138 research outputs found

    RSSI and LQI Data Clustering Techniques to Determine the Number of Nodes in Wireless Sensor Networks

    Get PDF
    With the rapid proliferation of wireless sensor networks, different network topologies are likely to exist in the same geographical region, each of which is able to perform its own functions individually. However, these networks are prone to cause interference to neighbor networks, such as data duplication or interception. How to detect, determine, and locate the unknown wireless topologies in a given geographical area has become a significant issue in the wireless industry. This problem is especially acute in military use, such as spy-nodes detection and communication orientation systems. In this paper, three different clustering methods are applied to classify the RSSI and LQI data recorded from the unknown wireless topology into a certain number of groups in order to determine the number of active sensor nodes in the unknown wireless topology. The results show that RSSI and LQI data are capable of determining the number of active communication nodes in wireless topologies

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Performance Analysis of Denial-of-Sleep Attack-Prone MAC Protocols in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. On the other hand, the presence as well as the absence of security features implemented in resource constrained sensors can have negative effects on their energy consumption. Indeed, the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection could give room for energy-drain attacks such as denial-of-sleep attacks which has a higher negative impact on the life span (availability) of the sensors than the presence of security techniques. This paper focuses on denial-of-sleep attacks by simulating three Media Access Control (MAC) protocols – Sensor-MAC, Timeout-MAC and TunableMAC – under different network sizes. We evaluate, compare, and analyse the received signal strength and the link quality indicators for each of these protocols. The results of our simulation provide insight into how these parameters can be used to detect a denial-of-sleep attack. Finally, we propose a novel architecture for tackling denial-of-sleep attacks by propagating relevant knowledge via intelligent agents

    Evaluation of Wireless Sensor Networks Technologies

    Get PDF
    Wireless sensor networks represent a new technology that has emerged from developments in ultra low power microcontrollers and sophisticated low cost wireless data devices. Their small size and power consumption allow a number of independent ‘nodes’ (known as Motes) to be distributed in the field, all capable of ad-hoc networking and multihop message transmission. New routing algorithms allow remote data to be passed reliably through the network to a final control point. This occurs within the constraints of low power RF transmissions in a congested 2.4GHz radio spectrum. Wireless sensor network nodes are suitable for applications requiring long term autonomous operation, away from mains power supplies, such as environmental or health monitoring. To achieve this, sophisticated power management techniques must be used, with the units remaining ‘asleep’ in ultra low power mode for long periods of time. The main aim of this research described in this thesis is first to review the area and then to evaluate one of the current hardware platforms and the popular software used with it called TinyOS. Therefore this research uses a hardware platform designed from University of Berkeley, called the TmoteSky. Practical work has been carried out in different scenarios. Using Java tools running on a PC, and customized applications running on the Motes, data has been captured, together with information showing topology configuration and adaptive routing of the network and radio link quality information. Results show that the technology is promising for distributed data acquisition applications, although in time critical monitoring systems new power management schemes and networking protocols to improve latency in the system will be required

    A Proposal of the Fingerprint Optimization Method for the Fingerprint-Based Indoor Localization System with IEEE 802.15.4 Devices

    Get PDF
    Nowadays, human indoor localization services inside buildings or on underground streets are in strong demand for various location-based services. Since conventional GPS cannot be used, indoor localization systems using wireless technologies have been extensively studied. Previously, we studied a fingerprint-based indoor localization system using IEEE802.15.4 devices, called FILS15.4, to allow use of inexpensive, tiny, and long-life transmitters. However, due to the narrow channel band and the low transmission power, the link quality indicator (LOI) used for fingerprints easily fluctuates by human movements and other uncontrollable factors. To improve the localization accuracy, FILS15.4 restricts the detection granularity to one room in the field, and adopts multiple fingerprints for one room, considering fluctuated signals, where their values must be properly adjusted. In this paper, we present a fingerprint optimization method for finding the proper fingerprint parameters in FILS15.4 by extending the existing one. As the training phase using the measurement LQI, it iteratively changes fingerprint values to maximize the newly defined score function for the room detecting accuracy. Moreover, it automatically increases the number of fingerprints for a room if the accuracy is not sufficient. For evaluations, we applied the proposed method to the measured LQI data using the FILS15.4 testbed system in the no. 2 Engineering Building at Okayama University. The validation results show that it improves the average detection accuracy (at higher than 97%) by automatically increasing the number of fingerprints and optimizing the values

    Probabilistic assessment of high-throughput wireless sensor networks

    Get PDF
    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved.ope
    • 

    corecore