Roll Angle Analysis – COTS Autopilot 

In the previous figures, it can be observed that the COTS autopilot has a significant off-track error at the 

beginning of each flight line, following its turning maneuver. This is a result of its traditional guidance 

methods for tracking lines between the waypoints constructing the mission flight lines. These turning 

maneuvers also introduce large heading errors and roll angles, which are not desirable for the along-track 

synthetic aperture imaging. 

Using the 6-DoF equations of motion outlined in Section 3.1, the G1X dynamic model outlined in Section 

3.2, and the developed MATLAB Simulink environment outlined in Section 3.7, the performance of the 

developed autonomy solution is evaluated for this mission scenario. The simulated tracking performance 

of the aircraft is shown in Figure 66, where it can be noted that the Dubins Path guidance methods 

outlined in Sections 2.2 and 3.3 enable the aircraft to utilize turning maneuvers that position the aircraft 

at the beginning of the flight line (Figure 67) with the proper heading (Figure 68), as well as a low bank 
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angle (Figure 69). Additionally, the L2+ guidance method for flight line following allows the aircraft to fully 

converge onto the desired path and eliminate steady-state off-track positioning errors.  

 

Figure 66: Simulation Tracking for Developed Autonomy 
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Figure 67: Off-Track Error Analysis - Developed Autonomy 

 

Figure 68: Heading Error Analysis - Developed Autonomy 
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Figure 69: Roll Angle Analysis - Developed Autonomy 

The performance of the two systems are compared in Table 5 in terms of their end-to-end coverage of 

the mission flight lines. Note that the criteria for convergence onto the flight lines is based on the rate of 

decrease of the off-track position error. In this scenario, the Dubins Path guidance methods were able to 

effectively eliminate the tracking errors following the required turning maneuvers, capturing full end-to-

end coverage of the survey flight lines without significant off-track error, heading errors, or large roll 

angles. However, note that while this is an unfair tracking comparison between an actual flight and 

simulation data, the path planning methods for the developed autonomy are constructed in such a way 

as to more fully capture the flight line, while standard waypoint tracking methods on COTS systems would 

result in similar tracking performance as shown in the flight data for this case study. While the tracking 

performance of the developed autonomy would vary in actual flight due to external disturbances such as 

wind and gusts, the Dubins Path methods should still outperform standard methods if the flight controller 

is able to track the desired path to a satisfactory degree. Note that the integral term in the line tracking 
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guidance (Section 3.2.2) would reduce the effect of steady-state off-track error in the event of steady-

state wind conditions. 

Table 5: Russell Glacier Tracking Comparison 

Autopilot System COTS Autopilot Developed Autonomy 

Max off-track error from Flight Line 604 feet 1.11 feet 

Average Distance to Converge  2,688 feet 0 feet 

RMS Off-Track Error 78 feet 0.1 feet 

Max roll angle during line tracking -17.02 degrees 0.42 degree 

Max heading error during line tracking 29.5 degrees 0.11 degrees 

 

4.2 Case Study: Single-Agent Helheim Glacier 

In preparation for upcoming deployments to the Helheim Glacier by the CReSIS UAS team, the developed 

autonomy is tested in order to demonstrate its effectiveness for a mission planning tool as well as 

cognitive real-time path planning. The aircraft chosen by the CReSIS UAS team is a Mugin-2930, a VTOL 

platform detailed in Section 3.2. For incorporating the range constraints of the aircraft into the TSP 

analysis conducted in this section, the cruise velocity of 48 knots (81 feet/second) and the estimated 

aircraft endurance of 90 minutes results in a range restriction of 437,400 feet (~82 miles). Note that this 

range is disregarding fuel consumed during the climbing and descent phases, and should be reevaluated 

through preliminary flights at the site. A satellite view of the Helheim Glacier is shown in Figure 70, where 

the 5.5 km width of the main channel can be noted, along with the planned ground station area location 

on the ridge on the south side of this main channel. A view from this takeoff/landing area is shown in 

Figure 71, which was taken during a recent scouting trip by the CReSIS UAS team.  
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Figure 70: Helheim Glacier, Satellite View 

 

Figure 71: View from Helheim Ground Station Area (Photo Credit: KU Flight Research Lab) 
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In this section, the various TSP methods outlined in Sections 2.3 and 2.4 will be compared to assess their 

suitability for each mission scenario by analyzing the tradeoff in performance with computational runtime 

for the algorithm. Note that for these comparisons, Ant Colony Optimization was performed using 1000 

iterations of 10 ants per generation, with pheromone reinforcement and decay rate factors of 0.1 and 

0.001, respectively. Additionally, as it is challenging to quantify how a human operator would design a 

route through the mission flight lines, an assumption is made that the resulting route would be similar to 

the forward greedy method, for which the performance of the other heuristics will be compared against.  

4.2.1   Broad Grid Survey 

The first scenario for testing the developed TSP algorithms involves a broad grid survey operation 

involving 3 along-flow (East-West) flight lines and 7 cross-flow (North-South) flight lines, with respect to 

the outlet glacier. These flight lines are equally spaced at a distance of 1 km, and have been devised to 

broadly capture the along-flow and cross-flow bedrock topology of the outlet glacier. Mission operations 

involve the deployment of the aircraft from an area near the home loiter circle, where the operating crew 

and ground station will be located. Using the various TSP methods outlined in Section 2.3, different routes 

through the mission flight lines are developed. These routes are shown in Figure 72. The resulting lengths 

of the routes are shown in Table 6, where the transit distance does not include the lengths of the flight 

lines themselves, only the lengths onto, between, and returning from the flight lines. Also denoted is the 

percentage decrease of the transit route lengths compared to the forward greedy result. The 

computational runtime of each algorithm is also given to show the tradeoff of performance and 

computational cost between the various TSP methods. Note that all computational runtime analysis in 

this section was conducted on the same computer running the respective MATLAB scripts for the TSP 

algorithms. 
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Figure 72: Scenario 1, Broad Grid Survey (Top Left: Mission Flight Lines; Top Right: Forward Greedy; Bottom Left: Global 

