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ABSTRACT 

The next generation Internet needs to support multiple diverse application contexts. In this paper, we 
present Internet 3.0, a diversified, multi-tier architecture for the next generation Internet. Unlike the 
current Internet, Internet 3.0 defines a new set of primitives that allows diverse applications to compose 
and optimize their specific contexts over resources belonging to multiple ownerships. The key design 
philosophy is to enable diversity through explicit representation, negotiation and enforcement of policies 
at the granularity of network infrastructure, compute resources, data and users. The basis of the Internet 
3.0 architecture is a generalized three-tier object model. The bottom tier consists of a high-speed network 
infrastructure. The second tier consists of compute resources or hosts. The third tier consists of data and 
users. The “tiered” organization of the entities in the object model depicts the natural dependency 
relationship between these entities in a communication context. All communication contexts, including 
the current Internet, may be represented as special cases within this generalized three-tier object model. 
The key contribution of this paper is a formal architectural representation of the Internet 3.0 architecture 
over the key primitive of the “Object Abstraction” and a detailed discussion of the various design aspects 
of the architecture, including the design of the “Context Router-” the key architectural element that 
powers an evolutionary deployment plan for the clean slate design ideas of Internet 3.0.  
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I. INTRODUCTION 

Internet 3.0 is an effort to define a new architectural basis for the future Internet. Leveraging years of 
experience with the current Internet design and related research efforts to modify/improve it, Internet 3.0 
proposes a multi-tier diversified architecture that deviates from the existing “one suit fits all” paradigm of 
the current Internet model and proposes an architecture design inspired by the “requirement specific 
networking” philosophy being actively discussed in next generation networking communities [FIND] 
[GENI] [FIRE].  
The current Internet, designed around the modest needs of file transfer and resource sharing applications 
fails to satisfy the diverse needs of modern distributed applications. All these years, the original design 
has been overlaid with external (and often architecturally ugly) incremental mechanisms to satisfy the 
requirements of specific contextual needs. These encroached mechanisms, solely designed for satisfying 
specific requirements often introduce inconsistencies and non-determinism into the overall architecture. 
Also, these mechanisms are severely restricted in their effectiveness owing to inherent constraints 
imposed by the original design. The Internet is rife with instances of such tussles, be it between P2P 
providers and ISP’s [ROB08][BAN07][ON606][WAT05][AGG08][ON607][AGG07], NAT mechanisms 
and end-to-end protocols [HOL01][SIE00][HOL00][HAI00][SRI99][ABO04][STE00][MON00], policy 
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control mechanisms and security mechanisms [LEH07][JOR07][SYV00], underlay routing policies and 
overlay routing requirements [AND01][LIU05][NAK03][LEE08], etc. The non-determinism manifests in 
the fact that a new internet-wide standardized mechanism can no longer be guaranteed to perform, as 
determined, across the whole system and also it could potentially break some of the existing mechanisms.  
We attribute the cause of these tussles, broadly to two primary weaknesses in the current Internet design: 
1. Lack of adequate diversity leading to selfish contextual innovations on a shared substrate. 
2. Lack of adequate policy framework preventing policy expression and enforcement at the required level 
of granularity. 
On the surface, these two causes might seem unrelated. That is why, existing proposals 
[TUR107][AKARI][FEDERICA] advocating the “requirements specific networking” theme, attack the 
first cause by enabling diversity in the architecture through virtualization - isolated sharing of resources 
amongst multiple co-existing contexts on a shared substrate. However, we argue that both these causes 
are in tandem, leading to the two design philosophies underlying the Internet 3.0 architecture [PAU10]:  
• Diversity naturally follows ability to express and enforce policy at the required level of granularity: 

Mostly, although diversity is in the offing, choices can not be enabled owing to the lack of a proper 
policy framework allowing policy expression, enforcement and negotiations. As an example, years of 
research and multiple technically sound solutions later, QoS routing could not be widely deployed 
over the Internet. The reason can be traced to the lack of a proper business framework wherein 
multiple autonomous systems could negotiate their individual services and aggregate them to provide 
an end-to-end inter-domain QoS routing service to applications that need it. Also, the extent of 
diversity depends directly on the level of granularity of policy enforcements.  An example can be 
cited in the per-flow and flow-class managements of Inteserv[BR94] and Diffserv[KN98], 
respectively.  

• True diversity can be achieved only through the explicit separation of policy from functionality: An 
example in support of this design philosophy may be seen in the current Internet inter-domain routing 
where individual autonomous system (AS) policies can effect the global state of the distributed 
routing algorithm [TAN05a][TAN05][FEI06][FEA05][GAO00]. AS relationships govern routing 
quality. The reason can be attributed to the conflation of the routing state to represent both, 
reachability information as well as AS level policies.  

In Internet 3.0, the implementation of these design philosophies is realized through; 1) explicit separation 
and representation of network infrastructure, host, data and user resources, 2) explicit representation  of 
resource ownership and ownership-linked policies on resources, 3) explicit representation of application 
contexts as a federation of resources belonging to multiple ownerships, 4) explicit policy enforcement and 
negotiation plane that allows federation of multi-ownership resources to map the requirements of specific 
application contexts, and 5) a management and control plane that co-ordinates the interaction of the policy 
plane with the functional plane implementing functional diversity such as novel forwarding paradigms, 
dissemination topologies etc, optimizing specific application contexts. 
Traditionally, “overlay” mechanisms have been proposed over the Internet “underlay” to enable 
application specific functional diversity. However, the design primitives of the Internet such as the unicast 
forwarding paradigm, end-to-end to design principles, single-path routing, etc while contributing to the 
simplicity and hence large-scale success of the Internet, are optimized to serve a specific communication 
context. The Internet design is thus inherently non-optimized to serve as the underlay for multiple 
diversified application contexts.  More recent proposals on Overlay Hosting Platforms (OHPs) [TUR207] 
advocate third party overlay service providers to host multiple overlay services implementing application 
specific diversity. OHPs shall allow multiple packet processing contexts to co-exist over the Internet 
through deployment of interposed specialized OHP nodes. These OHP nodes shall lease general purpose 
compute resources and programmable packet processing resources to hosted application contexts. 
Distributed OHP nodes shall be connected through pre-provisioned network links. The network of OHP 
nodes is a single ownership fixed network and application contexts hosted over it are restricted by the 



