1,380 research outputs found

    Robust Integral of Sign of Error and Neural Network Control for Servo System with Continuous Friction

    Get PDF

    RISE-Based Integrated Motion Control of Autonomous Ground Vehicles With Asymptotic Prescribed Performance

    Get PDF
    This article investigates the integrated lane-keeping and roll control for autonomous ground vehicles (AGVs) considering the transient performance and system disturbances. The robust integral of the sign of error (RISE) control strategy is proposed to achieve the lane-keeping control purpose with rollover prevention, by guaranteeing the asymptotic stability of the closed-loop system, attenuating systematic disturbances, and maintaining the controlled states within the prescribed performance boundaries. Three contributions have been made in this article: 1) a new prescribed performance function (PPF) that does not require accurate initial errors is proposed to guarantee the tracking errors restricted within the predefined asymptotic boundaries; 2) a modified neural network (NN) estimator which requires fewer adaptively updated parameters is proposed to approximate the unknown vertical dynamics; and 3) the improved RISE control based on PPF is proposed to achieve the integrated control objective, which analytically guarantees both the controller continuity and closed-loop system asymptotic stability by integrating the signum error function. The overall system stability is proved with the Lyapunov function. The controller effectiveness and robustness are finally verified by comparative simulations using two representative driving maneuvers, based on the high-fidelity CarSim-Simulink simulation

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method

    RISE-based adaptive control of electro-hydraulic servo system with uncertain compensation

    Get PDF
    Electro-hydraulic servo system (EHSS) plays an important role in many industrial and military applications. However, its high-performance tracking control is still a challenging mission due to its nonlinear system dynamics and model uncertainties. In this paper, a novel adaptive robust integral method of the sign of the error (ARISE) with extended state observer (ESO) is proposed. Firstly, the nonlinear mathematical model of typical EHSS with modeling uncurtains and uncertain nonlinear is established. Then, ESO is used to estimate the state and lumped disturbance, of which the unknown parameter estimations can be updated by the novel adaptive law. Results shows that the novel controller achieves better tracking performance in maximum tracking error, average tracking error and standard deviation of the tracking error

    Visual servoing by partitioning degrees of freedom

    Get PDF
    There are many design factors and choices when mounting a vision system for robot control. Such factors may include the kinematic and dynamic characteristics in the robot's degrees of freedom (DOF), which determine what velocities and fields-of-view a camera can achieve. Another factor is that additional motion components (such as pan-tilt units) are often mounted on a robot and introduce synchronization problems. When a task does not require visually servoing every robot DOF, the designer must choose which ones to servo. Questions then arise as to what roles, if any, do the remaining DOF play in the task. Without an analytical framework, the designer resorts to intuition and try-and-see implementations. This paper presents a frequency-based framework that identifies the parameters that factor into tracking. This framework gives design insight which was then used to synthesize a control law that exploits the kinematic and dynamic attributes of each DOF. The resulting multi-input multi-output control law, which we call partitioning, defines an underlying joint coupling to servo camera motions. The net effect is that by employing both visual and kinematic feedback loops, a robot can quickly position and orient a camera in a large assembly workcell. Real-time experiments tracking people and robot hands are presented using a 5-DOF hybrid (3-DOF Cartesian gantry plus 2-DOF pan-tilt unit) robot

    Active Suspension Control of Full-car Systems without Function Approximation

    Get PDF
    This paper proposes a new control approach for full-car active suspension systems with unknown nonlinearities. The main advantage of this approach is that the uncertainties and nonlinearities in the system can be handled without using any function approximator (e.g., neural networks (NNs), fuzzy logic systems (FLSs)), and the associated online adaptation. Hence, the heavy computational costs and sluggish learning phase to achieve convergence can be remedied. To maintain the transient and steady-state suspension responses, a coordinate suspension error transformation with prescribed performance functions (PPF) is adopted. Then an approximation-free control (AFC) is developed to achieve stabilization of the transformed system so as to retain predefined suspension response. Extreme Value Theorem is used together with Lyapunov theorem to prove the stability and convergence of the closed-loop control system. To validate the proposed method and show its practical applicability, a dynamic simulator is built by using a commercial vehicle software, Carsim, where an E-SUV type vehicle is configured to describe realistic vehicle dynamics. Simulation results reveal that the proposed control can achieve better suspension performance and require less model information compared with some existing approaches

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    A Stable Self-Tuning Fuzzy Logic Control System for Industrial Temperature Regulation

    Get PDF
    A closed-loop control system incorporating fuzzy logic has been developed for a class of industrial temperature control problems. A unique fuzzy logic controller (FLC) structure with an efficient realization and a small rule base that can be easily implemented in existing industrial controllers was proposed. The potential of FLC in both software simulation and hardware test in an industrial setting was demonstrated. This includes compensating for thermo mass changes in the system, dealing with unknown and variable delays, operating at very different temperature set points without retuning, etc. It is achieved by implementing, in the FLC, a classical control strategy and an adaptation mechanism to compensate for the dynamic changes in the system. The proposed FLC was applied to two different temperature processes and performance and robustness improvements were observed in both cases. Furthermore, the stability of the FLC is investigated and a safeguard is established

    Development and applications of new sliding mode control approaches

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore