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Abstract: Nowadays, human indoor localization services inside buildings or on underground streets
are in strong demand for various location-based services. Since conventional GPS cannot be used,
indoor localization systems using wireless technologies have been extensively studied. Previously, we
studied a fingerprint-based indoor localization system using IEEE802.15.4 devices, called FILS15.4, to allow
use of inexpensive, tiny, and long-life transmitters. However, due to the narrow channel band and
the low transmission power, the link quality indicator (LQI) used for fingerprints easily fluctuates by
human movements and other uncontrollable factors. To improve the localization accuracy, FILS15.4
restricts the detection granularity to one room in the field, and adopts multiple fingerprints for one
room, considering fluctuated signals, where their values must be properly adjusted. In this paper, we
present a fingerprint optimization method for finding the proper fingerprint parameters in FILS15.4 by
extending the existing one. As the training phase using the measurement LQI, it iteratively changes
fingerprint values to maximize the newly defined score function for the room detecting accuracy.
Moreover, it automatically increases the number of fingerprints for a room if the accuracy is not
sufficient. For evaluations, we applied the proposed method to the measured LQI data using the
FILS15.4 testbed system in the no. 2 Engineering Building at Okayama University. The validation
results show that it improves the average detection accuracy (at higher than 97%) by automatically
increasing the number of fingerprints and optimizing the values.

Keywords: indoor localization; fingerprint; IEEE802.15.4; LQI; parameter optimization

1. Introduction

Currently, a variety of location-based services have been offered in outdoor and indoor
environments. While the global positioning system (GPS) can be used for outdoors, it fails
to cover indoor fields [1,2]. Then, to cover indoors, indoor localization systems have been
explored using different wireless technologies, such as RFID, ultra wide-band (UWB), IEEE
802.11 Wi-Fi, and Bluetooth [3], and various positioning techniques [4], such as fingerprinting,
time difference of arrival (TDoA), angle of arrival (AoA), lateration, pattern matching, etc.

Fingerprinting has gained great interest due to the capability of achieving reasonable
accuracy using the radio map pattern matching [5]. This method consists of the calibration
phase and the detection phase. In the calibration phase, the radio signal map for each location
or section in the target field is collected and stored, assuming that each section has its
own specific radio pattern called the fingerprint, which should be different from the one in
another section. In the detection phase, the radio signal is compared with each fingerprint
in the radio map, and the closest one is selected to identify the current location. With
considerable calibration efforts, this method can provide robust detection capabilities [6].
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Previously, we developed a fingerprint-based indoor localization system using the IEEE802.15.4
protocol, called FILS15.4 for convenience [7,8]. FILS15.4 adopts IEEE802.15.4 devices from
Mono Wireless [9], because the transmitter is inexpensive (30US), tiny (13.97 × 13.97 × 2.5 mm,
0.93 g), has long-life, no user software to download, and no user setup; it is suitable to
be always be worn by a user during location detection. The signal from the transmitter
can be received at multiple receivers that are fixed in the field at the same time. When the
transmitter is located at a specific location, the LQI (link quality indicator) at the receiver
becomes the fingerprint to the location.

However, the LQI of this device can be easily fluctuated due to human movements in
the field and transmission environment changes from opening/closing doors and other
wireless signals at the 2.4 GHz band, because of the small transmission power and the
narrow channel bandwidth of IEEE802.15.4. This signal fluctuation problem can cause the
misdetection of FILS15.4 and becomes the bottleneck of using this device for the indoor
localization system.

For many practical applications and services for indoor localization systems, it will be
sufficient to detect the room in a building where the user is currently staying, instead of the
exact coordinate of the user location. Then, if a room is regarded as the least localization
unit, the signal fluctuation problem may be overcome. Since walls separating rooms in
the field attenuate the wireless signal sufficiently, the signal strength in the room can
be different from the ones in other rooms, where the difference can be larger than the
fluctuation range.

By limiting the detection granularity to one room, it is expected to achieve high
accuracy, even using IEEE802.15.4 devices. Moreover, it becomes possible to use plural
fingerprints with different values to represent one room. Therefore, FILS15.4 has been
designed to detect the ’currently staying room’ of a user and to adopt multiple fingerprints
for each room detection. Then, it becomes critical to optimize the number of fingerprints
for each room and the fingerprint values, which will be hard if done manually.

In this paper, we present the fingerprint optimization method for FILS15.4 to automatically
optimize the number of fingerprints and their values for every room, by employing the
existing parameter optimization tool in [10]. The procedure of calculating the score to
evaluate the optimality of the current fingerprint selection is newly defined to determine
the validity of the parameter changes in the method. For the given measured data sets
where the correct detection results are known, this method automatically changes the
number of fingerprints and their values to maximize the score.

For evaluations, we applied the proposed method to the measured LQI data at the no.
2 Engineering Building at Okayama University. The results show that the average detection
accuracy rises higher than 97% for any room by increasing the number of fingerprints and
setting the proper values by the method. Moreover, the results with the transmitter, under
LQI fluctuation causes, also showed high accuracy using the same set of fingerprints.

The rest of this paper is organized as follows: Section 2 presents comparisons of
various localization techniques of indoor localization systems. Section 3 reviews FILS15.4
and discusses the LQI fluctuation problem. Section 4 presents the fingerprint optimiza-
tion method for FILS15.4. Sections 5 and 6 show the evaluations of the proposal in the
detection accuracy of static LQI data and detection accuracy over time. Section 7 shows
the evaluations with fluctuation causes. Section 8 presents evaluation results by using the
proposed method. Section 9 shows the related work. Section 10 concludes this paper with
future works.

2. Comparison of Indoor Localization Techniques

In this section, we compare the features of typical indoor localization techniques.
We compared the features of the four typical indoor localization techniques, namely,

fingerprinting in the proposal, signal propagation model-based method, time of arrival (ToA), and
angle of arrival (AoA), in Table 1.
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Table 1. Comparison of indoor localization techniques.

Feature Fingerprinting Signal Propagation
Model-Based

Time of Arrival
(ToA)

Angle of Arrival
(AoA)

accuracy high low high low
time synchronization no no yes no
directional antenna no no no yes

implementation cost low low high high

The signal propagation model-based method needs the mathematical model to accurately
estimate the RSS at every necessary location in the indoor environment. However, the
required accurate model may not exist because the signal attenuations by various obstacles
or materials are hard to estimate. The RSS is often affected by environmental changes such
as human movements, door opening/closing, and other interfering wireless signals, and
even temperature/moisture changes. Therefore, this method suffers from low accuracy.

ToA needs the accurate time synchronization between the transmitter and the receiver,
because the distance between them is calculated by the difference between the radio signal
transmission time at the transmitter and its reception time at the receiver. This requirement
increases the implementation cost.

AoA needs the accurate detection of the signal reception angle from the transmitter
using the accurate directional antenna. However, conventional user devices, such as
personal computers and smartphones, are not equipped with such antennas. Thus, this
requirement also increases the implementation cost.

On the other hand, fingerprinting does not need such special hardware or software
and can reduce the implementation cost. References in [11,12] show that this method gives
robust accuracy by building the radio map of the known locations in the target field by
collecting the received signal strength information under various environmental changes.
Therefore, we chose the fingerprinting method as the indoor localization technique in
this paper.

