876 research outputs found

    An Online Parallel and Distributed Algorithm for Recursive Estimation of Sparse Signals

    Full text link
    In this paper, we consider a recursive estimation problem for linear regression where the signal to be estimated admits a sparse representation and measurement samples are only sequentially available. We propose a convergent parallel estimation scheme that consists in solving a sequence of â„“1\ell_{1}-regularized least-square problems approximately. The proposed scheme is novel in three aspects: i) all elements of the unknown vector variable are updated in parallel at each time instance, and convergence speed is much faster than state-of-the-art schemes which update the elements sequentially; ii) both the update direction and stepsize of each element have simple closed-form expressions, so the algorithm is suitable for online (real-time) implementation; and iii) the stepsize is designed to accelerate the convergence but it does not suffer from the common trouble of parameter tuning in literature. Both centralized and distributed implementation schemes are discussed. The attractive features of the proposed algorithm are also numerically consolidated.Comment: Part of this work has been presented at The Asilomar Conference on Signals, Systems, and Computers, Nov. 201

    M-Power Regularized Least Squares Regression

    Full text link
    Regularization is used to find a solution that both fits the data and is sufficiently smooth, and thereby is very effective for designing and refining learning algorithms. But the influence of its exponent remains poorly understood. In particular, it is unclear how the exponent of the reproducing kernel Hilbert space~(RKHS) regularization term affects the accuracy and the efficiency of kernel-based learning algorithms. Here we consider regularized least squares regression (RLSR) with an RKHS regularization raised to the power of m, where m is a variable real exponent. We design an efficient algorithm for solving the associated minimization problem, we provide a theoretical analysis of its stability, and we compare its advantage with respect to computational complexity, speed of convergence and prediction accuracy to the classical kernel ridge regression algorithm where the regularization exponent m is fixed at 2. Our results show that the m-power RLSR problem can be solved efficiently, and support the suggestion that one can use a regularization term that grows significantly slower than the standard quadratic growth in the RKHS norm

    Adaptive Graph Signal Processing: Algorithms and Optimal Sampling Strategies

    Full text link
    The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly time-varying) subset of vertices. We recast two classical adaptive algorithms in the graph signal processing framework, namely, the least mean squares (LMS) and the recursive least squares (RLS) adaptive estimation strategies. For both methods, a detailed mean-square analysis illustrates the effect of random sampling on the adaptive reconstruction capability and the steady-state performance. Then, several probabilistic sampling strategies are proposed to design the sampling probability at each node in the graph, with the aim of optimizing the tradeoff between steady-state performance, graph sampling rate, and convergence rate of the adaptive algorithms. Finally, a distributed RLS strategy is derived and is shown to be convergent to its centralized counterpart. Numerical simulations carried out over both synthetic and real data illustrate the good performance of the proposed sampling and reconstruction strategies for (possibly distributed) adaptive learning of signals defined over graphs.Comment: Submitted to IEEE Transactions on Signal Processing, September 201

    A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation

    Full text link
    Stochastic approximation techniques play an important role in solving many problems encountered in machine learning or adaptive signal processing. In these contexts, the statistics of the data are often unknown a priori or their direct computation is too intensive, and they have thus to be estimated online from the observed signals. For batch optimization of an objective function being the sum of a data fidelity term and a penalization (e.g. a sparsity promoting function), Majorize-Minimize (MM) methods have recently attracted much interest since they are fast, highly flexible, and effective in ensuring convergence. The goal of this paper is to show how these methods can be successfully extended to the case when the data fidelity term corresponds to a least squares criterion and the cost function is replaced by a sequence of stochastic approximations of it. In this context, we propose an online version of an MM subspace algorithm and we study its convergence by using suitable probabilistic tools. Simulation results illustrate the good practical performance of the proposed algorithm associated with a memory gradient subspace, when applied to both non-adaptive and adaptive filter identification problems
    • …
    corecore