34 research outputs found

    Cellular Control of Dengue Virus Replication: Role of Interferon-Inducible Genes

    Get PDF
    Dengue, one of the most common mosquito‐borne viral infectious diseases in the world, is caused by the dengue virus (DENV). This enveloped RNA virus has immunologically distinct serotypes that increase the risk of life‐threatening diseases, such as dengue haemorrhagic fever. However, no effective antiviral therapy against DENV infection has yet been established. As seen in other RNA viruses, various cellular factors have been reported to participate in efficient DENV replication. On the other hand, increasing recent evidence demonstrates that host cells harbour inhibitory factors that limit the DENV replication. In particular, it is well known that the response of interferons (IFNs), the first line of a host defence system against invading pathogens, evokes the expression of a number of genes that negatively regulate various steps of virus replication. This set of inhibitory genes, called interferon‐stimulated genes (ISGs), is considered to be a central force in IFN‐mediated antiviral responses. In this chapter, we focus our attention on the cellular factors involved in DENV infection, particularly to those that modulate DENV replication through their association with viral RNA. In addition, we also summarize general experimental approaches for identifying the host factors of RNA viruses, including DENV

    Characterization of MtnE, the fifth metallothionein member in Drosophila

    Get PDF
    Metallothioneins (MTs) constitute a family of cysteine-rich, low molecular weight metal-binding proteins which occur in almost all forms of life. They bind physiological metals, such as zinc and copper, as well as nonessential, toxic heavy metals, such as cadmium, mercury, and silver. MT expression is regulated at the transcriptional level by metal-regulatory transcription factor1 (MTF-1), which binds to the metal-response elements (MREs) in the enhancer/promoter regions of MT genes. Drosophila was thought to have four MT genes, namely, MtnA, MtnB, MtnC, and MtnD. Here we characterize a new fifth member of Drosophila MT gene family, coding for metallothionein E (MtnE). The MtnE transcription unit is located head-to-head with the one of MtnD. The intervening sequence contains four MREs which bind, with different affinities, to MTF-1. Both of the divergently transcribed MT genes are completely dependent on MTF-1, whereby MtnE is consistently more strongly transcribed. MtnE expression is induced in response to heavy metals, notably copper, mercury, and silver, and is upregulated in a genetic background where the other four MTs are missin

    Positive Selection Drives Preferred Segment Combinations during Influenza Virus Reassortment

    Get PDF
    Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 and the remaining six segments from H3N2. By deep sequencing the entire viral genome, we monitored the evolution of reassortment, quantifying the relative abundance of all IAV genome segments from the two parent strains over time and measuring the selection coefficients of the reassorting segments. Additionally, we observed several mutations coemerging with reassortment that were not found during passaging of pure parental IAV strains. Our results demonstrate how reassortment of the segmented genome can accelerate viral evolution in IAV, potentially enabled by the emergence of a small number of individual mutation

    Positive Selection Drives Preferred Segment Combinations during Influenza Virus Reassortment

    Get PDF
    Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 and the remaining six segments from H3N2. By deep sequencing the entire viral genome, we monitored the evolution of reassortment, quantifying the relative abundance of all IAV genome segments from the two parent strains over time and measuring the selection coefficients of the reassorting segments. Additionally, we observed several mutations coemerging with reassortment that were not found during passaging of pure parental IAV strains. Our results demonstrate how reassortment of the segmented genome can accelerate viral evolution in IAV, potentially enabled by the emergence of a small number of individual mutation

    A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks

    Full text link
    Abstract Background The large amount of literature in the post-genomics era enables the study of gene interactions and networks using all available articles published for a specific organism. MeSH is a controlled vocabulary of medical and scientific terms that is used by biomedical scientists to manually index articles in the PubMed literature database. We hypothesized that genome-wide gene-MeSH term associations from the PubMed literature database could be used to predict implicit gene-to-gene relationships and networks. While the gene-MeSH associations have been used to detect gene-gene interactions in some studies, different methods have not been well compared, and such a strategy has not been evaluated for a genome-wide literature analysis. Genome-wide literature mining of gene-to-gene interactions allows ranking of the best gene interactions and investigation of comprehensive biological networks at a genome level. Results The genome-wide GenoMesh literature mining algorithm was developed by sequentially generating a gene-article matrix, a normalized gene-MeSH term matrix, and a gene-gene matrix. The gene-gene matrix relies on the calculation of pairwise gene dissimilarities based on gene-MeSH relationships. An optimized dissimilarity score was identified from six well-studied functions based on a receiver operating characteristic (ROC) analysis. Based on the studies with well-studied Escherichia coli and less-studied Brucella spp., GenoMesh was found to accurately identify gene functions using weighted MeSH terms, predict gene-gene interactions not reported in the literature, and cluster all the genes studied from an organism using the MeSH-based gene-gene matrix. A web-based GenoMesh literature mining program is also available at: http://genomesh.hegroup.org. GenoMesh also predicts gene interactions and networks among genes associated with specific MeSH terms or user-selected gene lists. Conclusions The GenoMesh algorithm and web program provide the first genome-wide, MeSH-based literature mining system that effectively predicts implicit gene-gene interaction relationships and networks in a genome-wide scope.http://deepblue.lib.umich.edu/bitstream/2027.42/112478/1/12918_2013_Article_1166.pd