Greedy; Bottom Right: Ant Colony Optimization) 

Table 6: Scenario 1 TSP Results 

TSP Heuristic Total 

Distance 

Total Transit 

Distance 

% Improvement Transit 

Distance from Forward Greedy 

Computational 

Runtime 

Forward Greedy 287,087 feet 82,777 feet 0% 0.194 seconds 

Global Greedy 282,409 feet 78,099 feet 5.65% 0.375 seconds 

Ant Colony 

Optimization 

277,451 feet 73,141 feet 11.64% 5.689 seconds 

 

The results from Scenario 1 indicate that the ACO route was able to find the best route through the mission 

flight lines, but took significantly more time to run. Note that the Forward Greedy route backtracks 
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through the cross-flow lines in an inefficient way, while the Global Greedy route first completes all the 

cross-flow lines before transitioning to the along-flow lines. Conversely, the route produced by Ant Colony 

Optimization transitions back and forth between cross-flow and along-flow lines, resulting in a shorter 

overall route. The Ant Colony Optimization was able to find this result due to its stochastic nature, 

preventing it from being trapped in local optima during graph exploration. 

4.2.2   Fine Grid Survey 

In the second scenario, the various TSP methods will be compared for a fine grid survey operation, in 

which 7 tightly-spaced along-flow (East-West) lines are oriented perpendicular to 5 tightly-spaced cross-

flow (North-South) lines. The tight spacing of approximately 7 feet between the flight lines is equal to the 

quarter-wavelength of the 35 MHz operating frequency of the planned radar system for the Helheim 

deployment. The resulting routes from the various TSP methods are shown in Figure 73, while their 

respective lengths and computational runtimes are shown in Table 7.  
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Figure 73: Scenario 2, Fine Grid Survey (Top Left: Mission Flight Lines; Top Right: Forward Greedy; Bottom Left: Global 

Greedy; Bottom Right: Ant Colony Optimization) 

Table 7: Scenario 2 TSP Results 

TSP Heuristic Total 

Distance 

Total Transit 

Distance 

% Improvement Transit Distance 

from Forward Greedy 

Computationa

l Runtime 

Forward Greedy 413,383 feet 81,123 feet 0% 0.203 seconds 

Global Greedy 412,958 feet 80,698 feet 0.52% 0.728 seconds 

Ant Colony 

Optimization 

412,900 feet 80,640 feet 0.59% 8.746 seconds 

 

In Scenario 2, the Ant Colony Optimization method was again able to find a shorter route through the 

lines than the greedy methods, while taking significantly more computational time. However, the 
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difference between the lengths of the resulting routes is minimal. Though it may be hard to see in Figure 

73, the main difference between the routes is that the Forward Greedy route heads to the cross-flow lines 

first, while the Global Greedy and Ant Colony Optimization routes head to the along-flow lines first. 

Between the latter two routes, the main differences exist in how the aircraft surveys the flight lines in 

each cluster, and how the resulting Dubins Path lengths between those ordered flight lines sum together. 

Overall, Scenario 2 is developed to demonstrate that the benefit of the various TSP methods decreases 

with the complexity of the mission flight lines (i.e. the complexity of the TSP graph developed by the flight 

lines in the mission). In this mission scenario, the Forward Greedy method could be used for real-time 

processing onboard the aircraft because the additional computational complexity of the Ant Colony 

Optimization isn’t worth the tradeoff for a minimal reduction in overall route length. 

4.2.3   Comprehensive Survey 

In Scenario 3, a comprehensive survey is created by placing 15 flight lines along and across various flow 

lines on the glacier inlet and main channel in order to capture complex dynamics at these intersections. 

The various TSP methods were utilized for this scenario in the absence of the aircraft range constraints, 

and the resulting routes are shown in Figure 74. The respective lengths and computational runtimes are 

shown in Table 8.  
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Figure 74: Scenario 3, Comprehensive Survey, No Fuel Constraints (Top Left: Mission Flight Lines; Top Right: Forward Greedy; 

Bottom Left: Global Greedy; Bottom Right: Ant Colony Optimization) 

Table 8: Scenario 3 Results, No Fuel Constraints 

TSP Heuristic Total 

Distance 

Total Transit 

Distance 

% Improvement Transit 

Distance from Forward Greedy 

Computational 

Runtime 

Forward Greedy 606,147 feet 140,617 feet 0% 0.202 seconds 

Global Greedy 587,882 feet 122,352 feet 12.99% 0.637 seconds 

Ant Colony 

Optimization 

575,545 feet 110,015 feet 21.76% 7.73 seconds 

 

Due to the complex nature of the TSP graph created by the flight lines in this scenario, the Ant Colony 

Optimization method was able to produce a much shorter route that the greedy methods, although the 
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differences in computational runtimes is similar to the previous scenarios. For this reason, the Ant Colony 

Optimization would be a more suitable choice for real-time route planning, as the added computational 

complexity will significantly improve mission efficiency. However, note that each TSP solutions produced 

a route longer than the aircraft’s range constraint of 437,400 feet, and therefore it is not possible to survey 

all of the flight lines in a single flight operation. Scenarios 4 and 5 will assess how the fuel-constrained 

modifications to the TSP algorithms can be used to optimize the possible survey potential of the aircraft 

given the mission flight lines and fuel constraints.  

4.2.4   Comprehensive Survey with Fuel Constraints and Uniform Weightings 

In Scenario 4, the comprehensive survey flight lines are subjected to the fuel-constrained TSP algorithms 

outlined in Section 2.4, where each flight line in the mission has a uniform weighting of 1 utility. Note that 

this effectively reduces the problem statement to determining the maximum number of flight lines that 

can be practically surveyed given the fuel constraints. The resulting routes from the fuel-constrained TSP 
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methods are shown in Figure 75, and the resulting route lengths, utility, and computational runtimes are 

shown in Table 9.  