distribution (number of nodes, density, diversity, etc) and topology of the underlying OHP network. On 
the contrary, Internet 3.0 proposes a diversified Internet architecture over distributed ownership. Internet 
3.0 federates resources leased from multiple ownerships (infrastructure domains or Autonomous Systems, 
cloud computing platforms, data domains, etc) through explicit policy negotiations to dynamically spawn 
specific application contexts.  
The primary primitive of the Internet 3.0 architecture is the Object Abstraction. Data, host and 
infrastructure are the broad classification of resources that constitute a networking context and are 
established as “entities”. These entities are organized in tiers, representing the natural dependency among 
the resources representing them. The bottom tier represents high speed networking infrastructure. The 
middle tier represents hosts and the top tier represents data. The entities belonging to the different tiers are 
overlaid with the ownership framework of “realms.” Realms advertise realm-specific services through 
“Objects.” Objects encapsulate the complexities of resource allocation, resource sharing, policy 
enforcements etc and expose a standard interface representing capabilities (in terms of standardized 
abstract parameters) and fixed or negotiable policies.  
“Services,” within the Internet 3.0 architecture refer to aggregated objects belonging to same or multiple 
ownerships, composed over a policy negotiation plane, to exhibit a common set of attributes and 
policies. Thus, object composition in Internet 3.0 is a non-trivial function and lies at the basis of the 
policy and security framework of the architecture. 
In the rest of the paper, we shall first discuss the generalized three-tier object model in Section II that lies 
at the basis of the Internet 3.0 architecture followed by the formalisms of the object abstraction (Section 
III) and object composition principles (Section IV). The architecture of Internet 3.0 is discussed in 
Section V followed by a survey of related efforts in the past in Section VI. We finally conclude in Section 
VII. 
II. GENERALIZED THREE-TIER OBJECT MODEL   
Internet 3.0 is a “communication-paradigm” based architecture as opposed to the “communication-
system” based architecture of the current Internet. The difference between these two architectural 
approaches being that in the “communication-system“ based architecture the underlying communication 
primitives evolve largely independent of the specific needs of the application context that is installed over 
it, while the “communication-paradigm“  based architecture ideally allows the communication primitives 
to evolve per the specific requirements of application contexts. The three-tier object model (Figure 1) 
represents the reference framework for the “generalized communication-paradigm” over which the 
Internet 3.0 architecture is based. 
The key elements of the three-tier object model are: 
A. ENTITIES: Data, Users, host (or compute resources) and infrastructure represents entities. Entities are 
broad classification of resource types. Any communication instance is implicitly organized as an 
interaction between these entities. However, the conflated design of the current Internet neither allows 
these interactions to be explicitly associated with the individual entities nor allows these entities to 
specifically enforce their policies. The core of the multi-tier diversification architecture lies in making 
inter-entity interactions explicit and designs a framework for active negotiation of policies between them.  
B. REALMS: Realms overlay entities with a discreet ownership framework. Ownership entails related 
administrative and management responsibilities. In the “Three-tier Object Model” (Figure 1), the bottom 
tier infrastructure is owned by multiple infrastructure owners. The second tier of hosts is owned by 
individual users or different organizations such as DoE, DARPA, Amazon, etc.  The third tier of users 
and data may belong to specific organizations or individual users. Thus, realms represent logical divide of 
entities into multiple ownership and management domains. Each realm is managed by a “Realm 
Manager.” Explicit representation of ownership simplifies the design of the policy framework through 
more natural representation and enforcement of policy rather than conflating them with functionality as in  
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formal constructs and the basic platform such that these mechanisms can be incorporated into the 
architecture. Simply expressed, we try to ensure that the hierarchical realm framework and the object 
abstraction lie at the base of every communication context, allowing specific contexts to define their own 

al set of formal constructs are presented to model the basic principles of object 

In all formalisms presented in this proposal, the following symbols are defined as: 

ities: The formal definition of “entity” (Section 2.A) is given by (1). 

implementations. 
III. The Object Abstraction 
The “object abstraction” is the basis of the multi-tier diversification architectural framework of Internet 
3.0. In this section we define some of the basic terms associated with the “object abstraction”. At this 
point, a minim
composition.  
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3.1 Object Abstraction: Building Blocks 
3.1.1 Ent
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Representation:  

.1.2 Realms: The formal definition of realms (Section 2.B, 2.C) is given by (2). 
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3.1.3 Objects: An object is a logical instantiation of an entity, in a specific networking context. Objects 
encapsulate the complexities of resource allocation, resource sharing, policy enforcements etc. and expose 
a standard interface representing capabilities (in terms of standardized abstract parameters) and fixed or 
negotiable policies. Objects are owned and
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Object policies may represent object requirements specific to their entity levels. As an example, 
“connection” for infrastructure objects refers to actual phys
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user/data objects “connection” refers to logical connections. 
3.1.4 Object Capabilities: Object capabilities, called “Singular capabilities,” represent the set of 
capabilities exposed by an object. Each object capability needs to be a parameter-value pair with “hints 
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language and also the maximal allowance for deviation from the mean value stated in the parameter-value 
list.  