Furthermore, in FILS15.4, multiple signal strengths under different propagations,
which are necessary in location detections, are obtained by receiving the wireless signal
from one transmitter attached to the user, at the multiple receivers that are fixed at different
locations in the field. On the other hand, in Wi-Fi-based systems, they are obtained
by receiving the signals from different transmitters (access points), at the receiver that
is attached to the user and can be often moved. FILS15.4 can send the received signal
information to the server without using the mobile communication system, which can
reduce the operation cost and enhance the dependability.

3. Review of FILS15.4 and the Fluctuation Problem

In this section, we review FILS15.4 and the signal fluctuation problem in our previ-
ous works.

3.1. System Overview

Figure 1 shows the system overview of FILS15.4. The user carries the transmitter
during detections. The transmitter transmits the data at the 500 ms interval to the receivers
that are located at the fixed locations in the field and are attached to Raspberry Pi devices
by USB connections. The received data and LQI are sent to the server using the MQTT
protocol system at the 60 s interval. The server compares the received LQI with the stored
fingerprints and finds the current room of the user.
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Figure 1. FILS15.4 system overview.

3.2. IEEE 802.15.4 Devices

In FILS15.4, the devices following the IEEE 802.15.4 standard from Mono Wireless [9]
were adopted. For the transmitter, Twelite 2525 was used. The size of this transmitter was
only 2.5 × 2.5 × 1 cm, which is suitable to be carried by the user. During our experiments,
it was attached on the wrist of the user. This device uses the 2.4 GHz band, which can be
interfered with IEEE 802.11 Wi-Fi.

For the receiver, Mono Stick was used and was connected to Raspberry Pi over a USB
port. Raspberry Pi receives the packets from the transmitter and monitors the link quality
indication (LQI) at the packet reception. Then, every one minute, it transmits the data in the
packets and the LQI data to the server through the MQTT protocol [13].

The server stores the received data in the SQLite database, calculates the average LQI,
combines the values from all the receivers as a vector, saves them as the fingerprint with
the corresponding location label in the calibration phase, or calculates the Euclidean distance
between the measured average LQI and each fingerprint to detect the current room in the
detection phase.

3.3. Calibration Phase

In the calibration phase, the server calculates the fingerprint for each room offline by
the following procedure. The calibration phase flow chart shows in Figure 2:

(1) Properly locate the Raspberry Pi devices with the receivers in the target field.
(2) Run the programs and create the connection to the MQTT broker.
(3) Locate the transmitter at the specified location in the field. In our experiments, we

selected 18 locations where we moved the transmitter from one place to another after
measuring LQI for one minute by transmitting packets every 500 ms.

(4) Receive and collect the packets from the transmitter at the Raspberry Pi device for
one minute.

(5) Forward the collected data from the Raspberry Pi device to the server through the
MQTT broker.

(6) For each receiver, calculate the average LQI using the forwarded data from it after the
last average LQI calculation.

(7) Make the fingerprint at the server, and store them in the SQLite database.



Information 2022, 13, 211 5 of 29

Figure 2. Calibration phase flow chart.

3.4. Detection Phase

In the detection phase, the server detects the current room of the user by applying steps
(1)–(6) in the procedure for the calibration phase periodically. Then, in step (7), after the
vector of the average LQI values from all the receivers are obtained, the Euclidean distance
is calculated against every pre-stored fingerprint by Equation (1), and the room whose
fingerprint has the smallest distance is appointed as the detected room.

disFk
i =

√√√√ n

∑
j=1

(ri
j − Rk

j )
2 (1)

where

• disFk
i represents the Euclidean distance between the i-th measured average LQI and

the fingerprint for room k;
• ri

j does the i-th measured average LQI at receiver j; and

• Rk
j does a fingerprint for room k at receiver j.

3.5. Signal Fluctuation Problem

In our preliminary experiments, we collected LQI data for one hour using five receivers
on the third floor of the no. 2 Engineering Building at Okayama University in Figure 3 and
observed the signal fluctuation problem.

Figure 3. Experiment field layout for fluctuations causes.
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Figure 4 shows the measured LQI data at the five receivers, LQ1–LQ5, when the
transmitter was located at D307-2. Any data always fluctuated. Sometimes no data were
received at the four receivers except LQ2 due to the connection loss, where LQI = 5 indicates
no data reception. It could be caused by the human movements in the field, where someone
in the field. blocked the signal path, or closed the door of the room.

Figure 4. Measured LQI data for D307-2.

3.6. LQI Observations

Let us discuss the observations of each LQI data in Figure 4.

• At LQ2, which comes from the nearest receiver from the transmitter, no connection loss
appeared, and two different LQI levels can be observed.

• At LQ1, LQ3, and LQ4, one connection loss appeared, and two-three different LQI levels
can be observed.

• At LQ5, connection loss often appeared, whereas the LQI level is almost constant.

These observations suggest that the plural fingerprints are necessary for this room
where the number and their values should be properly selected based on the data.

4. Fingerprint Optimization Method for FILS15.4

In this section, we present the fingerprint optimization method for FILS15.4 by extend-
ing the work in [10].

4.1. Parameter Symbols

First, we define the parameter symbols to present the procedure of the fingerprint
optimization method.

• P: the set of the n parameters for the algorithm/logic in the logic program whose
values should be optimized. In this paper, each parameter represents one finger-
print value.

• pi: the value of the ith parameter (fingerprint) in P (1 ≤ i ≤ n).
• pinit

i : the initial value of the ith parameter in P (1 ≤ i ≤ n).
• ∆pi: the change step for pi.
• ti: the tabu period for pi in the tabu table.
• S(P): the score of the algorithm/logic using P.
• Pbest: the best set of the parameters.
• S(Pbest): the score of the algorithm/logic where Pbest is used.
• L: the log of the generated parameter values and their scores.
• M: the number of rooms in the field.
• R: the number of receivers.
• Fk

j :the j-th fingerprint vector for the k-th room (1 ≤ k ≤ M).
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• f tk: the number of trials for fingerprint number optimization for the k-th room
(1 ≤ k ≤ M).

• FT: the maximum number of trials for fingerprint number optimization.

Among them, ∆pi, ti and FT need to be properly set as the algorithm parameters in
the proposal. Actually, in this paper, ∆pi = 1, ti = 10, and FT = 3 are used.

4.2. Algorithm Procedure

The proposed parameter optimization method consists of three phases. The following
procedure describes it for optimizing the parameter values in P to minimize the score S(P):

Initialization Phase

(1) Clear the generated parameter log L.
(2) Initialize the number of fingerprint increase trials for the k-th room by: f tk = 0

(1 ≤ k ≤ M).
(3) Set the initial value in the parameter file for any pi in P, set 0 for any tabu period ti,

and set a large value for S(Pbest).

