5,425 research outputs found

    Noise event measures for road traffic

    Get PDF
    How should noise events in road traffic noise be measured? This paper reports the performance of a set of algorithms that detect noise events in time histories of road traffic noise in the population of acoustic conditions found near roadways. The latter was obtained through simulation of 500 different road traffic noise time histories using a comprehensive range of traffic flow, traffic composition, and propagation distance, conditions in unshielded locations near roadways. The initial set of algorithms tested was developed by systematically expanding on threshold-based algorithms described in the literature, then excluding those that were unreliable. The finding was that the NA50 and NA55 (detecting when road traffic noise exceeded 50 dB and 55 dB respectively), and the NAL50E10 (detecting when the traffic levels exceeded L50 + 10 dB) can all be considered for practical application as event detection indicators. All apply to measurement of indoor events with the windows of the dwelling open. The primary criterion for selection as supplementary indicators (and others in the same clusters that could substitute for them) was their non-monotonic relationship with the LAeq, The traffic and distance conditions under which these event-based measures could potentially be useful supplementary indicators is identified.Griffith Sciences, Griffith School of EnvironmentFull Tex

    Treatment of road traffic noise in EU countries with a focus on Directive 2002/49/EC

    Get PDF
    The trend of continuous increase for mobility requirements results in a progressive increase in the use of vehicles of all modes of transport, which contributes to a significant increase in noise levels, especially in urban areas. The most significant noise in urban areas is traffic noise, where road traffic contributes the most. This paper reviews the treatment of road traffic noise in the European Union with a focus on Directive 2002/49 / EC. The paper presents the basics of the mechanisms of the institutional and management framework in the field of road traffic noise monitoring in EU countries. Also, the results of road traffic noise monitoring in EU countries, indicators of population exposure to road traffic noise, as well as indicators of the impact of road traffic noise on the health of the population, were presented

    Measurement of noise events in road traffic streams: initial results from a simulation study

    Get PDF
    A key question for road traffic noise management is whether prediction of human response to noise, including sleep quality, could be improved over the use of conventional energy equivalent, or percentile, measures, by accounting for noise events in road traffic streams. This paper reports initial results from a noise-events investigation into event-based indicators over an exhaustive set of traffic flow, traffic composition, and propagation distance, conditions in unshielded locations in proximity to roadways. We simulate the time-varying noise level histories at various distances from roadways using a dynamic micro-traffic model and a distribution of sound power levels of individual vehicles. We then develop a comprehensive set of noise event indicators, extrapolated from those suggested in the literature, and use them to count noise events in these simulated time histories. We report the noise-event algorithms that produce realistic, and reliable, counts of noise events for one-hour measurement periods, then reduce redundancy in the indicator set by suggesting a small number of representative event indicators. Later work will report the traffic composition and distance conditions under which noise event measures provide information uncorrelated with conventional road traffic noise indicators — and which thus may prove useful as supplementary indicators to energy-equivalent measures for road traffic noise

    Road traffic noise exposure and filled prescriptions for antihypertensive medication:A danish cohort study

    Get PDF
    Background: Epidemiological research on effects of transportation noise on incident hypertension is inconsistent. Objectives: We aimed to investigate whether residential road traffic noise increases the risk for hypertension. Methods: In a population-based cohort of 57,053 individuals 50–64 years of age at enrollment, we identified 21,241 individuals who fulfilled our case definition of filling ≥2 prescriptions and ≥180 defined daily doses of antihypertensive drugs (AHTs) within a year, during a mean follow-up time of 14.0 y. Residential addresses from 1987 to 2016 were obtained from national registers, and road traffic noise at the most exposed façade as well as the least exposed façade was modeled for all addresses. Analyses were conducted using Cox proportional hazards models. Results: We found no associations between the 10-y mean exposure to road traffic noise and filled prescriptions for AHTs, with incidence rate ratios (IRRs) of 0.999 [95% confidence intervals (CI): 0.980, 1.019)] per 10-dB increase in road traffic noise at the most exposed façade and of 1.001 (95% CI: 0.977, 1.026) at the least exposed façade. Interaction analyses suggested an association with road traffic noise at the least exposed façade among subpopulations of current smokers and obese individuals. Conclusion: The present study does not support an association between road traffic noise and filled prescriptions for AHTs. https://doi.org/10.1289/EHP627

    Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London.

    Get PDF
    AIMS: Road traffic noise has been associated with hypertension but evidence for the long-term effects on hospital admissions and mortality is limited. We examined the effects of long-term exposure to road traffic noise on hospital admissions and mortality in the general population. METHODS AND RESULTS: The study population consisted of 8.6 million inhabitants of London, one of Europe's largest cities. We assessed small-area-level associations of day- (7:00-22:59) and nighttime (23:00-06:59) road traffic noise with cardiovascular hospital admissions and all-cause and cardiovascular mortality in all adults (≥25 years) and elderly (≥75 years) through Poisson regression models. We adjusted models for age, sex, area-level socioeconomic deprivation, ethnicity, smoking, air pollution, and neighbourhood spatial structure. Median daytime exposure to road traffic noise was 55.6 dB. Daytime road traffic noise increased the risk of hospital admission for stroke with relative risk (RR) 1.05 [95% confidence interval (CI): 1.02-1.09] in adults, and 1.09 (95% CI: 1.04-1.14) in the elderly in areas >60 vs. 60 vs. <55 dB]. Positive but non-significant associations were seen with mortality for cardiovascular and ischaemic heart disease, and stroke. Results were similar for the elderly. CONCLUSIONS: Long-term exposure to road traffic noise was associated with small increased risks of all-cause mortality and cardiovascular mortality and morbidity in the general population, particularly for stroke in the elderly