 

Figure 75: Scenario 3 With Fuel Constraints and Uniform Weightings (Top Left: Mission Flight Lines; Top Right: Forward 

Greedy; Bottom Left: Global Greedy; Bottom Right: Ant Colony Optimization) 

Table 9: Scenario 3 Results With Fuel Constraints and Uniform Weightings 

TSP Heuristic Total 

Utility 

Total 

Distance 

% Improvement Total Distance 

from Forward Greedy 

Computational 

Runtime 

Forward Greedy 11 436,017 feet 0% 0.116 seconds 

Global Greedy 11 427,214 feet 2.02% 1.504 seconds 

Ant Colony 

Optimization 

12 404,463 feet 7.24% 3.957 seconds 
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In this scenario, while the fuel-constrained Forward Greedy and the Global Greedy methods both were 

able to survey 11 flight lines, the fuel-constrained Global Greedy was able to do so in a shorter route. 

However, the Fuel-Constrained Ant Colony Optimization method was able to survey 12 flight lines, in an 

even shorter route. Note that this method accomplishes this by surveying the shorter flight lines, while 

the greedy methods survey more of the longer flight lines in the mission, due to their nature of being 

trapped in local optima. As each flight lines have a uniform weighting, the fuel-constrained Ant Colony 

Optimization method has found a more optimal solution through its stochastic searching, capturing a 

higher net utility while adhering to the aircraft range constraints. 

4.2.5   Comprehensive Survey w/ Fuel Constraints, Non-Uniform Weightings 

In Scenario 5, the fuel-constrained TSP methods will be assessed for a scenario where the 5 along-flow 

lines on the main channel of the glacier are highly prioritized, with a utility weighting of 100. The other 

flight lines in the mission retain their utility weighting of 1. The resulting routes from the fuel-constrained 

TSP methods are shown below in Figure 76, and their respective lengths, utilities, and computational 

runtimes are shown in Table 10. Note that the flight lines with higher utility weightings are marked in 

black in Figure 76.  
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Figure 76: Scenario 3, With Fuel Constraints and Non-Uniform Weightings (Top Left: Mission Flight Lines; Top Right: Forward 

Greedy; Bottom Left: Global Greedy; Bottom Right: Ant Colony Optimization) 

Table 10: Scenario 3 Results with Fuel Constraints and Non-Uniform Weightings 

TSP Heuristic Total 

Utility 

Total 

Distance 

% Improvement Total Distance 

from Forward Greedy 

Computational 

Runtime 

Forward Greedy 505 435,954 feet 0% 0.112 seconds 

Global Greedy 505 423,978 feet 2.75% 1.412 seconds 

Ant Colony 

Optimization 

506 432,700 feet 0.75% 3.668 seconds 

 

In this scenario, the Fuel-Constrained Forward Greedy and the Fuel-Constrained Global Greedy were able 

to capture a utility of 505 from the mission scenario (i.e. all 5 of the higher utility weighting flight lines as 
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well as 5 of the other flight lines), but the latter was able to do so in a shorter route. The Ant Colony 

Optimization method was again able to outperform the greedy methods in terms of utility due to the 

greedy methods’ susceptibility for being trapped in local optima, which effectively constrains their graph 

exploration immediately onto the higher weighted flight lines. Although the Fuel-Constrained Ant Colony 

Optimization produced a route longer than the Fuel-Constrained Global Greedy method, it was able to 

capture an additional flight line without violating the range constrain of the mission, making it the more 

optimal choice as it achieves a route higher net utility.  

4.3 Case Study: Multi-Agent Helheim Glacier 

In this section, simulations are conducted to showcase the multi-agent functionality of the developed 

autonomy for the upcoming Helheim deployments discussed in Section 4.2. The performance of the 

systems are then compared to the single-agent condition to assess the potential benefits in terms of 

operational capabilities. These simulations were conducted in the multi-agent MATLAB Simulink 

frameworks outlined in Section 3.7, utilizing the equations of motion described in Section 3.1 and the 

aircraft dynamic models outlined in Section 3.2. The methods for flight line allocation amongst the agents 

in the operation are described in Section 2.5-2.8. Note that following the flight line allocation, each agent 

utilizes the Forward Greedy TSP method for surveying its respective flight lines.  

4.3.1   Collaborative Survey using Two Agents 

In the first multi-agent scenario, the broad survey flight lines from Section 4.2.1 are flown utilizing Mugin-

2930 UASs performing collaborative surveying. These agents utilize the Hungarian Assignment methods 

outlined in Section 2.5 in order to efficiently allocate the flight lines amongst themselves in real-time. 

Following the successful tracking of the mission flight lines, the agents return to their respective home 

loiter circles. The mission scenario is shown in Figure 77, while Figure 78  and Figure 79 show various 

portions of the mission operation. Figure 80 shows the final tracking of the survey operation. The total 
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deployment times for each aircraft is shown in Table 11, which denotes the time between the aircraft 

deploying to survey the flight lines to the time that it returns to the home loiter circle. The total 

deployment time for a single aircraft in the same mission scenario is also given for comparison. Note that 

this single aircraft is using the optimal route developed from the TSP algorithms in Section 4.2.1. 