(6) Formal Representation:  >hints}on {negotiati Value, Parameter,< = cap Capability
 
3.1.5 Map: A map may be considered to be a type of dynamic “workflow” [ROS05][SHA05][DAN07] 
[HOH06][YU05]. It represents requirement abstractions that drive object composition. It is a set of 
requirement specifications defining a particular “requirement specific” networking context. The map 
presents different levels of abstraction, with different sets of parameters at each entity level and moves 
top-down through the different entity levels. 
The requirements are specified as “local requirements” and “end-to-end (e2e) requirements.” A local 
requirement relates to parameters that can be satisfied by individual objects while end-to-end 
requirements are spawned when the individual objects are composed into groups. The map initially starts 
off with a few local and end-to-end requirement parameters defined over placeholder objects (see 
definition [5]) at the application specification level. This highly abstract specification mostly provides a 
top level description of the desired networking context. The context is refined and the abstract service 
parameters instantiated with actual object capabilities as the map moves downwards. 
The key idea is to map the top level context specific requirements into discrete individual object 
capabilities. The requirements are prioritized at each level. Thus, at each step of the map’s descent, it 
initiates a horizontal composition of objects (described next in Section 4) that satisfy a subset of the 
map’s local requirements. The composition also spawns a new set of end-to-end requirements. The end-
to-end requirements of objects belonging to the same entity level are recursively satisfied by factoring an 
end-to-end requirement as local requirements and initiating a horizontal composition. The horizontal 
composites are stacked downwards along a descending priority order. Finally, when all the local and end-
to-end requirements are satisfied, the composite represents the requirement specific context that was set to 
be defined. 
 
Formal  
Representation:   
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Functions on Maps: 
1. Translate: Replaces the placeholder objects in local and end-to-end requirements with actual 
instantiated objects. 

(10)
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2. Prune: Prunes a translated map to get rid of the local requirements that have been satisfied by the 
object compositions in that level. 

se_req_speces  =  m'. e_req_specm''. e
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m''m   γ 
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) satisfied are levelfor that                                               
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ϕ
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3. Remap:  Draws a new map from translated and pruned map. The group of end-to-end requirement 
specifications of the pruned map, having the highest priority is remapped to spawn new <local_req_specs, 
e2e_req_specs> in terms of objects opi, Є OP, that satisfy the end-to-end service required for these 
objects. The end-to-end requirements not part of this group are redefined in terms of this remapping.   
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Discussion: Initially to start with, single and group requirements are specified in terms of application 
level place-holder objects belonging to the placeholder object space. At the first level of object 
composition, when the place-holder object’s local requirements are instantiated over actual objects 
belonging to the object space, the map is translated. After this the map is pruned and then remapped to 
guide the next level of object composition. Thus, the process of object composition involves multiple 
cycles of (translate, prune, remap) of the original map till ‘prune’ returns a map with empty local and 
end-to-end requirement specification sets.  
Figure 2, is an example of the map rendering procedure along the different service levels, discussed thus 
far. The highest level application layer represents requirements between a data source and the data sink. 
An intermediate set of data processing objects processes the data produced by the data source. Between 
the first two data processing host objects, a delay tolerant service needs to be interposed that provides 
capability to store the data till a forwarding link is available. Finally all these objects map to infrastructure 
objects for actual transmission. The interposed host entity level services introduce packet transmission 
delays between the data-source and data-sink, thus requiring the “transit objects” over the infrastructure to 
vary in their capabilities. Also, as shown in the figure, at each downward step, the local requirements are 
instantiated on real objects and the end-to-end requirements are rendered into multiple placeholder 
objects.  
IV OBJECT ABSTRACTION: PRINCIPLES OF OBJECT COMPOSITION 
In this section, we define some of the underlying principles governing object compositions. The objects 
defined in Section 3.1 are called “Simple Objects” to distinguish them from “Composite Objects”. 
Composite objects are formed by the aggregation of more than one simple object. However, the object  



 abstraction does not treat composite 
objects any different from simple 
objects. Composite objects expose 
similar interfaces as that of simple 
objects. Thus, once successfully 
composed, composite objects abstract 
composite functionality of multiple 
simple objects. However, composite 
objects are distinguished from simple 
objects : η{oid Є OID} > 1 for 
composite objects, η{oid Є OID} = 1 
for simple objects. 
Policy negotiations are not simple and 
may require lengthy representations. 
Specific functions for specific types of 
policies may need to be defined. Also, 
success and failure of a policy 
negotiation is dependent on specific 

context of the policy and the defined success and failure conditions.  However, in all formalisms 
presented in this paper, for the sake of simplicity, all policy negotiation functions have been simplified 
using the ‘τ’ operator returning a binary result. Thus, 

Figure 2. Example Scenario of “Rendering the Map”

τ( poli , polj  ) = 0; even if a single negotiation fails.  
τ( poli , polj  ) = 1; indicate a successful negotiation. 

 
Example 1: Suppose G1 = {Object a, Object b, Service S1, ei = 3, Priority = 1} and G2 ={Object a, Object  
b, Service S2, ei = 3, Priority = 2} represent two group requirements between objects ‘a’ and ‘b’. 

Principle #1: Objects represent singular capabilities. These singular capabilities can only satisfy “local 
requirement specifications” in the map. Thus, “end-to-end requirement specifications” of a map has to be 
factored into singular object capabilities that can be satisfied by object composition. Such composition shall 
spawn new end-to-end requirements and re-definition of existing end-to-end requirements. 

Since, Service S1 has a higher priority (lower the better metric), S1 has to be factored into {s1 … sn} 
singular object capabilities. These singular capabilities are instantiated on objects (o1 .. on)  spawning 
additional end-to-end (e2e) requirements potentially between each pair of  (o1 .. on). Also, any lower 
priority group requirement between the same objects, such as G2, has to be redefined to (G2 (a, o1), G2 (o1, 
o2) … G2 (on, b) ). 

 
Example 2: As presented in Example 1, suppose G2 represents an e2e requirement between ‘a’ and ‘b’ 
which fixes the maximum transmission delay to 10 ms. And, G1 initiates a refactoring for a store and 
forward service between ‘a’ and ‘b’ consisting of 5 intermediate store-forward hops, each storing a packet 
for at-least 2 ms before forwarding it. Such a scenario shall cause rendering G2 impossible, thus 
invalidating the map.  

Principle #2: Derived from Principle #1, if re-defining an end-to-end requirement owing to higher priority 
end-to-end requirement initiated refactoring, causes the original end-to-end service to be rendered 
impossible, then the map is considered invalid.        

 

 
 

Principle #3: Strict top-down ordering of object composition: The object composition is guided by the top-
down movement of the map and hence enforces a strict top-down order in object composition. 