Fingerprint Value Optimization Phase

(4) Generate the neighborhood parameter value sets for P by:

(a) Randomly selecting one parameter pi for ti = 0.
(b) Calculate the parameter values of pi

− and pi
+ by:

pi
− = pi − ∆pi, if pi > lower limit,

pi
+ = pi + ∆pi, if pi < upper limit. (2)

(c) Generate the neighborhood parameter value sets P− and P+ by replacing pi
by pi

− or pi
+:

P− = {p1, p2, . . . , pi
−, . . . , pn}

P+ = {p1, p2, . . . , pi
+, . . . , pn}

(5) When P (P−, P+) exists in L, obtain S(P) (S(P−), S(P+)) from L. Otherwise, execute
the logic program using P (P−, P+) to obtain S(P) (S(P−), S(P+)), and write P and
S(P) (P− and S(P−), P+ and S(P+)) into L.

(6) Compare S(P), S(P−), and S(P+), and select the parameter value set that has the
largest one among them.

(7) Update the tabu period by:

(a) Decrement ti by −1 if ti > 0.
(b) Set the given constant tabu period TB for ti if S(P) is the largest at (6) and pi is

selected at (4)(a).

(8) When S(P) is continuously largest at (6) for the given constant times, go to (9).
Otherwise, go to (4).

(9) When the hill-climbing procedure in (10) is applied for the given constant times HT,
go to (11) as the state is converged. Otherwise, go to (10).

(10) Apply the hill-climbing procedure:

(a) If S(P) < S(Pbest), update Pbest and S(Pbest) by P and S(P).
(b) Reset P by Pbest.
(c) Randomly select pi in P, and randomly change the value of pi within its range

and go to (4).

(11) Terminate the algorithm and output the current fingerprint parameter values if the
number of fingerprint increase trials for every room become the maximum: f tk = FT.

Fingerprint Number Optimization Phase
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(12) If the last fingerprint increase (the k-th room) cannot improve the score function
S(Pbest), increment f tk by 1, and rollback the previous fingerprint parameter values
before this last fingerprint increase.

(13) Save and keep the current fingerprint parameter values for the rollback procedure.
(14) Randomly select one room (let the k-th room) that has f tk < FT (which does not reach

the maximum trials).
(15) Generate a new fingerprint for the k-th room by increasing n to n+R and by copying the

parameter value of a randomly selected fingerprint for the same k-th room. Here, each
of the R parameter values for the new fingerprint is copied from the corresponding
parameter value of the randomly selected fingerprint for the same room.

(16) Set 0 for the tabu period ti of any fingerprint parameter, and set a large value for
S(Pbest).

(17) Go to (4).

Initialization phase describes the procedure of initializing the necessary variables in
the method. Fingerprint value optimization phase describes the procedure of optimizing
the fingerprint values when the number of fingerprints for each room is fixed. Finger-
print number optimization phase describes the procedure of optimizing the number of
fingerprints for each room, which is newly presented in this paper.

4.3. Score Calculation Procedure

The procedure of calculating the score S(P) for a given set of fingerprint values P and
the measured LQI is presented as follows:

(1) Calculate the Euclidean distance disFk
i between the i-th average measured LQI and

the k-th current fingerprint.
(2) Find disFOK that represents the minimum Euclidean distance against a fingerprint

representing the correct room.
(3) Find disFNG that represents the minimum Euclidean distance against a fingerprint

representing the incorrect room.
(4) Calculate S(P) by:

S(P) = A
N

∑
i=1

true(disFOK − disFNG) + B
N

∑
i=1

disFNG

disFOK + C
M

∑
k=1

min
b 6=c
| Fk

b − Fk
c | (3)

where A and B represent constant coefficients (A = 10, B = 1 and C = 1 in this paper), N is
the number of the average measured LQI for the optimization, the function true(x) returns
1 if x > 0 and 0 otherwise. The C-term represents the sum of the minimum Euclidean
distance between two different fingerprints for the same room. It intends to generate
different fingerprint values for the same room. Optimization method flow in Figure 5.

Figure 5. Fingerprint optimization method flow chart.
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5. Evaluation of Detection Accuracy

In this section, we evaluate the proposal in terms of the detection accuracy using the
measured LQI data by FILS15.4 on the third floor of the no. 2 Engineering Building at
Okayama University in Figure 3.

5.1. Field Layout

This field was composed of six rooms and one corridor. Five receivers were deployed
to be balanced between them. The transmitter was moved to each transmitter target location
and was kept running for one week to collect measured LQI data at each location.

5.2. Detection Result before Proposal

First, we discuss the detection results before applying the proposal.

5.2.1. Fingerprints

Here, we prepared one fingerprint for each room and selected the values by taking
the average of the measured LQI data. Table 2 shows the fingerprint values for the seven
rooms including the corridor.

Table 2. Fingerprint before proposal.

Room Rk
1 Rk

2 Rk
3 Rk

4 Rk
5

RC 74 33 14 147 22
Corridor 38 46 68 36 112

D306 29 15 118 41 53
D307 65 112 48 50 10
D308 81 77 30 66 5
Toilet 62 5 66 49 52
D305 5 5 37 34 59

5.2.2. Detection Results

Table 2 shows the results by FILS15.4 before applying the proposal, when each room
is assigned one fingerprint. This table includes the room detection accuracy, the average of
the minimum distance to the correct room (disFOK), the average of the minimum distance
to incorrect room (disFNG), and the difference between disFNG and disFOK (margin). The de-
tection accuracy is calculated by (total_time−misdetection_time)/total_time× 100, where
total_time represents the total time of measuring the LQI data, and misdetection_time does
the sum of the time of incorrectly detecting the room among them.

The detection accuracy at Toilet is lowest and that at the corridor is the next, which
is less than 80%. For them, the margin is very small compared with the others. Thus,
even small fluctuations of LQI can cause misdetections for them. When the score S(P) in
Equation (3) is calculated, it becomes 201,407.64, which should be improved.

5.3. Detection Result after Proposal

Then, we applied the proposed method by using the fingerprint values in Table 3 for
the initial parameter values. For this application, we divided the collected LQI data of the
seven days into two sets. The first set contained the LQI data of the four days that were
used to optimize the fingerprints using the proposed method for training. The second set
contained the LQI data of the remaining three days used to validate the detection accuracy
by the optimized fingerprints for validation. Meanwhile, we trained the classification ANN
model by using same data to compare detection accuracy with our proposed method. The
model structure of ANN is shown as Figure 6.
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Table 3. Room detection results before proposal.

Room Accuracy disFOK disFNG Margin

RC 99.34% 41.03 93.05 52.02
Corridor 87.4% 81.58 86.32 4.74

D306 98.28% 54.14 80.43 26.29
D307 92.51% 52.28 74.84 22.56
D308 90.32% 39.44 61.44 22
Toilet 76.96% 49.37 63.56 14.19
D305 100% 31.23 61.72 30.49

Average 92.12% 49.87 74.48 24.61

Figure 6. ANN model structure.

5.3.1. Fingerprints

Table 4 shows the fingerprint values that are obtained by applying the proposal to the
four-day training data set. In this table, three fingerprints were automatically generated
for the corridor and toilet by the proposal, because they were either long or had several
small rooms, and people often moved there. Two fingerprints were generated for RC, D307,
D308, and D305, because people sometimes moved there and there were several pieces of
furniture. For D306, it kept one fingerprint, because only a few people moved into this
meeting room.