 

Figure 77: Multi-Agent Scenario 1, t = 0 seconds 
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Figure 78: Multi-Agent Scenario 1, t = 675 seconds 

 

Figure 79: Multi-Agent Scenario 1, t = 1,540 seconds 
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Figure 80: Multi-Agent Scenario 1, Final Tracking 

Table 11: Multi-Agent Scenario 1, Deployment Times 

UAS1 Total Time Deployed 36 minutes, 49 seconds 

UAS2 Total Time Deployed 31 minutes, 14 seconds 

Total Multi-Agent Operational Time 36 minutes, 49 seconds 

Total Operational Time for Single Agent Condition 58 minutes, 36 seconds 

Percent Reduction in Operational Time 37.17% 

 

From Table 11, it can be seen that the two agents can collaboratively survey the flight lines in a shorter 

amount of time than the single agent. By utilizing Hungarian Assignment iteratively onboard each of the 

agents, the mission flight lines are efficiently allocated between the two aircraft. Note that they are 

allocating all of the remaining flight lines amongst the agents in real-time, not simply the nearest 

immediate two flight lines. Also note that this Hungarian Assignment process is conducted in a distributed 



128 
 

manner onboard each of the aircraft, using their current position and the position of the other agents 

communicated over the telemetry modems. While the two aircraft were able to collaboratively survey 

the flight lines in a shorter amount of time than the single agent condition, this total operational time is 

greater than half of the single agent result due to the time spent transiting from the home loiter location 

to the mission flight lines in the outlet glacier channel. 

4.3.2   Collaborative Survey using Five Agents 

In the second multi-agent scenario, the comprehensive survey mission will be conducted with five Mugin-

2930 UASs performing collaborative surveying. Similar to the previous scenario, the agents utilize the 

Hungarian Assignment algorithms outlined in Section 2.5 in order to allocate flight lines, and utilize a 

Forward Greedy TSP method in order to develop flight routes through their respective flight lines. Figure 

81 shows the mission scenario, while Figure 82, Figure 83, and Figure 84 show various portions of the 

mission operation. Figure 85 shows the final tracking of the survey operation. The total deployment times 

for each aircraft is shown in Table 12, where the total deployment time for a single aircraft in the same 

mission scenario is also given for comparison. Note that this single aircraft is using the optimal route 

developed from the TSP algorithms in Section 4.2.3. 
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Figure 81: Multi-Agent Scenario 2, t = 0 seconds 

 

Figure 82: Multi-Agent Scenario 2, t = 130 seconds 
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Figure 83: Multi-Agent Scenario 2, t = 570 seconds 

 

Figure 84: Multi-Agent Scenario 2, t = 1,000 seconds 
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Figure 85: Multi-Agent Scenario 2, Final Tracking 

Table 12: Multi-Agent Scenario 2, Deployment Times 

UAS1 Total Time Deployed 22 minutes, 3 seconds 

UAS2 Total Time Deployed 38 minutes, 4 seconds 

UAS3 Total Time Deployed 27 minutes, 59 seconds 

UAS4 Total Time Deployed 37 minutes, 8 seconds 

UAS5 Total Time Deployed 25 minutes, 51 seconds 

Total Multi-Agent Operational Time 38 minutes, 4 seconds 

Total Operational Time for Single Agent Condition 2 hours, 1 minute, 22 seconds 

Percent Reduction in Operational Time 68.64% 

 

From Table 12 it can be observed that the five agents can survey the flight lines much quicker than the 

single agent condition. Through the Hungarian Assignment process, all of the mission flight lines are 
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efficiently allocated amongst the five agents at each iteration of the autonomy functions in the simulation. 

Note that the computational complexity of this allocation process decreases as the number of remaining 

flight lines decreases. Additionally, as discussed in Sections 4.2.4 and 4.2.5, note that the Mugin-2930 

aircraft has a 90 minute endurance and that a single aircraft would realistically have to perform multiple 

flight operations in order to survey all of the flight lines in this mission scenario. The total mission time for 

these iterative operations would be much greater, and would include time spend in takeoff and landing 

phases, as well as refueling and recharging/swapping batteries. 

4.3.3   Five Agents featuring Robustness to System Failures 

In the third multi-agent scenario, the comprehensive survey operation using five Mugin-2930 UASs from 

the previous section will be repeated, but UAS2 and UAS4 will experience onboard system failures at t = 

570 seconds into the operation. This scenario is introduced to showcase the operational robustness of the 

multi-agent autonomy towards single-agent system failures. When these agents detect their onboard 

system failure, they will cease surveying their flight lines, notify neighboring agents of their failure status, 

and immediately return to their respective home loiter circle. As noted in Section 2.8, since the flight lines 

that these agents were tracking were not finished, they are then available for allocation amongst the 

remaining agents in the operation. Figure 86 shows the initial mission scenario, while Figure 87 shows the 

initial collaborative surveying operation similar to the previous scenario. However, Figure 88 shows the 

reaction of the systems following the system failures aboard UAS2 and UAS4, and Figure 89 shows UAS3 

and UAS5 beginning to survey the unfinished flight lines that were left by the agents that experienced the 

system failures. Figure 90 shows the final tracking of the collaborative survey operation, where it can be 

observed that all of the mission flight lines were successfully surveyed, and Table 13 shows the total 

deployment time for each agent in the operation. 
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Figure 86: Multi-Agent Scenario 3, t = 0 seconds 

 

Figure 87: Multi-Agent Scenario 3, t = 570 seconds 
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Figure 88: Multi-Agent Scenario 3, t = 630 seconds 

 

Figure 89: Multi-Agent Scenario 3, t = 1,500 seconds 
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Figure 90: Multi-Agent Scenario 3, Final Tracking 

Table 13: Multi-Agent Scenario 3, Deployment Times 

UAS1 Total Time Deployed 50 minutes, 16 seconds 

UAS2 Total Time Deployed 13 minutes, 33 seconds 

UAS3 Total Time Deployed 37 minutes, 12 seconds 

UAS4 Total Time Deployed 14 minutes, 30 seconds 

UAS5 Total Time Deployed 42 minutes, 39 seconds 

Total Multi-Agent Operational Time 50 minutes, 16 seconds 

Total Operational Time for Single Agent Condition 2 hours, 1 minute, 22 seconds 

Percent Reduction in Operational Time 58.58% 

 

In this scenario, the agents were able to adapt to the single system failures of Agents 2 and 4, and were 

able to dynamically reallocate the flight lines amongst the remaining functional agents in the collaborative 
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survey operation. Additionally, the agents were still able to successfully survey all of the mission flight 

lines in a significantly reduced time as compared to the single agent condition, though in a slightly longer 

amount of time than in Section 4.3.3 where all of the agents were functional throughout the operation.  

4.3.4   Scheduling Survey using Three Agents 

In a fourth multi-agent scenario, the comprehensive flight lines will be covered by three Mugin-2930 UASs 

utilizing the scheduling algorithm outlined in Section 2.6, so that only one agent will be surveying the flight 

lines at any given time. Note that this scheduling algorithm was introduced in order to reduce possible 

inter-agent interference from the onboard radar systems. The fuel constraint for each agent corresponded 

to a deployment time of 1 hour. Figure 91 shows the mission scenario, while Figure 92, Figure 93, and 

Figure 94 show the operations following the surveying for UAS1, UAS2, and UAS3, respectively. Note that 

each subsequent agent is deployed as soon as the previous agent begins its return to their home loiter, 

reducing the operational time while ensuring only 1 agent is radiating at any given instance. Figure 95 

shows the final tracking of the survey operation. Table 14 details the total deployment time of the 

scheduling survey operation, where the total time is compared with the single agent condition, using the 

optimal route developed from the TSP algorithms in Section 4.2.3.  



137 
 

 

Figure 91: Multi-Agent Scenario 4, t = 0 seconds 

 

Figure 92: Multi-Agent Scenario 4, t = 2,750 seconds 
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Figure 93: Multi-Agent Scenario 4, t = 5,400 seconds 

 

Figure 94: Multi-Agent Scenario 4, t = 7,580 seconds 
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Figure 95: Multi-Agent Scenario 4, Final Tracking 

Table 14: Multi-Agent Scenario 4, Deployment Times 

UAV1 Total Time Deployed 52 minutes, 25 seconds 

UAV2 Total Time Deployed 51 minutes, 9 seconds 

UAV3 Total Time Deployed 43 minutes, 57 seconds 

Total Multi-Agent Operational Time 2 hours, 14 minutes, 48 seconds 

Total Operational Time for Single Agent Condition 2 hours, 1 minute, 22 seconds 

Percent Reduction in Operational Time -11.07% 

 

From Table 14 it can be observed that while the scheduling operation took slightly longer than the single-

agent condition from Section 4.2.3, this single-agent condition is actually infeasible due to the endurance 

constraints for the aircraft (~90 minutes). However, by utilizing the scheduling autonomy in this scenario, 

the three agents were able to feasibly survey the flight lines in a relatively similar amount of time. This 
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scenario shows promising results for the rapid deployment and recovery of systems into and out of the 

mission flight area in deployment scheduling operations. 

4.3.5   Heterogeneous Survey using Three Agents 

In the final multi-agent scenario, a heterogeneous collaborative survey operation will be conducted using 

two Mugin-2930 UASs alongside one Mugin-4450 UAS. Characteristics of these platforms are detailed in 

Section 3.2, where it should be noted that the trim airspeed for the Mugin-2930 platform is 48 knots, 

while the Mugin-4450 has a trim airspeed of 61 knots. In this scenario shown in Figure 96, three clusters 

of five tightly-spaced flight lines are oriented in the along-flow direction of the glacial channel. The 

approximate 7 foot spacing between these flight lines corresponds to the quarter-wavelength of a 35 MHz 

operating radar system, for use in cross-track synthetic aperture processing methods described in Section 

1.4.2. Note the respective home loiter locations for the three agents in Figure 96, where the Mugin-4450 

system has a larger loiter radius due to its increased trim airspeed. Once deployed, the developed 

autonomy will utilize the space partitioning methods described in Section 2.5.4 in order to group the 15 

total flight lines into three distinct clusters, and utilize the heterogeneous modifications described in 

Section 2.7 in order to perform the Hungarian Assignment between these clusters and the agents. Figure 

97 shows the initial deployment of the systems onto the survey flight lines, and Figure 98 shows how the 

agents continue to survey the flight lines in their assigned cluster. Figure 99 shows the instant that UAS3 

has finished surveying its respective cluster, and since all the remaining clusters have an assigned agent 

to survey, UAS3 will begin to return to its home loiter. Figure 100 shows the final tracking for the survey 

operation, while Table 15 shows the total deployment times for the respective vehicles, as well as a 

comparison to the same scenario without the heterogeneous modifications to the Hungarian Assignment 

cost functions. 
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Figure 96: Multi-Agent Scenario 5, t = 0 seconds 

 

Figure 97: Multi-Agent Scenario 5, t = 880 seconds 
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Figure 98: Multi-Agent Scenario 5, t = 1,480 seconds 

 

Figure 99: Multi-Agent Scenario 5, t = 2,930 seconds 
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Figure 100: Multi-Agent Scenario 5, Final Tracking 

Table 15: Multi-Agent Scenario 5, Deployment Times 

UAV1 Total Time Deployed 54 minutes, 5 seconds 

UAV2 Total Time Deployed 52 minutes, 26 seconds 

UAV3 Total Time Deployed 45 minutes, 16 seconds 

Total Multi-Agent Operational Time 54 minutes, 5 seconds 

Total Operational Time without Heterogeneous Modifications 55 minutes, 27 seconds 

Percent Reduction in Operational Time 2.46% 

 

In this heterogeneous survey operation, although UAS3 was deployed from a home loiter location furthest 

(i.e. southern-most) from the flight lines, it was assigned to the furthest flight line cluster (i.e. northern-

most) due to the heterogeneous modifications to the Hungarian Assignment cost functions, which 
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consider not the distance, but the time required to survey the cluster. As UAS3 could transit onto and 

survey the flight line cluster faster than UAS1 and UAS2, this was the optimal assignment of the agents to 

clusters in terms of survey time. From Table 15, it can be observed that the heterogeneous modifications 

to the Hungarian Assignment cost functions were able to reduce the total flight time as compared to a 

similar scenario without the heterogeneous modifications (i.e. using distance as the Hungarian 

Assignment cost function), where UAS3 was assigned to the southern-most flight line cluster.  
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Chapter 5: Flight Test Validation 

In this chapter, flight test validation for the developed autonomy will be presented, both as an onboard 

autonomy for unmanned system operations and as an off-board mission planner for manned operations.  