 

Principle #4: Horizontal Composite: Simple/Composite objects belonging to the same entity level may be 
composed together to form a horizontal composite object, if, 1) each object satisfies at-least one singular 
requirement specification of the map  through its set of capabilities, 2) their realm policies can be 
negotiated, and 3) their object policies for horizontal composite formation can be negotiated.



The resultant horizontal composite object instantiates new end-to-end requirement specifications on the 
object pair of the horizontal composite and exposes a single unified interface for policies, capabilities 
aggregated over its constituent objects.         
Formal Representation: Horizontal composite aggregation operator                     under map m: returns an 
aggregate object formed by an horizontal composite operation on the operand objects and an updated map 
instance generated from the input map and updated to reflect the results of object composition. 
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Note: The remap function ‘ρ’ has been defined in (Section 2.1.5) such that it can handle e2e_req_specs 
for object pairs of the form (oi Є O, oj Є OP) and spawn a remap of e2e_req_specs in terms of 
local_req_specs if and when (oi Є O, opj Є OP)  (oi Є O, oj Є O). Hence,    
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Principle #5: Vertical Composite: A vertical composite is formed by stacking a simple/composite object of 
same or lower entity level below another simple/composite object if, 1) the difference in their entity level is 
at-most one , 2) their realm policies can be negotiated, 3) their object policies for vertical composite 
formation can be negotiated.  

The downward movement of the map initiates horizontal compositions. The vertical composite is an 
aggregation of these horizontal composites ensuring proper policy negotiations. The simple object is a 
special case when a single object satisfies the local requirement specifications of a map for that level. The 
vertical composite formation does not affect the map in any way.    
Formal Representation:  
Vertical composite aggregation operator (π): returns composite object formed by connecting the operand 
objects and stacking one object below the other. It is formally defined as: 
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(19) Definition:   π (oi, φ) =  oi;    Similarly, π (φ, oi ) =  oi 
Vertical composite of multiple objects is defined as: 
Definition: π* (o1, o2, o3, … on) = ok =  π(π (π(… (π (π (o1,  o2,),o3,) …), on-2), on-1 ),on)                         (20) 
 
Definition 8:  π* (o1, o2, o3, … on) = π(π* (o1, o2,… on-1), on ) )  (21) 
  

Principle #6: Termination condition: The termination of a composition is indicated by the prune function on 
a map returning an empty set for both local and end-to-end requirement specifications. 

The elements of object abstraction and the principles stated for object composition are the basic 
theoretical model that defines the architecture of Internet 3.0. However, the theoretical model stated in 
this section is abstract, greatly simplified and formed from “crude” formalisms. An actual prototype 
implementation of the architecture is likely to refine the existing basic principles and also provide more 
insights into defining additional principles.   
V ARCHITECTURE 
The discussion thus far presents the theoretical basis of the Internet 3.0 architecture and its underlying 
principles. These theoretical constructs shall guide the implementation of the protocols that support the 
framework. In this section we present a general prototype implementation plan that shall allow us to 
evaluate the feasibility, performance and deployability of the various design choices and guide research to 
improve, modify, abandon or create newer constructs that pave the way for adoption into production 
environments.  
Internet 3.0 provides a generic framework for the co-existence of multiple application contexts. We define 
two deployment scenarios that represent the two extremes of application deployment over Internet 3.0, 
also representing the classical tradeoff between granularity of control versus acceptable complexity. 
These two scenarios are: 
SCENARIO A. Applications Composed Over Services: Third-party service providers compose generic 
services over leased objects and expose capability through extremely simple and generic service 
interfaces. This is called a “service context.” Applications can compose their specific contexts over these 