Table 4. Fingerprint after proposal.

Room Rk
1 Rk

2 Rk
3 Rk

4 Rk
5

RC-1 66 40 30 130 26
RC-2 7 24 37 139 5

Corridor-1 12 22 30 64 98
Corridor-2 118 48 26 70 93
Corridor-3 23 40 67 26 116

D306 24 31 124 45 40
D307-1 39 5 70 83 14
D307-2 68 112 48 50 22
D308-1 79 78 30 66 8
D308-2 99 5 10 43 9
Toilet-1 62 15 46 41 52
Toilet-2 42 5 46 60 21
Toilet-3 5 5 34 30 50
D305-1 159 60 97 6 26
D305-2 5 5 37 34 59
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5.3.2. Detection Results

Tables 5 and 6 show the room detection results by using the optimized fingerprints
by the proposal for the training data set and for the validation data set, respectively, and
detection results of the ANN model. The score is 161,762.58 for the training data set and is
53,503.53 for the validation data set. Thus, the total score is 215,266.11.

Table 5 indicates that the detection accuracy exceeds 98% for any room by using the
LQI data set for training, whether it is the proposed method or ANN. The average detection
accuracy of the proposed method higher than ANN model. Then, Table 6 indicates that
the detection accuracy exceeds 98% for any room except for D306 by using the proposed
method, although the LQI data set is different from the one for training. For this room, the
proposal did not increase the number of fingerprints, which can be a reason for this low
accuracy. The detection accuracy of the ANN model is lower than our proposed method,
especially just 90.7% for D308. In future works, we will analyze the reason and study
how to improve it. The room detection results using the validation data set confirms the
effectiveness of the proposal. Figures 7 and 8 show the comparison of detection accuracy.
Figures 9–12 show the CDF graph and confusion matrix of detection accuracy for training
LQI data and validation LQI data by using proposed method.

Table 5. Room detection result for training data.

Room Accuracy (POT) Accuracy (ANN) disFOK disFNG Margin

RC 99.1% 99.6% 40.21 88.53 48.32
Corridor 99.3% 99.3% 55.96 80.13 24.17

D306 99.2% 99.2% 50.47 85.71 35.24
D307 99.5% 99.2% 46.58 78.00 31.42
D308 98.4% 99% 35.10 59.89 24.79
Toilet 98.8% 98.7% 40.96 57.32 16.36
D305 99.9% 98.3% 26.86 35.31 8.45

Average 99.2% 99% 42.31 69.27 26.96

Table 6. Room detection result for validation data.

Room Accuracy (POT) Accuracy (ANN) disFOK disFNG Margin

RC 100% 99.9% 46.42 68.70 22.28
Corridor 98.6% 97.9% 73.74 80.80 7.06

D306 95.2% 93.6% 45.88 83.09 37.21
D307 98.5% 94.5% 30.46 50.84 20.38
D308 98.8% 90.7% 34.11 64.37 30.26
Toilet 98.4% 95.5% 29.72 46.01 16.29
D305 100% 98.9% 44.20 48.53 4.33

Average 98.5% 95.9% 43.50 63.19 19.69

Figure 7. Comparison of detection accuracy for training data.
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Figure 8. Comparison of detection accuracy for validation data.

Toilet Toilet
+Corridor

Toilet
+Corridor
+D307

Toilet
+Corridor
+D307
+D308

Toilet
+Corridor
+D307
+D308
+D305

Detected room

90

92

94

96

98

100

Ac
cu
ra
cy
 (%

)

Detection accuracy of training LQI data for Toilet

Accuracy

D307 D307
+D308

D307
+D308
+Toilet

Detected room

90

92

94

96

98

100

Ac
cu
ra
cy
 (%

)

Detection accuracy of training LQI data for D307

Accuracy

D306 D306
+Toilet

D306
+Toilet
+D308

Detected room

90

92

94

96

98

100

Ac
cu
ra
cy
 (%

)

Detection accuracy of training LQI data for D306

Accuracy

Figure 9. CDF graph of detection accuracy for training LQI data.
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Figure 10. CDF graph of detection accuracy for validation LQI data.
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5.4. Measured LQI Data and Detection Result for Toilet

Tables 5 and 6 show that the detection rate of Toilet is most improved by the proposal,
from 76.96% to 98.8% for training data and 98.4% for validation data. Figures 13 and 14
show the training LQI data set and the validation LQI data set for Toilet, respectively. In
both data sets, the measured LQI data at any receiver often fluctuated, where students
sometimes walked through the corridor and entered the toilet. Thus, the proposal increased
the number of fingerprints to three. Tables 7 and 8 show the details of the room detection
results for them, where the corridor, D307, D308, and D305 are incorrectly detected instead
of the toilet.

Figure 13. Training LQI data set for toilet.

Table 7. Room detection results for training data of the toilet.

Room Periods (min) Percentage

Toilet

1∼88, 90∼91, 93∼117, 121∼936, 938, 940∼1106,
1108∼1270, 1273∼1274, 1276∼1439, 1441∼1518, 1520∼1538, 1540∼1633,

1636∼1743, 1745∼1802, 1804, 1806∼1809, 1811∼1813, 1815∼1925,
1927∼2037, 2039∼2040, 2042∼2097, 2099∼2150

98.8%

Corridor 1275, 1539 0.1%

D307 937, 939, 1271∼1272, 1440, 1803, 1805, 1810 0.4%

D308 92, 118∼120, 2038, 2041, 2098 0.3%

D305 89, 1107, 1519, 1634∼1635, 1744, 1814, 1926 0.4%



Information 2022, 13, 211 14 of 29

Figure 14. Validation LQI data set for the toilet.

Table 8. Room detection result for validation data of Toilet.

Room Periods (min) Percentage

Toilet 1∼418, 420, 422∼483, 485∼496, 499∼527, 535∼736 98.4%
D308 419, 421, 484, 497∼498, 528∼534 1.6%

5.5. Measured LQI Data and Detection Result for D307

D307 is the busiest room. Up to 16 students have their own desks, and may frequently
enter and leave the room, and move around in the room. Figures 15 and 16 show the
training LQI data set and the validation LQI data set for D307, respectively. A lot of
fluctuations can be observed, where even LQI2 fluctuated and sometimes lost connections,
although the receiver was located in this room. Tables 9 and 10 show the room detection
results for them, where D308 and Toilet are incorrectly detected instead of D307. Fortunately,
the room detection accuracy of FILS15.4 reaches 99.5% for the training data set and 98.5%
for the validation data set by the proposal.

Figure 15. Training LQI data set for D307.

Table 9. Room detection result for training data of D307.

Detected Room Periods (min) Percentage

D307
1∼598, 600∼941, 943∼1321, 1323∼1520, 1524∼1826,

1830∼2007, 2009∼2150 99.5%

D308 1828 0.1%

Toilet 599, 942, 1322, 1521∼1523, 1827, 1829, 2008 0.4%
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Figure 16. Validation LQI data set for D307.

Table 10. Room detection result for validation data of D307.