5.1 Flight Test Procedure 

Preliminary flight testing of the developed autonomy was conducted by the KU Flight Research Lab (KU 

FRL) at the Clinton International Model Airfield in Lawrence, Kansas. Shown in Figure 101, this field 

features a 450 ft North-South runway, as well as a 650 ft East-West runway, and has been extensively 

utilized by the KU FRL team for flight testing various systems. For these flight testing operations, the 

ground station is positioned under the shelter area in the center of the field, with the ground station 

telemetry antenna positioned on the roof of the shelter for increased directivity with the aircraft during 

flight testing activities.  

 

Figure 101: Flight Field 
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The aircraft utilized in this work for validation flight testing is the SkyHunter platform described in Section 

3.2.2. A Pixhawk Cube flight control unit is utilized for aircraft sensor measurements and as a PWM 

generator, while the developed autonomy resides in a ROS framework (see Section 3.8) on an onboard 

Tegra Nano unit communicating to and from the Pixhawk using MAVROS protocols. In this architecture, 

the custom autopilot system onboard the Tegra Nano is capable of controlling the aircraft by sending 

control servo PWM commands to the Pixhawk using the Offboard mode in the PX4 firmware. Both the 

Pixhawk and the Tegra units have distinct telemetry modules and ground stations in order to view aircraft 

diagnostics in real-time.  

Flight test activities are conducted through constant communication between the RC Pilot, the Ground 

Station Operators, and the Flight Test Lead. The RC Pilot uses an RC transmitter in order to manually 

control the aircraft during the takeoff and climb phases. Once at the desired altitude and in a trimmed 

condition about a target airspeed, the RC Pilot transitions control to the autopilot system running on the 

Tegra Nano board. The “base autopilot” developed by the KU FRL then controls the aircraft as it tracks 

four waypoints, creating a large racetrack pattern around the flight field. Once stable control of the aircraft 

is verified, the developed autonomy is engaged using a flag delivered in a waypoint upload from the 

ground station. Once engaged, the developed autonomy then commands a roll angle for the base 

autopilot’s controller to track, and develops the appropriate commands to lead the aircraft into a loiter 

around the home location. The aircraft will continue to track this loiter circle until another flag is sent from 

the ground station, commanding the deployment of the system to survey the mission flight lines. During 

this preliminary flight testing, a 10 mph wind from the East was present, which was a significant factor in 

the tracking performance of the small UAS. 
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5.2 Racetrack Survey Mission 

In the first flight test mission scenario, shown in Figure 102, six parallel survey flight lines of length 860 ft 

are positioned along the center of the field in order to create a “racetrack” pattern for surveying. This 

mission was designed in order to test the Dubins Path guidance methods for approaching the survey lines 

outlined in Section 2.2, as well as the corresponding lateral guidance outlined in Section 3.3, while keeping 

the aircraft inside the designated flight testing area. Note that for this scenario, the aircraft is utilizing the 

Forward Greedy TSP method in real-time for cognitive path planning the order to survey the flight lines. 

This process is occurring inside the Autonomy_Node (see Section 3.8), at a 1 Hz update rate, while the 

Dubins Paths and required roll commands are being generated at a 20 Hz rate by the GNC_Node. 

 

Figure 102: Flight 1 Mission Scenario 

Figure 103 shows the moment that the aircraft deploy signal is transmitted, as well as the tracking of the 

aircraft in a counter-clockwise direction about the home loiter circle prior to the deployment signal, where 

it can be noted that the 10 mph eastern wind significantly affects the tracking performance on the western 

side of the loiter. This overshoot is due to the increased ground speed of the aircraft during the northern 
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portion of the loiter, where the aircraft is experiencing a tailwind. Figure 104 shows the tracking of the 

aircraft as it enters onto the first mission flight line, which was chosen based on the minimum Dubins Path 

length among the flight lines in the mission. An overshoot occurs along this line due to the eastern wind, 

increasing the ground speed of the aircraft as it turns onto the flight line. In Figure 105, the aircraft has 

finished the first flight line and has followed a Dubins Path onto a second flight line. The tracking 

performance of this second flight line is improved due to the reduced ground speed of the aircraft due to 

the headwind during the approach stage onto the flight line. Note that the criteria for switching to the 

next flight line is that the aircraft must cross the half-plane of the flight line endpoint, as outlined in Section 

3.3.4. Figure 106 to Figure 109 show the progression of the aircraft through the mission flight lines, using 

the Forward Greedy TSP method for flight line selection, and the Dubins Path guidance methods for 

approaching the selected flight lines. Note that the symmetric tracking performance of the northern flight 

lines compared to the southern, which can be explained by the eastern wind present during the flight 

operation. Figure 110 shows the final tracking of the aircraft through the mission flight lines and back to 

the home loiter circle for this scenario.  

 

Figure 103: Flight 1 Tracking, t = 0 seconds after deployment 



149 
 

 

Figure 104: Flight 1 Tracking, t = 22 seconds 

 

Figure 105: Flight 1 Tracking, t = 50 seconds 
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Figure 106: Flight 1 Tracking, t = 82 seconds 

 

Figure 107: Flight 1 Tracking, t = 117 seconds 
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Figure 108: Flight 1 Tracking, t = 150 seconds 

 

Figure 109: Flight 1 Tracking, t = 185 seconds 
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Figure 110: Flight 1 Final Tracking 

The overall performance of the flight controller with respect to the commanded roll angle by the 

developed autonomy is shown in Figure 111, where it can be observed that while the controller follows 

the command trends well, noise and steady state errors exist, which can result in degraded tracking 

performance. Note that these errors can be the result of a variety of factors other than the flight 

controller, such as external disturbances and un-modeled dynamics such as aeroelastic effects on the 

foam airframe. 
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Figure 111: Flight 1, Overall Roll Angle Tracking 

