4 research outputs found

    Multi-Tier Diversified Service Architecture for Internet 3.0: The Next Generation Internet

    Get PDF
    The next generation Internet needs to support multiple diverse application contexts. In this paper, we present Internet 3.0, a diversified, multi-tier architecture for the next generation Internet. Unlike the current Internet, Internet 3.0 defines a new set of primitives that allows diverse applications to compose and optimize their specific contexts over resources belonging to multiple ownerships. The key design philosophy is to enable diversity through explicit representation, negotiation and enforcement of policies at the granularity of network infrastructure, compute resources, data and users. The basis of the Internet 3.0 architecture is a generalized three-tier object model. The bottom tier consists of a high-speed network infrastructure. The second tier consists of compute resources or hosts. The third tier consists of data and users. The “tiered” organization of the entities in the object model depicts the natural dependency relationship between these entities in a communication context. All communication contexts, including the current Internet, may be represented as special cases within this generalized three-tier object model. The key contribution of this paper is a formal architectural representation of the Internet 3.0 architecture over the key primitive of the “Object Abstraction” and a detailed discussion of the various design aspects of the architecture, including the design of the “Context Router-” the key architectural element that powers an evolutionary deployment plan for the clean slate design ideas of Internet 3.0

    Realm Specific IP: Framework

    Full text link

    Handling of IP-Addresses in the Context of Remote Access

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2008 – Universitetet i Agder, GrimstadFor various reasons (e.g., security, lack of IPv4-addresses) the services in the home smart space only use private IP addresses. This is unfortunate in the remote service access since these addresses frequently appear in responses sent from a service in the remote smart space (e.g., your home) to the visited smart space (e.g., your friend’s home).The Internet Engineering Task Force (IETF) provides some solutions and workarounds for the problem caused by NAT. In this project, the challenge to me is to summarize the available options, rank the options according to which one is preferred for the RA-scenario. I will come up with my practical NAT traversal techniques by testing and gathering data on the reliability of NAT traversal techniques since none of the existing ones seems to work well. A demonstration of the key features will be shown in the thesis. NAT traversal techniques apply to TCP and UDP need to be researched in advance. Handling of peers behind all kinds of NAT need to be tested and determined for the communication. The result of the paper will well improve the evaluation of specific issues on NAT and the creating of an UNSAF proposal

    RSIP Support for End-to-end IPsec

    No full text
    corecore