Room Periods (min) Percentage

D307
1∼323, 325∼497, 501∼540, 543∼611, 613, 615∼672,

674∼729, 731∼748 98.5%

Toilet 324, 498∼500, 541∼542, 612, 614, 673, 730, 749 1.5%

5.6. Measured LQI Data and Detection Result for D306

Then, Tables 5 and 6 show that the detection rate of D306 is decreased the most from
99.2% for training data to 95.2% for validation data. Figures 17 and 18 show the training
LQI data set and the validation LQI data set for D306, respectively. Tables 11 and 12 show
the room detection results for them, where Toilet and D308, D305 are incorrectly detected
instead of D306.

In D306, four students have their own desks at the one side. Another side is used as
the common meeting space by students. Therefore, the number of students staying in this
room often changed, which can cause changes of the measured LQI data depending on
the time.

Figure 17. Training LQI data set for D306.
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Table 11. Room detection result for training data of D306.

Room Periods (min) Percentage

D306
1∼124, 126∼214, 216∼273, 275∼838, 840∼1108, 1110,

1114, 1116∼1411, 1415∼1441, 1443∼1719, 1723∼1881, 1883∼2150 99.2%

Toilet 125, 215, 274, 839, 1109, 1111∼1113, 1115, 1412∼1414, 1721∼1722, 1882 0.7%

D308 1442, 1720 0.1%

Figure 18. Validation LQI data set for D306.

Table 12. Room detection results for validation data of D306.

Room Periods (min) Percentage

D306
1∼101, 103∼159, 161∼334, 336∼368, 372, 375∼376,

378, 380, 383, 385∼391, 396, 398,
400∼424, 433, 437∼626, 628∼645

95.2%

Toilet
102, 160, 335, 369∼371, 373∼374, 377, 379, 381, 384, 392∼395,

397, 425∼432, 434∼436, 627 4.5%

D305 382, 399 0.3%

6. Evaluation over Time

In this section, we evaluate the robustness of the proposal by using the same finger-
prints and the measured LQI data at the same floor on different periods.

6.1. Detection Result for LQI Data at Different Times

To verify the effectiveness of the optimized fingerprints by the proposal, we newly
collected the LQI measured data for three days, five months after the previous one. Table 13
shows the detection results using the fingerprint values in Table 4 and also compares with
the ANN model. Figure 19 shows the comparison of the detection results. It shows that
the detection accuracy exceeds 98% for any room except for Corridor (94.5%) and D307
(93.2%) by using the proposed method, where the accuracies for these rooms are sufficiently
high. The ANN model also obtains high detection accuracy for each room, but the average
detection accuracy is still lower than our proposed method. The score of new LQI data at
three days was 94,070. Figure 20 shows CDF results for new data sets.
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Table 13. Room detection results for new LQI data sets at different times.

Room Accuracy
(POT)

Accuracy
(ANN) disFOK disFNG Margin

RC 98.1% 97.1% 34.09 65.01 30.92
Corridor 94.5% 94.1% 38.46 46.11 7.65

D306 99.6% 99.2% 78.88 119.54 40.66
D307 93.2% 93.8% 32.81 43.16 10.35
D308 98.3% 95.9% 72.56 78.14 5.58
Toilet 99.2% 96.7% 42.11 53.8 11.69
D305 99.2% 98.3% 37.34 40.59 3.25

Average 97.4% 96.4% 48.04 63.76 15.72

Figure 19. Comparison of detection accuracy for new LQI data sets at different times.
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Figure 20. CDF of detection accuracy for new LQI data sets at different times.

6.2. Measured LQI Data and Detection Results for the Corridor

Here, we discuss why the accuracy decreased for the corridor. Figures 21 and 22 show
the training LQI data set and the newly measured set for the corridor, and Tables 14 and 15
show the room detection results for them, respectively.

When the two graphs are compared, the LQI data are clearly different between them,
including LQI5 at the receiver in corridor. In the corridor, people can often move. Thus, in
the training LQI data set, a lot of fluctuations are observed, which suggests the frequent
door opening/closing in the rooms where the receivers were allocated. However, in the
newly measured set, the data are far from stable. This is because of few people at that time
due to the COVID-19 pandemic.
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Figure 21. Training LQI data set for the corridor.

Table 14. Room detection result for training data of the corridor.

Room Periods (min) Percentage

Corridor
1∼88, 90∼95, 97∼104, 107∼111, 113∼205,

207∼421, 423∼540, 542∼547, 549∼556, 559∼563,
565∼806, 808∼1793, 1795∼2023, 2025∼2150

99.3%

D306 206 0.1%

D308 807, 2024 0.1%

Toilet 96, 105∼106, 548, 557∼558, 1794 0.3%

D305 89, 112, 422, 541, 564 0.2%

Figure 22. New LQI data set for Corridor at different time.

Table 15. Room detection results for new LQI data of the corridor at different time.

Room Periods (min) Percentage

Corridor

20∼71, 73∼83, 85, 89∼98, 100∼150,
153∼210, 214∼221, 223∼388, 391∼480, 482∼564, 567,

570∼571, 573∼611, 614, 616∼632, 634, 638,
650∼653, 655∼751, 753∼943, 947∼1119, 1121∼1144, 1146,

1148∼1196, 1198∼1200

94.5%

D307 3∼16 1.2%

D308 88 0.1%

Toilet 1∼2, 17∼19, 72, 84, 86∼87, 99, 211,
222, 654, 1120, 1147, 1197 1.3%

D305 151∼152, 212∼213, 389∼390, 481, 565∼566, 568∼569,
572, 612∼613, 615, 633, 635∼637, 639∼649, 752, 944∼946, 1145 2.9%
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6.3. Measured LQI Data and Detection Result for D307

Next, we discuss why the accuracy decreased for D307. Figure 23 shows the newly
measured LQI data set for D307 and Table 16 shows room detection results.

When Figure 23 is compared with Figure 15, almost every LQI is different between
them. In particular, the data of LQI5 was lost in Figure 23. Thus, it may be necessary to
properly handle the low measured LQI data considering the disconnection between the
transmitter and the receiver.

Figure 23. New LQI data set for D307 at different times.

Table 16. Room detection results for new LQI data of D307 at different times.

Room Periods (min) Percentage

D307

1∼216, 218∼220, 222∼223, 225∼226, 229, 233∼236,
238∼250, 254, 256∼259, 261∼273, 275∼276, 279∼280,

282∼283, 285∼292, 300∼301, 303, 305∼307, 314,
322, 324, 326∼328, 334, 336∼348, 354∼493,

497∼498, 502∼503, 507∼584, 586, 588, 590∼605,
607∼684, 686∼704, 706∼736, 739∼766, 768∼793, 797∼814,

816∼830, 832∼835, 837∼922, 924∼1000, 1002∼1061, 1063∼1189, 1191∼1200

93.2%

D308

217, 221, 224, 227∼228, 230∼232
237, 251∼253, 255, 260, 274, 277∼278, 281, 284,

304, 308, 329∼330, 494∼496, 499∼501, 504∼506, 585, 589,
606, 685, 705, 737∼738, 767, 815, 831, 836, 923, 1001, 1062

3.8%

Toilet 293∼299, 302, 309∼313, 315∼321, 323, 325,
331∼333, 335, 349∼353, 587, 794∼796, 1190 3%

7. Evaluation with Fluctuation Causes

In this section, we list the six causes for LQI data fluctuations; we conducted the
experiments to evaluate the effects of them using the scenarios in Table 17. During the
experiments, the transmitter was located at D307-4 in Figure 3. For door open/close, the door
of D307 was opened and closed. For Wi-Fi, the Wi-Fi interface of a smartphone was turned
on and off in D307. For human movement, one, two, or three persons moved around in D307.
For transmitter direction, the face of the transmitter was directed to eastward, westward,
northward, southward, upward, and downward directions. For transmitter movement, the
transmitter location was moved in the five rooms. For transmitter height, the height of the
transmitter from the floor was changed.