In Figure 112, the tracking performance of the aircraft with respect to the survey flight lines is shown, with 

the start of new flight lines depicted as vertical partitions on the graph. Note that the difference in time 

to survey for flight lines 1, 3, and 5 compared to line 2, 4, and 6 are directly a function of the tailwinds and 

headwinds, respectively. Also note the data in this figure corresponds only to the off-track position error 

of the aircraft when it is between the two endpoints for each respective flight line, and does not include 

the portions of flight where the aircraft is approaching the flight lines. Figure 113 shows the aircraft roll 

angle during the flight line surveying, while Figure 114 shows the heading error with respect to the flight 

line. Note that from Section 1.4.2, the ideal tracking of mission flight lines involve low off-track positional 

errors, along with low aircraft roll angles and low heading errors from the survey direction. Also note that 

the errors between the commanded roll angles from the developed autonomy and the achieved roll 
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angels from the flight controller shown in Figure 113 directly contribute to positional tracking errors with 

respect to the flight line.  

 

Figure 112: Flight 1, Off-Track Distance Analysis during Flight Line Tracking 
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Figure 113: Flight 1, Roll Angle Tracking Analysis during Flight Line Tracking 

 

Figure 114: Flight 1, Heading Error Analysis during Flight Line Tracking 
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Table 16 depicts the overall survey results for the racetrack mission, while Table 17 depicts the tracking 

performance with respect to each survey flight line. In this scenario, while the developed autonomy was 

successfully able to create an efficient route through the mission flight lines and generate optimal 

approaches using Dubins Path guidance methods, significant improvement can be made in the tracking 

performance for the aircraft with respect to the mission flight lines. However, the performance of the 

northern lines varied dramatically from the southern lines, indicating the effect of the wind on the aircraft 

tracking. The aircraft’s best survey was for Flight Line 4, with a maximum off-track error of 11.11 feet for 

the entire end-to-end coverage of the flight line. 

Table 16: Flight 1, Overall Survey Results 

Total Deployment 

Time 

Max Distance 

from Flight Line 

RMS Tracking Error 

from Flight Line 

Max Roll 

Angle 

Max Heading 

Error 

198 seconds 76.49 feet 18.75 feet 21.88 degrees 19.09 degrees 

 

Table 17: Flight 1, Flight Line Survey Analysis 

Flight Line 

Number 

Max Distance 

from Line (feet) 

RMS Tracking Error 

from Flight Line (feet) 

Max Roll Angle 

(degrees) 

Max Heading 

Error (degrees) 

1 76.49 23.98 21.58 19.09 

2 31.96 9.34 9.27 11.34 

3 69.55 22.66 21.88 17.64 

4 11.11 4.35 6.50 10.15 

5 69.57 22.14 20.36 16.89 

6 23.64 7.97 6.45 7.89 
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5.3 Tightly-Spaced Surveying Mission 

In a second flight testing scenario, four parallel flight lines are positioned with 7 ft spacing in order to 

assess the capabilities of the system for survey operations required for cross-track synthetic aperture 

processes, as described in Section 1.4.2. Similar to the previous scenario, the Forward Greedy TSP method 

will be used for real-time route construction through the mission flight lines, while Dubins Paths will be 

utilized for generating optimal approaches onto the flight lines. This flight testing scenario is shown in 

Figure 115. 

 

Figure 115: Flight 2, Mission Scenario 

Figure 116 depicts the instant at which the deploy signal is sent to the aircraft, where the tracking of the 

aircraft about the home loiter can be noted. Figure 117 shows the tracking of the aircraft onto the first 

flight line, while Figure 118 shows the tracking of the aircraft onto the second flight line in the mission. 

Note that the aircraft utilizes the Dubins Path “Type 5” and “Type 6” architectures outlined in Section 

2.2.2, which are the optimal path when the aircraft needs to approach a nearby position but with a 180 

degree heading change. Figure 119 and Figure 120 show the tracking of the aircraft onto the third and 



158 
 

fourth flight line, respectively, while Figure 121 shows the aircraft return to a loiter about the home 

position, as well as the overall tracking in the survey mission. 

 

Figure 116: Flight 2 Tracking, t = 0 seconds after deployment 

 

Figure 117: Flight 2 Tracking, t = 14 seconds after deployment 
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Figure 118: Flight 2 Tracking, t = 68 seconds after deployment 

 

Figure 119: Flight 2 Tracking, t = 113 seconds after deployment 
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Figure 120: Flight 2 Tracking, t = 179 seconds after deployment 

 

Figure 121: Flight 2 Final Tracking 

Figure 122 shows the overall tracking performance of the flight controller with respect to the commanded 

roll angle from the developed autonomy, where it can again be noted that oscillations and steady state 
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errors will degrade from the desired tracking performance. Again, in addition to the flight controller, wind 

disturbances and aeroelastic characteristics of the small UAS can contribute to these observed errors.   

 

Figure 122: Flight 2, Overall Roll Angle Tracking 

Figure 123 shows the off-track positional errors for the aircraft during the end-to-end survey of the 

mission flight lines, with the start of new flight lines depicted as vertical partitions on the graph. Figure 

124 and Figure 125 depict the aircraft roll angle and aircraft heading errors during these flight portions, 

respectively. Again, note that the errors between the commanded and actual roll angles in Figure 124 

directly affect the off-track positional error of the aircraft during the flight line survey. Notably for Flight 

Line 4, a steady state positional error of ~35 feet occurs along the stretch of the flight line, which 

corresponds to a steady state error between the developed autonomy command and the achieved aircraft 

roll angle. 
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Figure 123: Flight 2, Off-Track Distance Analysis during Flight Line Tracking 

 

Figure 124: Flight 2, Roll Angle Tracking Analysis during Flight Line Tracking 
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Figure 125: Flight 2, Heading Error Analysis during Flight Line Tracking 

Table 18 shows the overall survey results for this mission scenario, while Table 19 shows the tracking 

results for each individual flight line in the mission. In this mission scenario, while the aircraft was able to 

successfully achieve the desired maneuvers between the flight lines, significant improvement can be 

made in terms of the off-track error during the tracking of the flight lines themselves.  

