79,136 research outputs found

    The unusual microtubule polarity in teleost retinal pigment epithelial cells.

    Get PDF
    In cells of the teleost retinal pigment epithelium (RPE), melanin granules disperse into the RPE cells long apical projections in response to light onset, and aggregate toward the base of the RPE cell in response to dark onset. The RPE cells possess numerous microtubules, which in the apical projections are aligned longitudinally. Nocodazole studies have shown that pigment granule aggregation is microtubule-dependent (Troutt, L. L., and B. Burnside, 1988b Exp. Eye Res. In press.). To investigate further the mechanism of microtubule participation in RPE pigment granule aggregation, we have used the tubulin hook method to assess the polarity of microtubules in the apical projections of teleost RPE cells. We report here that virtually all microtubules in the RPE apical projections are uniformly oriented with plus ends toward the cell body and minus ends toward the projection tips. This orientation is opposite that found for microtubules of dermal melanophores, neurons, and most other cell types

    Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells.

    Get PDF
    PurposeThe RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter.MethodsARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting.ResultsARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation.ConclusionsThe ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated

    A constitutively active Gαi3 protein corrects the abnormal retinal pigment epithelium phenotype of Oa1-/- mice.

    Get PDF
    PurposeOcular Albinism type 1 (OA1) is a disease caused by mutations in the OA1 gene and characterized by the presence of macromelanosomes in the retinal pigment epithelium (RPE) as well as abnormal crossing of the optic axons at the optic chiasm. We showed in our previous studies in mice that Oa1 activates specifically Gαi3 in its signaling pathway and thus, hypothesized that a constitutively active Gαi3 in the RPE of Oa1-/- mice might keep on the Oa1 signaling cascade and prevent the formation of macromelanosomes. To test this hypothesis, we have generated transgenic mice that carry the constitutively active Gαi3 (Q204L) protein in the RPE of Oa1-/- mice and are now reporting the effects that the transgene produced on the Oa1-/- RPE phenotype.MethodsTransgenic mice carrying RPE-specific expression of the constitutively active Gαi3 (Q204L) were generated by injecting fertilized eggs of Oa1-/- females with a lentivirus containing the Gαi3 (Q204L) cDNA. PCR, Southern blots, Western blots and confocal microscopy were used to confirm the presence of the transgene in the RPE of positive transgenic mice. Morphometrical analyses were performed using electron microscopy to compare the size and number of melanosomes per RPE area in putative Oa1-/-, Gαi3 (Q204L) transgenic mice with those of wild-type NCrl and Oa1-/- mice.ResultsWe found a correlation between the presence of the constitutively active Gαi3 (Q204L) transgene and the rescue of the normal phenotype of RPE melanosomes in Oa1-/-, Gαi3 (Q204L) mice. These mice have higher density of melanosomes per RPE area and a larger number of small melanosomes than Oa1-/- mice, and their RPE phenotype is similar to that of wild-type mice.ConclusionsOur results show that a constitutively active Gαi3 protein can by-pass the lack of Oa1 protein in Oa1-/- mice and consequently rescue the RPE melanosomal phenotype

    Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    Get PDF
    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies

    Deletion of TSPO resulted in change of metabolomic profile in retinal pigment epithelial cells

    Get PDF
    Age-related macular degeneration is the main cause of vision loss in the aged population worldwide. Drusen, extracellular lesions formed underneath the retinal pigment epithelial (RPE) cells, are a clinical feature of AMD and associated with AMD progression. RPE cells support photoreceptor function by providing nutrition, phagocytosing outer segments and removing metabolic waste. Dysfunction and death of RPE cells are early features of AMD. The translocator protein, TSPO, plays an important role in RPE cholesterol efflux and loss of TSPO results in increased intracellular lipid accumulation and reactive oxygen species (ROS) production. This study aimed to investigate the impact of TSPO knockout on RPE cellular metabolism by identifying the metabolic differences between wildtype and knockout RPE cells, with or without treatment with oxidized low density lipoprotein (oxLDL). Using liquid chromatography mass spectrometry (LC/MS), we differentiated several metabolic pathways among wildtype and knockout cells. Lipids amongst other intracellular metabolites were the most influenced by loss of TSPO and/or oxLDL treatment. Glucose, amino acid and nucleotide metabolism was also affected. TSPO deletion led to up-regulation of fatty acids and glycerophospholipids, which in turn possibly affected the cell membrane fluidity and stability. Higher levels of glutathione disulphide (GSSG) were found in TSPO knockout RPE cells, suggesting TSPO regulates mitochondrial-mediated oxidative stress. These data provide biochemical insights into TSPO-associated function in RPE cells and may shed light on disease mechanisms in AMD

    Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye.

    Get PDF
    Accumulation of protein- and lipid-containing deposits external to the retinal pigment epithelium (RPE) is common in the aging eye, and has long been viewed as the hallmark of age-related macular degeneration (AMD). The cause for the accumulation and retention of molecules in the sub-RPE space, however, remains an enigma. Here, we present fluorescence microscopy and X-ray diffraction evidence for the formation of small (0.5-20 μm in diameter), hollow, hydroxyapatite (HAP) spherules in Bruch's membrane in human eyes. These spherules are distinct in form, placement, and staining from the well-known calcification of the elastin layer of the aging Bruch's membrane. Secondary ion mass spectrometry (SIMS) imaging confirmed the presence of calcium phosphate in the spherules and identified cholesterol enrichment in their core. Using HAP-selective fluorescent dyes, we show that all types of sub-RPE deposits in the macula, as well as in the periphery, contain numerous HAP spherules. Immunohistochemical labeling for proteins characteristic of sub-RPE deposits, such as complement factor H, vitronectin, and amyloid beta, revealed that HAP spherules were coated with these proteins. HAP spherules were also found outside the sub-RPE deposits, ready to bind proteins at the RPE/choroid interface. Based on these results, we propose a novel mechanism for the growth, and possibly even the formation, of sub-RPE deposits, namely, that the deposit growth and formation begin with the deposition of insoluble HAP shells around naturally occurring, cholesterol-containing extracellular lipid droplets at the RPE/choroid interface; proteins and lipids then attach to these shells, initiating or supporting the growth of sub-RPE deposits
    • …
    corecore