We show the results by each transmitter height as follows. Figures 24–27 show
the measured LQI data, when the transmitter height was 0.5 m, 1 m, 1.5 m, and 1.8 m,
respectively. Tables 18–21 summarize the average and standard deviation (SD) of the LQI
data and the room detection accuracy of the proposed FILS15.4 for each transmitter height.
The same fingerprint values given in Section 5.3.1 in the previous submission were adopted
for the room detection.
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These results indicate that the measured LQI data are frequently fluctuating at any
case of the six fluctuation causes. Nevertheless, the room detection accuracy of FILS15.4 is
sufficiently high for any case of the fluctuation causes when the transmitter location is fixed
(no transmitter movement). Even for transmitter movement, the accuracy reached 94% when
the transmitter height was 1.8 m. As the transmitter height increases, the obstacles between
the transmitter and the receivers are reduced. Thus, stronger and more stable signals can
be detected at the receivers, which reduces the LQI data fluctuations and improves the
detection accuracy.

Table 17. Experimental scenarios for LQI fluctuation causes.

Fluctuation Cause Experiment Scenario

door open/close
• 0–20 min: open
• 20–40 min: close
• 40–60 min: frequently open/close

Wi-Fi on/off
• 0–30 min: on
• 30–35 min: off
• 35–60 min: on

human movement
• 0–20 min: three persons
• 20–40 min: two persons
• 40–60 min: one person

transmitter direction

• 0–10 min: east
• 10–20 min: west
• 20–30 min: north
• 30–40 min: south
• 40–50 min: up
• 50–60 min: down

transmitter movement

• 0–10 min: D306
• 10–20 min: Refresh Corner
• 20–30 min: D307
• 30–40 min: Corridor
• 40–50 min: D308

transmitter height

• 0.5 m
• 1 m
• 1.5 m
• 1.8 m

Figure 24. Fluctuation LQI data at 0.5 m.
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Table 18. Fluctuation LQI data summary and detection accuracy at 0.5 m.

Fluctuation Cause Value LQI1 LQI2 LQI3 LQI4 LQI5 Accuracy

door open/close AVE
SD

59.24
10.89

141.24
26.71

48.71
18.93

85.29
15.33

40.46
7.1 96.4%

Wi-Fi on/off AVE
SD

57.56
14.88

130.85
23.96

52.14
9.19

93.3
17.2

49.03
11.22 96.7%

human movement AVE
SD

64.41
17.46

134.01
31.67

60.54
3.68

56.05
8.22

21.59
13.56 96.2%

transmitter direction AVE
SD

79.63
13.42

128.18
28.63

65
12.69

71.87
11.76

37.31
16.73 96.6%

transmitter movement AVE
SD

38.36
43.16

49.09
35.58

46.71
27.04

64.82
47.5

47.96
30.65 82%

Figure 25. Fluctuation LQI data at 1 m.

Table 19. Fluctuation LQI data summary and detection accuracy at 1 m.

Fluctuation Cause Value LQI1 LQI2 LQI3 LQI4 LQI5 Accuracy

door open/close AVE
SD

90.3
2.97

146.41
1.6

53.39
5.59

64.67
14.71

40.44
6.89 100%

Wi-Fi on/off AVE
SD

97.27
1.31

157.27
0.67

67.05
1.87

75.73
2.0

24.3
10.09 100%

human movement AVE
SD

64.89
2.38

137.53
1.45

61.0
1.88

76.21
1.12

36.36
1.13 100%

transmitter direction AVE
SD

78.5
14.84

131.35
6.25

48.13
17.02

73.16
10.27

38.88
15.48 100%

transmitter movement AVE
SD

71.55
39.86

66.34
30.54

54.53
32.21

57.31
27.81

43.18
29.29 82%
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Table 20. Fluctuation LQI data summary and detection accuracy at 1.5 m.

Fluctuation Cause Value LQI1 LQI2 LQI3 LQI4 LQI5 Accuracy

door open/close AVE
SD

85.63
25.01

126.69
33.53

50.25
8.43

70.37
23.51

28.8
10.63 93.1%

Wi-Fi on/off AVE
SD

85.21
14.85

136.65
24.23

70.4
2.8

69.62
9.5

47.8
1.06 96.8%

human movement AVE
SD

72.89
9.51

122.55
16.38

73.04
1.25

48.04
9.0

7.79
8.06 98.1%

transmitter direction AVE
SD

78.11
24.08

116.35
30.07

68.27
20.79

64.08
12.87

42.19
9.53 94.7%

transmitter movement AVE
SD

81.74
31.28

71.03
23.79

65.3
30.57

65.25
24.85

45.46
15.89 88%

Figure 26. Fluctuation LQI data at 1.5 m.

Table 21. Fluctuation LQI data summary and detection accuracy at 1.8 m.

Fluctuation Cause Value LQI1 LQI2 LQI3 LQI4 LQI5 Accuracy

door open/close AVE
SD

72.02
7.03

150.97
10.27

74.91
5.52

90.01
7.42

51.42
6.3 100%

Wi-Fi on/off AVE
SD

92.03
1.02

114.56
3.2

74.37
1.79

82.61
1.08

44.53
1.45 100%

human movement AVE
SD

95.28
2.73

112.67
5.19

77.65
2.39

83.63
1.23

41.81
2.82 100%

transmitter direction AVE
SD

84.09
14.88

120.46
18.24

88.66
19.51

74.95
15.14

45.62
11.86 100%

transmitter movement AVE
SD

74.79
26.96

75.47
25.81

69.73
32.11

67.42
27.85

62.31
24.37 94%
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Figure 27. Fluctuation LQI data at 1.8 m.

8. Discussion

The results in Tables 5, 6 and 13 using the static transmitter show that the proposed
fingerprint optimization method sufficiently improves the room detection accuracy of
FILS15.4 by increasing the number of fingerprints in one room and optimizing their values
automatically, when the user stays in a room for a while. Table 4 indicates that the number
of fingerprints for each room increased to two or three except for D306 by this method.
Particularly, it became three for corridor and toilet where the detection accuracy was low
before applying the method as in Table 3.

Moreover, the results in Table 21 show that the high detection accuracy can be main-
tained under influences by various LQI fluctuation causes, including the room door
open/close, the Wi-Fi signal on/off, human movements around the transmitter, the change
of the transmitter face direction, movements of the transmitter with the user, when the trans-
mitter is attached to the user at 1.8 m of height. It should be noted that the same optimized
set of the fingerprints for the static transmitter were used here. Thus, the effectiveness of
the proposal is confirmed.