    Aging-Associated miR-217 Aggravates Atherosclerosis and Promotes Cardiovascular Dysfunction.

    Get PDF
    microRNAs are master regulators of gene expression with essential roles in virtually all biological processes. miR-217 has been associated with aging and cellular senescence, but its role in vascular disease is not understood. Approach and Results: We have used an inducible endothelium-specific knock-in mouse model to address the role of miR-217 in vascular function and atherosclerosis. miR-217 reduced NO production and promoted endothelial dysfunction, increased blood pressure, and exacerbated atherosclerosis in proatherogenic apoE-/- mice. Moreover, increased endothelial miR-217 expression led to the development of coronary artery disease and altered left ventricular heart function, inducing diastolic and systolic dysfunction. Conversely, inhibition of endogenous vascular miR-217 in apoE-/- mice improved vascular contractility and diminished atherosclerosis. Transcriptome analysis revealed that miR-217 regulates an endothelial signaling hub and downregulates a network of eNOS (endothelial NO synthase) activators, including VEGF (vascular endothelial growth factor) and apelin receptor pathways, resulting in diminished eNOS expression. Further analysis revealed that human plasma miR-217 is a biomarker of vascular aging and cardiovascular risk. Our results highlight the therapeutic potential of miR-217 inhibitors in aging-related cardiovascular disease.V.G. de Yébenes was supported by Ramón y Cajal grant RYC-2009-04503 and AECC foundation grant INVES18013GARC and by the Universidad Complutense de Madrid. S.M. Mur and A.R. Ramiro are supported by Centro Nacional de Investigaciones Cardiovasculares (CNIC) funding. A.R. Ramiro was supported by the Spanish Ministerio de Ciencia e Innovación (PID2019-107551RB-I00), the Spanish Ministerio de Economía, Industria y Competitividad (SAF2013-42767-R and SAF2016-75511-R), and the European Research Council StG BCLYM. M. Salaices was supported by the Ministerio de Ciencia e Innovación (SAF2016-80305P) and with J. Miguel Redondo by Instituto de Salud Carlos III (CIBER de Enfermedades Cardiovasculares, CB16/11/00286 and CB16/11/00264) and Comunidad de Madrid (B2017/BMD-3676). V.G. de Yébenes was supported by Ministerio de Ciencia e Innovación (PID2019-107551RB-I00). Further support was provided by the European Social Fund and the European Regional Development Fund “A Way to Build Europe.” The CNIC is supported by Ministerio de Ciencia, Innovacion y Universidades, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP

    Get PDF
    Musashi1 (Msi1) is an RNA-binding protein that is highly expressed in neural stem cells. We previously reported that Msi1 contributes to the maintenance of the immature state and self-renewal activity of neural stem cells through translational repression of m-Numb. However, its translation repression mechanism has remained unclear. Here, we identify poly(A) binding protein (PABP) as an Msi1-binding protein, and find Msi1 competes with eIF4G for PABP binding. This competition inhibits translation initiation of Msi1's target mRNA. Indeed, deletion of the PABP-interacting domain in Msi1 abolishes its function. We demonstrate that Msi1 inhibits the assembly of the 80S, but not the 48S, ribosome complex. Consistent with these conclusions, Msi1 colocalizes with PABP and is recruited into stress granules, which contain the stalled preinitiation complex. However, Msi1 with mutations in two RNA recognition motifs fails to accumulate into stress granules. These results provide insight into the mechanism by which sequence-specific translational repression occurs in stem cells through the control of translation initiation
    corecore