service interfaces and are thus shielded from the complexities of creating and maintaining the required 
service levels by themselves. The CABO [FEA07] project is based on similar ideas of third party service 
provisioning in the infrastructure tier. We extend it to the host tier as well. Also, in Internet 3.0, as we 
shall see in the next usage scenario, applications do have the options of creating specific contexts tailored 
to suit their specific requirements directly over objects. Applications that are expected to leverage this 
usage scenario include distributed scientific collaborative applications, content delivery networks, Web 
applications, cloud enterprise applications, etc. A simple example scenario would be a requirement of the 
Genome Center to transfer 100 TB of data to distributed cloud platforms for processing. Once the 
processing is complete, the data would again need to be delivered back to the Genome Center for 
analysis. The current Internet provides no means to provision resources across multiple providers to 
dynamically enable such huge data transfers to multiple random locations. At the same time, even with 
the object-oriented concepts of composing application contexts dynamically in Internet 3.0, it would be 
overtly complex and unreasonable to expect the Genome Center to be able to create this short lived 
context bottom up at the granularity of object compositions. Similarly, short lived web transactions 
requiring certain levels of quality of service can in no way justify the effort and time required to compose 
its context from objects. Thus, the Internet 3.0 protocol suite provides a set of extremely simple and 
standardized interfaces and secure protocols, allowing applications to design their contexts over pre-
composed services.      
SCENARIO B. Applications Composed Over Objects: The second usage scenario pertains to applications 
such as third party service provisioning and distributed applications with specific needs. Third-party 
services are examples of Scenario B that can dynamically provision their service offerings based on 
requirements, thus making them adaptive and hence profitable. These applications compose their specific 
contexts at the granularity of objects and have to bear the complexities associated therein. Thus, 
complexity is the price to be paid for higher granularity of control. Such high granularity of control is 
essential for many application contexts that need to dynamically adapt to topology and requirement 
changes, fault situations, optimizations to ensure profitability, etc. As already discussed third party 
services are examples of such contexts. Other contexts that may require such high levels of control 
include distributed gaming applications, virtual space applications, etc. The Internet 3.0 framework 
provides protocols and object interfaces for object compositions, object advertisements, object brokering 
and leasing, accounting, monitoring etc, to facilitate creations of such services and applications. Albeit, 
the map primitive and the map rendering process pertains to this more general usage scenario of which 
the first usage scenario is just a special case. Also, it can be observed that the present Internet’s world-
wide web application context can be modeled as the first usage scenario where the ASs contribute 
connectivity objects to setup an end-to-end connectivity service that applications can access through the 
routing sub-system.    
5.1 The Base Architecture: The base architecture consists of a two-tier object management plane over 
infrastructure and host object realms. The management plane implements protocols for object realms to 
advertize objects, lease objects to application contexts, monitor objects for compliance with advertized 
capability, secure accounting of  object leases to applications and other such object management 
functions. Each realm implements an object–level control and management plane. An object-level 
management plane involves interaction between the object’s realm manager and the actual resources that 
map the logical capabilities advertised by the object. The management at this level derives many 
similarities with distributed resource management mechanisms involving resource naming, allocation, 
sharing, accreditation, and reclamation. Also, security to ensure the integrity of the underlying resources 
and admission control for honoring QoS are important management functions at this level.  
Unlike the current Internet design, wherein management functions operate over paths setup through 
distributed routing protocols in the control plane, the management plane of Internet 3.0 is the 
“bootstrapping plane.”  The design of the Internet 3.0 architecture dictates this requirement on the 
management plane which aids the self-configurability of individual objects and the publish/lease 
framework for service compositions. Thus, the initial requirement is to setup a self-configured 
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protocol module (Figure 3a) and provides the required management plane connectivity. The network 
engineering process plans the capacity allocation of the realm resources according the present demands.  
It creates objects over its available resources and advertizes it with the object advertisement module. 
When an object is leased, the network engineering process is responsible for allocating resources to the 
object to ensure compliance with performance as well as maximize profitability. The network engineering 
module implements the results of its planning process through engineering the existing usage of the 
resources. The traffic engineering module is the tool used by the network engineering module to 
implement its decisions. The traffic engineering module in turn communicates with the control messaging 
module to setup the necessary distributed state over the resource elements to implement the traffic 
engineering decisions. Similarly, the dissemination channel is used by other management and control 
plane modules such as fault management modules, measurement modules, etc to effectively manage the 
distributed resource allocation and other state variables of the realm.  
It must be noted that Figure 3a and Figure 3b is just a generic representation of the organization of the 
different management modules that constitute the infrastructure object management realm. The exact 
mechanisms for use within the different modules shall vary across different realms and shall be 
transparent outside the realm. The interface of the capabilities and policies of the realm is abstracted 
through objects. As already discussed, the present best-effort routing in the internet is already based on 
the concept of simple connectivity objects. However, the scenario in Internet 3.0 is much more complex. 
Internet 3.0 allows objects to be leased by anybody who cares to use it for a certain price. Usage policy is 
not based on offline commercial arrangements between ASs. Thus, a dynamic framework for object 
advertisement and lease is required. The “Context Router” is the central component for the object 
advertisement and leasing framework and allows application specific contexts to be setup in the 
infrastructure tier.  
A.1 Context Router: The context router is the central component of the object advertisement and leasing 
framework of Internet 3. 0. The context router is positioned at the Internet Point-Of-Presence (POPs) and 
allows al the AS’s that participate in the POP to advertise their infrastructure objects. Figure 4 presents a 
high level view of the present Internet POPs enhanced with a context router that allows the current 
Internet infrastructure to transition to Internet 3.0 infrastructure tier.  
Figure 4 presents a highly simplified POP design where each AS has a border router that connects to the 
POP, enhanced with the context router. The context router has two key functionalities: 1) It maintains an 
object repository on behalf of the participating ASs and makes them available for lease to application 
contexts, 2) It allows applications to lease resources on programmable router platforms within the POP 
(shown as the hatched and dotted contexts) and set appropriate filters to ensure the application specific 
flows to be forwarded through them. This allows application contexts to set-up their own packet 
processing contexts at POPs. There are two points that need to be noted here:  
1) Application contexts may lease objects at the context router without having to lease packet 
forwarding resources at the POP and setup their own packet forwarding paradigm.  
2) It is necessary for an application context to lease objects at the context router to lease packet 
forwarding resources at the POP. The restriction of necessarily requiring application contexts to lease 
objects at the context router to be able to setup their specific packet processing context at the POP 
protects ASs from application contexts misusing the knowledge of AS level connectivity maps. For 
example, an application requiring best effort connectivity over a multicast tree topology may want to 
setup its specific packet processing context at certain POPs to be efficiently able to implement the 
required topology. It may use the AS level connectivity map to ascertain the best POPs where it should 
duplicate packets. However, such a design is oblivious to the policies of the underlying ASs. The 
connectivity map divulges AS level connectivity to aid applications to plan their contexts over leased 
objects from multiple ASs. Thus, use of this map to do best-effort forwarding interferes with the policies 
of the ASs. ASs thus advertize “best-effort connectivity” objects at the context router that explicitly 
allows certain best-effort transits through the AS. Any application context that requires to setup its own 
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connectivity for context-routers at various POPs, application contexts co-located in the POP, etc. Context 
specific packets are further de-multiplexed and forwarded to the correct application context. Application 
contexts maintain local data structures for context specific packet processing and forwarding functions. 
Also, application contexts are allowed secure and controlled access to the global tables through a standard 
interface. This interface allows the application contexts to avail of the object brokering  
services, next-hop context router information and other such services. Also, the application contexts may 
decide to perform measurements to determine the compliance of the leased objects with the advertized 
capabilities. However, in cases of discrepancies, the application context needs to attest its measurement 
with an independent measurement function implemented in the management plane of the context router. 
Such attestation allows for arbitrating disputes pertaining to accountability. Most application context may 
delegate the responsibility of performance measurement to the generic measurement function of the 
context router management plane.  
Figure 7 presents a closer look at the context 0 object store. Each participating AS advertizes its objects 
with the context router through a secure object advertisement management protocol. These 
advertisements are stored as part of local object repositories specific to each AS. These repositories are 
parsed at fixed time intervals to securely update a master repository. The object brokering function 
interfaces with an object mapper function that maps requirements to object capabilities, policies, price, 
etc. and returns a vector of object pointers into the master repository. The object broker, ether passes this 
information back to the application context that made the request or selects the most suitable object lease 
if delegated the authority to make this decision by the application context. Finally, upon receiving/making 
the leasing decision, the object broker updates the master repository through the secure interface and also 
informs the infrastructure realm manager about the object lease by the application context over the 
management plane.        
A.3 Inter-Realm Management Plane 
The infrastructure realms co-operate to a distributed, secure inter-realm management plane. The 
management plane maintains an inter-realm dissemination channel for control and management messages. 
Context routers also participate in this management plane. Application contexts make object requests to 
different context routers to setup an end-to-end context specific path over the management plane. 
Infrastructure realms and context routers participating in this management plane are given a set of 
routable identifiers within a management plane identifier space. Infrastructure realms and context routers 
can be directly addressed through these identifiers. The management plane also aids the setup of an end-
to-end provisioned path between two end-points. It supports various forwarding paradigms such as 
unicast, multicast, broadcast, etc. A path computation message with application specific requirements is 
sent to the local context router. The message has a couple of bits that represent the forwarding paradigm 
for this management message. For instance, if the broadcast bit is set, the context router shall forward this 
message to all next hop context routers reachable through each of its outgoing interfaces. At every context 
router hop, the object broker maps the most suitable objects from its master repository that maps the 
requirements of the application context. These broadcast messages finally reach the final destination 
which consolidates all the different messages and sends back a reply to the source. The source then 
computes the most suitable set of objects and sends an object lease and composes messages addressed to 
the specific context router identifiers that advertized the selected objects. It must be noted that the context 
routers are operated by ownerships different from that of the ASs and thus protected against selfish 
interests of ASs to block the management message across certain paths.  
B Host Tier  
The host tier of Internet 3.0 consists of compute resources consolidated over end-user personal compute 
resources, private and public cloud computing and storage resources, Content Delivery Network (CDN) 
storage resources, server farms, grid resources, etc. The mechanisms for sharing common compute 
resources across multiple application contexts may vary from virtualization techniques 
[XEN][VMWare][VServer] achieving near perfect isolation and providing strong deterministic 