Table 18: Flight 2, Overall Survey Results 

Total Deployment 

Time 

Max Distance 

from Flight Line 

RMS Tracking Error 

from Flight Line 

Max Roll Angle Max Heading 

Error 

176 seconds 62.76 feet 28.22 feet 23.39 degrees 21.88 degrees 
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Table 19: Flight 2, Flight Line Survey Analysis 

Flight Line 

Number 

Max Distance 

from Line (feet) 

RMS Tracking Error 

from Flight Line (feet) 

Max Roll Angle 

(degrees) 

Max Heading 

Error (degrees) 

1 62.76 32.84 23.39 21.88 

2 32.93 24.95 16.44 16.32 

3 45.88 21.06 11.83 17.81 

4 37.88 40.14 -6.89 8.77 

 

5.4 Mission Planning for Manned Operations 

Additional validation for the developed autonomy was achieved during a manned deployment to the Black 

Hills National Park in South Dakota in February, 2020. Funded by the National Oceanic and Atmospheric 

Administration (NOAA), this operation featured the CReSIS Snow Radar equipped onto a Cessna-172 in 

order to obtain spatially continuous snow depth measurements for seasonal prediction of streamflow in 

hydrological models [85]. Given the fuel constraints for the aircraft, the TSP heuristics in this work were 

utilized as an off-board package for first determining what minimum spacing could be achieved for full 

coverage of the main basin of the park, as well as what optimal route should be used to survey the mission 

flight lines. The aircraft departed and returned from the Rapid City Regional Airport, and a strict mission 

duration constraint of 3 hours was applied for mission planning in order to ensure safe operations for the 

crew. To capture various orientations of the park while staying within this endurance constraint, missions 

for 3 km spacing were created, as shown in Figure 126 and Figure 128. Using the TSP heuristics in this 

work, trivial solutions for the mission route were created, as shown in Figure 127 and Figure 129. 

Subsequent flights with similar line spacing and orientations were later designed for 1.5 km offsets from 

the previously flown lines, in order to obtain a 1.5 km grid of the area. Finally, a more complex flight was 
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designed that surveyed various SNOWTEL sites (where a known snow depth is measured and can be used 

to validate radar measurements), as well as areas of varying ground terrain and vegetation (where 

differences in radar measurements could be analyzed). This mission scenario is shown in Figure 130, 

where the TSP algorithms in this work were used to develop an efficient path, shown in Figure 131. 

Through this project, the developed autonomy is this work also shows promise in improving the mission 

efficiency for future manned CReSIS operations, by acting as an automated mission planner that 

incorporates aircraft fuel constraints.  

 

Figure 126: Black Hills Flight 1, Mission Scenario 
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Figure 127: Black Hills Flight 1, Developed Route 

 

Figure 128: Black Hills Flight 2, Mission Scenario 
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Figure 129: Black Hills Flight 2, Developed Route 

 

Figure 130: Black Hills Flight 3, Mission Scenario 
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Figure 131: Black Hills Flight 3, Developed Route 
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Conclusion 

In this work, mission-oriented autonomy was designed to improve the operational capabilities and 

mission efficiency of polar research operations. The motivation for polar research activities, recent 

technological advances in unmanned systems, and operational considerations that drive these mission-

oriented autonomy features and capabilities were discussed. The features of the developed autonomy 

included (1) automated flight line generation, (2) optimal guidance methods, (3) cognitive real-time 

routing algorithms, (4) modifications for fuel-constrained surveying, (5) collaborative Multi-Agent 

surveying operations, (6) deployment scheduling, (7) heterogeneous capabilities, and (8) robustness 

contingencies for single-agent system failures. These autonomy features were developed in MATLAB and 

tested in Simulink environments. Case studies for past and future deployments were conducted to assess 

the potential improvements in mission capabilities that could result from the developed autonomy.  

These case studies showed that the developed autonomy was able to improve the end-to-end tracking 

performance for mission flight lines compared to traditional waypoint guidance methods, was able to 

reduce mission times by creating efficient routes through complex mission flight lines, and was able to 

adapt to range constraints in order to ensure safe return to the home loiter circle in the events of 

infeasible mission plans. Additionally, these case studies showed how the implementation of multi-agent 

operations could significantly improve the operational capabilities and data collection for these polar 

research operations. Case studies for collaborative surveying and deployment scheduling were 

conducted, as well as studies demonstrating heterogeneous operations and the robustness of the 

autonomy design towards single agent system failures. The autonomy was then implemented onto an 

embedded system aboard a small UAS for preliminary flight testing, where the real-time decision making 

and path planning for the developed autonomy showed promising results. However, significant work 
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remains for the flight test validation of this work, particularly for incorporating multi-agent operations. 

Finally, the developed autonomy was used to assist mission planning for a manned CReSIS operation.  

The impact of this work is the development of a software package for future polar research deployments 

which includes a flexible, cognitive environment for automated and adaptive mission planning, with 

application for both manned or unmanned, single agent or multi-agent, and homogeneous or 

heterogeneous operations. Additionally, the software package is hardware agnostic, and the associated 

guidance can be tuned for various platform types. Through automated flight line generation and mission 

planning, significant workload can be alleviated from human operators, who can then transition their 

focus onto other mission critical tasks. While several COTS tools currently exist that can be used to assist 

operators for mission planning purposes, the developed autonomy has been tailor-made for polar 

research operations, and can be integrated onboard the autopilot systems for providing real-time, 

cognitive decision making that is adaptive to changing mission parameters. Additionally, as the mission 

objectives in this work are flight line surveys, the developed autonomy could directly be utilized for other 

applications that can benefit from automated mission planning and adaptive re-planning, such as crop 

monitoring or search and rescue operations.  
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