However, our experiments in this paper were conducted under rather impractical
situations. The transmitter was placed alone at a location for a long time, or was moved
around in a short time with the user. The detection accuracy of FILS15.4 under practical
situations needs to be evaluated, where the user may keep the transmitter for whole day
and may move from one room to another occasionally. In future works, we will design and
conduct experiments under practical situations.

Moreover, the considered LQI fluctuation causes in our experiments may still be
limited. LQI fluctuations may be different due to the time, weather, and season. In future
works, we will evaluate the detection accuracies of FILS15.4 at different weather conditions,
times, days, and seasons.
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9. Related Works

In this section, we discuss related works in the literature.
In [14], Youssefa et al. proposed a WLAN location determination system by clustering

the access point (AP) signal strength distribution and determine the user’s location based
on Bayes’ probabilistic approach. It identified that the wireless channel varies due to several
causes, namely different signal strength samples and AP-to-user distance variations. Those
causes of variations were included in their clustering algorithm to determine the user’s
location. The testbed system achieved 90% of detection accuracy.

In [15], Sen et al. found the evidence that channel responses from multiple orthogonal
frequency–division multiplexing (OFDM) subcarriers can be a promising location signature.
While these signatures certainly vary over time and environmental mobility, they noticed
that the core structure preserves certain properties that are amenable to the localization.
They evaluated the system in a real busy engineering building and demonstrated local-
ization accuracies in the granularity of 1 × 1 m boxes, called “spots”. The results from
100 spots showed that their proposal was able to localize a user to the correct spot with
the 89% of the average accuracy. Less than 6% of its inaccuracy falsely detected a location
where the user was not present (false positive).

In [16], Turner et al. proposed the use of a wireless sensor network (WSN) to investigate
the effects caused by human movements on (RSSI). They conducted measurements in
real environments. The results showed that slow human movements reduced the effects
and fast ones slightly decreased them. They did not study how sensor heights affected
signal fluctuations.

In [17], Hamdoun et al. proposed an indoor localization method by using multiple
antennas in wireless sensor networks. They used the multilateration as well as the trilatera-
tion algorithms, based on the RSSI values to estimate the target position. They considered
three systems namely, the single antenna system (single input single output, SISO), the
multiple receive antenna system (single input multiple output, SIMO), and the multiple
transmit antenna system (multiple input single output, MISO). The average localization
accuracy error is improved when the average RSSI is calculated from multiple antennas.
The performance improvement was increased to 30% and 50% when using two and four
antennas, respectively. The performance accuracy improved considerably while increasing
the number of antennas. Thus, MIMO performed as the best system, followed by SIMO
and MISO with similar performance, and SISO with the largest localization error. Moreover,
the multilateration was shown to perform better than the trilateration algorithm.

In [18], Luoh et al. proposed a ZigBee-based indoor localization system using the radial
basis function network (RBFN) with the fingerprinting method. They conducted measure-
ments in real environments where human effects were not evaluated in experiments.

In [19], Koweerawong et al. proposed a method to estimate the RSS fingerprint of a
specific location from a set of neighboring remeasured RSS fingerprints called “feedbacks”.
The method searches for new feedback, requires old RSS fingerprints in the cut-off area, and
applies the plane interpolation to calculate the new RSS fingerprint for a specific location.
However, the detection accuracy was not improved. The proposal was evaluated only
in simulations.

In [20], Ferdews et al. proposed a new distributed and time-bound localization
algorithm based on the multidimensional scaling (MDS) method in a wireless sensor net-
work (WSN) called the D-MDS localization time algorithm. They compared the proposed
algorithm to the existing algorithm based on the well-known trilateration method. In
experiments, they implemented D-MDS by using a MATLAB simulator and evaluated the
proposed algorithm by comparing it to the time-bound localization algorithm based on the
trilateration method. The simulation results showed their proposed algorithm was faster
to check the relative localization ability of the network compared with the trilateration
algorithm in terms of time complexity.
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In [21], Torteeka et al. presented a K-nearest neighbor (K-NN) method based on the
crisp set theory to select the nearest Euclidean distance. Their algorithm showed better
performances than a simple K-NN method, only in simulations, not in real environments.

In [22], Aomumpai et al. proposed a technique to optimize the placements of the
reference nodes to improve the detection accuracy. Their results showed 90% precision as
the detection accuracy through only simulations.

In [23], Chapre et al. proposed Wi-Fi-based fingerprinting using the fine-grained
information of a physical layer known as channel state information (CSI). It exploited the
frequency and spatial diversity of the multiple-input multiple-output (MIMO) system and
generated a complex location signature by including the amplitude and phase information
of all sub-carriers. The testbed was evaluated in two rooms with different sizes. The
smaller room was used for the static environment, whereas the bigger room was for the
dynamic one. The deterministic k-nearest neighbor (kNN) and the probabilistic Bayes’
rule were used as their localization algorithms. In their investigation, the static and the
dynamic environment have different amplitude and phase variance characteristics. The CSI
exhibited less phase fluctuations when it was static, while significant variations of phases
were found in dynamic conditions. The proposal achieved the maximum accuracy of
0.98 and 0.31 m using the deterministic k-nearest neighbor algorithm in static and dynamic
environments, respectively.

In [24], Hamdoun et al. proposed a comparative study of RSSI-based localization
algorithms using spatial diversity in wireless sensor networks (WSNs). They considered
different kinds of single/multiple antenna systems: single input single output (SISO)
system, single input multiple output (SIMO) system, multiple input single output (MISO)
system, and multiple input multiple output (MIMO) system. They focused on the well-
known trilateration and multilateration localization algorithms to evaluate and compare
different antenna systems. In addition, exploiting the spatial diversity by using multiple
antenna systems can significantly improve the accuracy of the location estimation. They
used three diversity-combining techniques at the receiver in their experiments: maximal
ratio combiner (MRC), equal gain combining (EGC), and selection combining (SC). The
results have shown that the localization performance in terms of position accuracy was
improved when using multiple antennas. An improvement in the performance of about
30% was achieved with four antenna usages compared to two antennas. Specifically,
using multiple antennas on both sides presented better performances than using multiple
antennas only at the transmitting or receiving side.

In [25], Prieto et al. assessed the proposed framework with conventional Wi-Fi devices
in comparison to conventional implementations. They conducted measurements in real
environments. However, the proposed framework needs too many fingerprints for the
high localization accuracy.

In [26], Ma et al. proposed a Wi-Fi-based indoor positioning algorithm using the
weighted fusion. The offline acquisition process selects optimal parameters to complete the
signal acquisitions and forms the database of fingerprints by the error classifications. The
online positioning process uses the pre-match method to select the candidate fingerprints
to shorten the positioning time. However, the fingerprints are updated manually. The
proposal was evaluated only in simulations.

In [27], Vasisht et al. proposed Chronos, a system that enables a single Wi-Fi access
point to localize clients to within tens of centimeters. They conducted experiments in a
two-bedroom apartment with four occupants, with dimensions of the experiment room at
13 × 9 m. The results showed the average detection accuracy was 94.3% at the room level
and the average of the distance error was 14.1 cm.