    Sound source contributions for the prediction of vehicle pass-by noise

    Get PDF
    Road traffic noise contributes to environmental noise, which can result in cardiovascular disease, sleep disturbance or annoyance for the exposed population1. The reduction of road traffic noise aims to increase health and life quality. Therefore, the vehicle pass-by noise emission, which is determined in a standardised test situation, was limited by legislation. First introduced in the 1970s, vehicle pass-by noise limits have been gradually reduced for all vehicle classes. However, road traffic noise was not as significantly reduced as the pass-by noise limits

    Estimating the effect of semi-transparent low-height road traffic noise barriers with ultra weak variational formulation

    Get PDF
    The ultra weak variational formulation (UWVF) approach is used to study the effect of semi-transparent road traffic noise barriers of limited height. This numerical method is extended to simulate sound propagation through a porous medium, based on the Zwicker and Kosten phenomenological porous rigid-frame model. An efficient approach to calculate noise levels in multi-lane road traffic noise situations is presented. The UWVF method was validated successfully by comparison with finite-difference time-domain (FDTD) calculations, for the case of sound propagation near a porous, low-height, and complex shaped noise barrier, and for sound propagation above porous ground in a refracting atmosphere. An assessment is made of the shielding of various porous low-height noise barriers for people on the pavement along the road. Porous barriers were shown to improve noise shielding when compared to geometrically identical rigid noise barriers

    Hypertension and exposure to noise near airports: the HYENA study

    Get PDF
    BACKGROUND: An increasing number of people are exposed to aircraft and road traffic noise. Hypertension is an important risk factor for cardiovascular disease, and even a small contribution in risk from environmental factors may have a major impact on public health. OBJECTIVES: The HYENA (Hypertension and Exposure to Noise near Airports) study aimed to assess the relations between noise from aircraft or road traffic near airports and the risk of hypertension. METHODS: We measured blood pressure and collected data on health, socioeconomic, and lifestyle factors, including diet and physical activity, via questionnaire at home visits for 4,861 persons 45-70 years of age, who had lived at least 5 years near any of six major European airports. We assessed noise exposure using detailed models with a resolution of 1 dB (5 dB for United Kingdom road traffic noise), and a spatial resolution of 250 x 250 m for aircraft and 10 x 10 m for road traffic noise. RESULTS: We found significant exposure-response relationships between night-time aircraft as well as average daily road traffic noise exposure and risk of hypertension after adjustment for major confounders. For night-time aircraft noise, a 10-dB increase in exposure was associated with an odds ratio (OR) of 1.14 [95% confidence interval (CI), 1.01-1.29]. The exposure-response relationships were similar for road traffic noise and stronger for men with an OR of 1.54 (95% CI, 0.99-2.40) in the highest exposure category (> 65 dB; p(trend) = 0.008). CONCLUSIONS: Our results indicate excess risks of hypertension related to long-term noise exposure, primarily for night-time aircraft noise and daily average road traffic noise

    Road Traffic Noise and Incident Myocardial Infarction: A Prospective Cohort Study

    Get PDF
    BACKGROUND Both road traffic noise and ambient air pollution have been associated with risk for ischemic heart disease, but only few inconsistent studies include both exposures. METHODS In a population-based cohort of 57 053 people aged 50 to 64 years at enrolment in 1993-1997, we identified 1600 cases of first-ever MI between enrolment and 2006. The mean follow-up time was 9.8 years. Exposure to road traffic noise and air pollution from 1988 to 2006 was estimated for all cohort members from residential address history. Associations between exposure to road traffic noise and incident MI were analysed in a Cox regression model with adjustment for air pollution (NO(x)) and other potential confounders: age, sex, education, lifestyle confounders, railway and airport noise. RESULTS We found that residential exposure to road traffic noise (L(den)) was significantly associated with MI, with an incidence rate ratio IRR of 1.12 per 10 dB for both of the two exposure windows: yearly exposure at the time of diagnosis (95% confidence interval (CI): 1.02-1.22) and 5-years time-weighted mean (95% CI: 1.02-1.23) preceding the diagnosis. Visualizing of the results using restricted cubic splines showed a linear dose-response relationship. CONCLUSIONS Exposure to long-term residential road traffic noise was associated with a higher risk for MI, in a dose-dependent manner

    Evolution of building façade road traffic noise levels in Flanders

    Get PDF
    The evolution of daytime facade noise levels by road traffic at 250 dwellings in Flanders is assessed. Three identical man-operated measurement campaigns have been conducted in the years 1996, 2001 and 2009, during fall. A practical methodology has been developed, based on short time noise measurements and context observations at these locations. The uncertainty introduced by short-term sampling has been quantified as a function of the noise level. Furthermore, a correction is proposed for measuring at a random moment during daytime. Analysis of the data showed that road traffic noise levels hardly changed globally over this period of 13 years. The distribution of changes in noise level at corresponding measurement locations is nevertheless rather wide-all improvements are equally compensated by increases in noise levels at other locations. The percentage of the dwelling facades exposed to daytime noise levels above 65 dBA has increased slightly between 1996 and 2001, but seems to stagnate in 2009. In spite of the increased interest and actions of policy makers during the past decades, noise exposure caused by road traffic at dwelling facades is a persistent problem
    • …
    corecore