performance guarantees, to traditional operating system based resource allocations based on global 
optimization and fairness considerations. Similar to the infrastructure realm, Internet 3.0 allows complete 
autonomy to host realms to choose the specific mechanisms for allocation of compute resources to 
application contexts. Also, it provides a common object abstraction interface that allows host resources to 
be shared across multiple ownerships over a policy negotiation plane. However, unlike the infrastructure 
realm which was marked by a physical realm boundary, host realms could have physical as well as logical 
boundaries. Enterprise networks, cloud platforms, etc represent host realms that have a physical boundary 
whereas end-user personal realms, virtual enterprises, etc. represent host realms that do not have a 
physical boundary. The significance of this fact is that host tier object composition is not dictated by a 
physical connectivity pre-condition, as in the case of the infrastructure tier. In the underlying commercial 
fabric, this allows host realms to be completely independent of each other and add value to their objects to 
distinguish themselves from other host realms. Infrastructure realms on the contrary need to dwell on a 
co-operative competitive behavior where object offering by one infrastructure realm needs to be matched 
by its neighbors and so on to be leased to provide an end-to-end service. However, Internet 3.0 exposes 
enough underlying connectivity diversity to greatly mitigate the connectivity dependence among different 
infrastructure realms. Also, the scale-free nature of the Internet connectivity graph, together with the 
incentive in Internet 3.0 architecture for transit infrastructure realms to participate in more neighbor 
associations is expected to reduce the significance of the restriction imposed by the connectivity pre-
condition. 
Internet 3.0 host objects are identified through a <Host Realm ID(HRID), Host Object ID(HOID)>. These 
objects are advertized over a common host tier management plane through a mechanism similar to the 
infrastructure realm. However, as already discussed, there is no connectivity dependency among the host 
realms allowing a much larger set of selections for each application context requirement. Also, the 
equivalent of the context router in the host realm does not need to be an SPP-like platform (Supercharged 
PlanetLab Platform [TUR207]) that allows application contexts to co-locate themselves. The host object 
store is implemented over a standard management protocol through which the host realms advertize their 
objects. The host-object store may be distributed for scalability and the same objects may be advertized 
across different stores. This necessitates the requirement of synchronization protocols that synchronizes 
object availability across distributed object repositories. This is implemented through a hierarchical 
organization of the object repository with the authoritative repository (one that is maintained by the host 
realm itself) synchronizing the object lease with other repositories that advertize its objects. Also, object 
lease in the host tier, is implemented over an authentication protocol that allows the object lessee to prove 
its identity and also its authorization to use the object.  
C Data Tier       
The data tier represents data and user objects. Users and data are managed by user and data realms. The 
present Internet too has the concept of data and user realms. Currently Internet data may be classified to 
belong to three realm types. The first type is the “Null Realm.” “:Null Realm” data does not have any 
record of its creator or its ownership. It can be freely distributed and used. Also, there is no guarantee of 
data integrity. Malicious behavior of “Null Realm” data cannot be attributed to any specific accountable 
entity. This is another caveat in the present Internets security model wherein malicious null realm data is 
associated with the host that served it. Clearly this is a faulty attribution, and one that needs to be 
modified. The second type of realms are “Loose Ownership Realms.” “Loose Ownership Realm” data 
have loose ownership attributes. Generally the ownership realm ensures integrity of the data through 
encapsulated meta-data. However, the guarantees of data integrity do not automatically imply that it can 
be attributed to a specific ownership, or that the data is not malicious. The reason being that “Loose 
Ownership Realms” do not participate in any trust associations wherein their identity and authenticity 
may be attested through a trust group or a third party trust anchor. The third type of data realms are 
“Strong Ownership Realms.” “Strong Ownership Realms” encapsulate data within layers of 
authentication, authorization and accounting mechanisms. “Strong Ownership Realms” generally 
participate in trust associations that validate their identity and authenticity. Data from these realms may be 