In [28], Alshami et al. studied how the distance between a smartphone and an access
point caused RSS fluctuations. They evaluated the proposal in real environments.

In [29], Wang et al. studied fingerprinting-based indoor localization in commodity
5-GHz Wi-Fi networks and proposed a system BiLoc, which used bi-modality deep learning
for localization in the indoor environment. In their experiment, firstly, they used a channel
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state information (CSI) data built fingerprint at offline stage and detected the location of
the user in their lab at the online stage. The results show the average of distance error was
1.5 m.

In [30], Bernas et al. introduced a method that improves localization accuracy of the
signal strength fingerprinting approach. In the proposed method, the entire localization
area was divided into several regions by clustering the fingerprint database. For each
region, a sample of the received signal strength was determined and a dedicated artificial
neural network (ANN) was trained by using only the fingerprints that belonged to this
region (cluster).

In [31], Uradzinski et al. proposed the nearest neighbor and Bayesian methods using
IEEE 802.15.4 protocol devices, which promised less than or equal to the 0.81 m accu-
racy. They first collected data and created a fingerprint database. Next, they used the
nearest-neighbor and Bayesian methods to detect the indoor positioning of each person.
However, they did not evaluate the proposal in multiple rooms and considered human
effects in experiments.

In [32], Saber et al. proposed and implemented a new mechanism for geographic
routing in wireless sensor networks (WSNs). The proposed mechanism relied on a weighted
centroid localization technique, where the positions of unknown nodes were calculated
using the fuzzy logic method. They proposed a fuzzy localization algorithm that used
flow measurement through a wireless channel to compute the distance separating the
anchor and the sensor nodes. They were based on the centroid algorithm that calculated
the position of unknown nodes using the fuzzy Mamdani and Sugeno inference system for
increasing the accuracy of estimated positions. Once the localization algorithm detected
the location of nodes with an unknown position, the proposed mechanism effectively
selected the next-elected cluster head (CH) to reduce the energy dissipation of sensor nodes.
Thus, it extended the network lifetime. Their method had two advantages: the first was to
minimize the position error of nodes and reduce the error localization average. The second
was to increase the number of packets transmitted to the next hop of CH based on the
localization algorithm. The obtained simulation results showed that the Sugeno technique
achieved a better performance than the centroid and Mamdani techniques together. Using
the Sugeno method, they had an average location error equal to 0.3 m and the simple
centroid was 0.8 m. The proposed mechanism outperforms the existing solutions in terms
of energy consumption, execution time (localization time), and localization error, similar to
the number of packets transmitted to the base station.

In [33], Omer et al. proposed the indoor localization system using the UHF radio
frequency identification (RFID). Unfortunately, it needs to allocate a lot of reader antennas
for use in a conventional field with several rooms; their label just attached on the coat or
other objects, they did not attach on the human body.

In [34], Ashraf et al. showed a similar indoor localization approach that turns smart-
phone built-in sensors to good account. They took advantage of the magnetic field strength
fingerprinting approach to localize a pedestrian indoors. Their aim was to solve the prob-
lem of device dependence by devising an approach that could perform localization using
various smartphones in a similar fashion. They conducted experiments using Samsung
Galaxy S8 and LG G6 for five different buildings with different dimensions at Yeungnam
University, Republic of Korea. The proposed approach can potentially localize a pedestrian
within 1.21 m at 50% and within 1.93 m at 75%. The performance of the proposed approach
was compared with the K nearest neighbor (KNN) for evaluation. The proposed approach
outperforms the KNN.

In [35], Setiabudi et al. proposed a method using Bluetooth low energy (BLE) to
estimate the position of a dynamic user based on fingerprinting with the weighted sum of
five nearest reference points using the extended Kalman filter. Unfortunately, even though
they conducted measurements in a real environment, the proposed method needs to allocate
a lot of transmitters in the target field, and the positioning accuracy is not sufficient.
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In [36], Ashraf et al. presented a comprehensive review of the approaches that made
use of data from one or more sensors to estimate the user’s indoor location. By analyzing
the approaches leveraged on smartphone sensors, the review discusses the associated
challenges of such approaches and points out the areas that need considerable research to
overcome their limitations.

In [37], Njima et al. proposed generative adversarial networks for the RSSI data
augmentation to generate fake RSSI data based on a small set of real collected labeled
data. The developed model utilizes the semi-supervised learning in order to predict the
pseudo-labels of the generated RSSI. Their extensive numerical experiments show that
the proposed data augmentation and selection scheme leads to the localization accuracy
improvement of 21.69% for simulated data and 15.36% in the experiment data.

In [38], Fahmy et al. proposed a Wi-Fi-based indoor localization system named MonoFi.
It relied on the received signal strength from a single access point and trained the recurrent
neural network with sequences of signal measurements. They conducted measurements
in real environments. The results show that the median localization error was 0.80 m in
their experiments.

In [39], Jiang et al. proposed a fingerprint-based indoor localization method named
the fingerprint feature extraction (FPFE). It uses Wi-Fi signals to detect human locations. The
average detection error in experiments using one room in real environments was 0.68 m.
They did not conduct experiments in multiple rooms.

In [40], Ezhumalai et al. proposed an RSS measurement technique named (IRSSMT)
to minimize the error of RSS observations by using several selected RSS and its median
values, and the strongest access point (SAP) information-based clustering technique that
groups the reference points (RPs) using the SAP similarity.

In this paper, we evaluated the proposal through experiments in real indoor envi-
ronments with multiple rooms where human effects and other signal fluctuation causes
were considered.

In previous works, they used Wi-Fi signals for fingerprints. However, the devices
consume a lot of energy, are too large and heavy to always be carried during the localization,
and can be expensive. On the other hand, in this study, we used IEEE 802.15.4-based Twelite
2525 transmitters from Mono Wireless. They have advantages over Wi-Fi-based devices, e.g.,
small sizes (13.97 × 13.97 × 2.5 mm), are lightweight 0.93 g, have long battery lives with
coin batteries, at a low cost (USD 30), no user software downloading, and no user setup.

10. Conclusions

This paper presents the parameter optimization method, to find the proper fingerprints
in a fingerprint-based indoor localization system using IEEE802.15.4 (FILS15.4). The method
iteratively changes fingerprint values to maximize the newly defined score function to
evaluate the room detection accuracy of the system. Moreover, it automatically increases
the number of fingerprints for a room if the accuracy is insufficient.

For evaluations, the proposed method was extensively applied to the measured LQI
data using the FILS15.4 testbed system in the no. 2 Engineering Building at Okayama
University. The validation results with the static transmitter show that the method improves
the average room detection accuracy at higher than 97% by automatically increasing
the number of fingerprints and optimizing their values. Moreover, the results with the
transmitter under LQI fluctuation causes also showed high accuracy using the same set of
fingerprints. Thus, the effectiveness of the proposal was confirmed.

In future works, we will evaluate the detection accuracy of FILS15.4 under practical
situations where the user may keep the transmitter for whole days and occasionally move
from one room to another. Moreover, we will evaluate it at different weather conditions,
times, days, and seasons for further LQI fluctuation causes.
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