attributed to particular ownerships that take responsibility for it. The reason for the existence of these 
different realm types is owing to the lack of a basic underlying security framework for the Internet. 
Security mechanisms have been overlaid over the current Internet architecture rather than being 
developed base-up. Internet 3.0 seeks to integrate security into the basic architectural framework. We 
recognize the fact that security comes for a price and may not always be required. In many contexts it 
may be an undesirable tradeoff for performance. Thus, Internet 3.0 realizes security as a policy that is 
specific (and different) for each separate application or communication context. Internet 3.0 just allows 
the framework for explicitly expressing and negotiating security policies. It allows application contexts to 
decide and enforce the level of security that they deem necessary for their specific use.   
Similarly, users in the current Internet may be classified into three types of realms. The first type is the 
“Null Realm,” where the user is not accountable and its identity not authenticated. The second type is the 
“Self Realm.” This type of realm allows the user to authenticate itself to another user/data realm with 
which it has setup a prior association. The third type of realm is the “Enterprise Realm.” The “Enterprise 
Realm” associates the user to belong to a particular enterprise and allows the privileges and rights that it 
is authorized to enjoy as part of the enterprise. In this type of realm, the user does not need to have any 
prior association with the user/data realm that it is communicating with. The “Enterprise Realm” sets up 
these prior associations that every user may avail of. Also, the “Enterprise Realm” generally participates 
in trust associations with other “Enterprise” or “Strong Ownership” data realms. “Enterprise Realm” 
belongingness allows the user to associate certain guarantees about its identity. However, here lies 
another caveat in the present Internets security model. User membership to an enterprise realm is attested 
through his location within the enterprise network. This leads to unnatural and inefficient, externally 
patched authorization and authentication mechanisms such as virtual private networks, network proxies, 
etc. 
VI RELATED WORK 
Internet 3.0 is an overarching architecture. Unlike, most other architectures which solve specific 
problems, Internet 3.0 aims at re-defining the basic underlying primitives. A comprehensive survey of 
world-wide recent efforts in next generation Internet design is presented in [PAU09].Also, Internet 3.0 is 
a communication paradigm based architecture rather than a communication system based architecture (see 
discussion in Section 2). It is a mammoth undertaking and the natural motivation is towards being able to 
re-use as much of prior research experiences in more specific areas as possible. Some prior research in 
specific areas of networking that are relevant to the Internet 3.0 architectural framework are discussed 
here. 
A. Programmable Networks, Active Networks, OpenSIG: Past research on “programmable networks,” 
represented by Active Networks and OpenSig failed to make the desired impact despite extremely radical 
and revolutionary (to be interpreted in the positive sense) ideas. They explored mechanisms through 
which the underlying network infrastructure could be programmed to serve the specific packet processing 
requirements of multiple application contexts. However, they failed to address the misalignment with the 
basic policy framework of the multi-ownership infrastructure of the commercial Internet. The 
infrastructure owners are extremely reluctant to surrender control over their networks to arbitrary 
behavior of a specific application context. Also, they could not satisfactorily resolve the security issues 
involved with such architectures. Internet 3.0 handles both these issues as a requirement within its basic 
design. It acknowledges the autonomy of resource owners over the management of their resources and 
designs around it to provide comparable degrees of diversity. 
B. Distributed Object Technologies: Common Object Request Broker Architecture (CORBA) 
[CORBA93][NIC93][OZC94][SOL95][BOO91][UNO95][SOL95][OMG94a] was designed to be a 
distributed object technology that allowed interoperability across services implemented across different 
operating platforms and programming languages. Similarly, our “Object Abstraction” concept is designed 
to achieve interoperability across different policies and resource management implementations across 
different ownership (root realm) or administrative (realm hierarchy) boundaries. We borrow heavily from 
CORBA elements of an Interface Definition Language (IDL) and the object brokering architecture. 



However, despite being developed by one of the world’s largest software consortium (Object 
Management Group), CORBA did not reach its desired levels of success. The reason for CORBA’s 
apparent failure is attributed to its extremely complex and (sometimes) ill-defined interface design and 
complicated standards in an attempt to provide an extremely flexible design platform. A large portion of 
the industry adopted component technologies like Microsoft’s DCOM [COM] instead, nonetheless at the 
price of loss of flexibility. The Internet 3.0 is faced with a similar challenge. The higher granularity of 
control and explicit representation and negotiation of policies come at the price of increased complexity. 
This issue of dealing with complexity is of utmost importance for the success of any successful 
architecture. The biggest proof to this fact is the Internet itself. The current Internets success can be 
largely attributed to its simple design. Thus, keeping in mind the obvious tradeoff between complexity 
and flexibility, Internet 3.0 introduces two application composition scenarios, Scenario A and Scenario B 
(see Section V). Scenario A and Scenario B represent the two extremes of the complexity versus 
flexibility tradeoff. Also, Internet 3.0 expects evolutionary market forces to undertake “natural selection” 
in defining a finite number of policy profiles that suitably represent most policy contexts. Newer and 
more complex policies may be defined as special cases. The nature of Internet 3.0 design allows such 
specific cases to co-exist within the generic framework as an “isolated” specific context. 
C. Capability Publish Language (CPL) and Policy Publish Language(PPL): Object capabilities need to 
be published in terms of standardized parameters through a Capability Publish Language. Similarly, 
policies need to be published through a Policy Publish Language (PPL). Object capabilities represent 
functionalities. These functionalities are published in terms of “performance parameters”. These 
“performance parameters” are aggregated abstraction of more specific “functional parameters” of the 
resources. As an example, “delay” in an infrastructure object represents a performance parameter that 
abstracts a set of functional parameters of queuing discipline, buffering mechanism, scheduling algorithm, 
etc. The same performance parameter may be translated to different sets of functional parameters, 
depending on the resource context. We intend to borrow and extend from prior research in multi-level 
QoS mapping [KOL02][LI99][JIN04][KLA00][DAS00][HUA97]. 
There has been a lot of previous research on developing policy languages to represent security policies in 
distributed systems that could be mapped into access control parameters of firewalls, databases, operating 
systems, etc.[KAG02][DAM01][SLO94a][LUP98][SLO99][AO92][SLO94b]. Also, distributed 
management policy frameworks facilitating dynamically changing policies have also been designed 
[MAR96]. We shall extend these policy languages and their related framework that are mostly concerned 
with enterprise security and access policies to include policies that reflect the trade and usage of resources 
in a commercial paradigm within a framework supporting active negotiation of policies. Also, the policy 
framework shall be interfaced with the monitoring framework to ascertain compliance.   
D. Resource allocation and sharing: The allocation and sharing of physical resources amongst multiple 
logical contexts under specified performance metrics such as availability, latency, etc. is a highly 
explored area in operating system scheduling, real-time systems and other such disciplines. These 
methods may be contrasted with mechanisms of virtualization [XEN][VMWare][VServer] that partition 
resources and make dedicated allocations to each context. 
Distributed resource allocation and sharing (for quality of service provisioning) across routing domains 
has been extensively researched. Different infrastructure owners may employ different methods such as 
virtualization of its resources [AND05][FEA07][TUR107][ON408][ON431][GENI101] 
[GENI102][ON802], MPLS based fixed circuits [ROS01], flow identification and 
classification[KN98][BR94], etc. combined with a variety of queuing, buffering, scheduling disciplines 
that best suit their resource capability and organization. 
E. Monitoring and Management Framework: An object lease implicitly entails a Service Level 
Agreement (SLA) between the object owner and the object leaser. Any architectural framework that 
provides differentiated services and is designed for SLAs, necessarily need to be supported by a sound, 
efficient, robust and secure monitoring and measurement framework [CHA00]. Moreover, SLA 
compliance monitoring and measurement has to devise fair and unbiased evaluation methods that can 



mitigate potential conflicts and can establish accountability at the required level of granularity. The two 
approaches generally used for SLA compliance monitoring are; 1) Passive network measurements 
[ZSE01], and 2) Active measurements by injecting measurement probes into the network. A third type of 
hybrid mechanism is also used [AID03][CIA03]. Active measurements methods to establish end-to-end 
performance characteristics is a well researched area[ALM99a][ALM99b][BOL93][CHO05] 
[COL01][DEM02][PAS01][PAX97][PAX98][YAJ99][ZHA01]. Unlike the current Internet, Internet 3.0 
shall provide native support for monitoring and measuring. The idea is to standardize interfaces through 
which a monitoring tool can query different aspects of the network performance. Also, in the context of a 
tiered diversification architecture, end-to-end measurements have different meaning in the different entity 
levels. Objects represent SLA’s themselves and hence granularity of measurements has to establish object 
level compliance. Additionally, since monitoring and measurement is a management plane activity, there 
are scalability issues for monitoring at high levels of granularity and business implications for not 
monitoring. 
F. Policy Negotiation (Scalability and Feasibility): The policy negotiation framework for horizontal 
service composition requires each object realm to negotiate policies with each object realm that is already 
part of the composite. This leads to N(N-1)/2 policy negotiations for a N object horizontal composite. For 
vertical composite of two horizontal composites containing N, M objects respectively, requires N X M 
policy negotiations. This problem is similar to the N X N blowup in PlanetLab’s initial design [PET06]. 
PlanetLab solved it by designating the PLC node as a central trust anchor acting as a central point for trust 
negotiations. The problem in our case is a bit trickier. Objects composed to form services belong to 
separate realm ownerships with their own set of policies. It is thus difficult to establish a centralized trust 
anchor. However, the semantics of object composition could include some trust aggregation policies that 
could represent group policy maintained at a centralized location for the composition. The semantics of 
group policy would vary for each group. Also, it would depend on the actual architectural instantiation to 
determine the central location that shall maintain and update these group policies for each composite. 
G. Security: Basic security research has resulted in technologies that are important building blocks for 
any comprehensive security solution. Relevant technologies include digital certificates and certification 
authorities; PKI [BRA00]; authenticated session key exchange [BEL93]; zero-knowledge based 
identification [FIE87]; anonymity and pseudo-anonymity techniques 
[REI99][GOL99][GAB99][DUR07]; access control models and techniques, such as RBAC [BER01] 
[SAN99] and credential-based access control [ADA02][BER02][CAM06]; trust-negotiation systems 
[YU03][YU03a]; and privacy-preserving techniques, such as private information retrieval [CAN01]  
[DIN03][FEI01]. However, these technologies have never been investigated from the angle that is 
relevant to Internet 3.0, that is, the development of security tools and policies for a new Internet. We 
would like to emphasize that the challenge here is how to coordinate the execution of several security 
services in order to achieve strong security, while at the same time having flexible security solutions. 
Other relevant work is related to systems and tools for policy management (see the many papers in the 
IEEE Policy Symposium Series - www.ieee-policy.org). A main novelty of our work with respect to this 
past work is the introduction of new policy types and the investigation of the notion of high-assurance 
policy enforcement. Finally a lot of past work has addressed network security [DEN87][ 
DUR09][MIR05][SON01]; however most of these approaches just address specific security threats, like 
denial of service attacks, and they do not provide systematic solutions to a secure Internet. 
The discussion in this section highlighted prior research that is immediately relevant to the core design 
framework of Internet 3.0. However, for lack of space, we are forced to leave out from this discussion a 
lot of other relevant research efforts that has in some way motivated some design decisions of Internet.     
VII Summary 
In this paper we presented Internet 3.0, an overarching architecture for the next generation Internet. 
Internet 3.0 allows multiple diverse applications to dynamically create and optimize their specific 
contexts over resources leased from multiple ownerships. The key design primitive of the “Object 
Abstraction” enables functional and policy interoperability among multiple administrative domains or 
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resource ownerships. “Objects” are the fundamental building blocks in the architecture. A generic 
framework for object lease allows, resource owners to advertize their capabilities, and application 
contexts or third party service providers to compose their specific application contexts/ services over 
them. Internet 3.0 represents a hybrid design paradigm, between the clean-slate and dirty-slate design 
paradigms of most next generation Internet architecture proposals. The hybrid design paradigm of Internet 
3.0 is powered by the design of the “Context Router,” that allows the implementation of the clean-slate 
ideas of Internet 3.0 architecture over the existing Internet with minimal changes. Also, the design of the 
Internet 3.0 architecture is based on the “generalized three- tier object model” that realizes the current 
Internet as a special case within its more generic framework. This ensures the ease of deployability of   
Internet 3.0 without adversely affecting the current Internet.                
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