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 

Abstract—This paper proposes a new control approach for 

full-car active suspension systems with unknown nonlinearities. 

The main advantage of this approach is that the uncertainties and 

nonlinearities in the system can be handled without using any 

function approximator (e.g. neural networks (NNs), fuzzy logic 

systems (FLSs)), and the associated online adaptation. Hence, the 

heavy computational cost and sluggish learning phase to achieve 

convergence can be remedied. To maintain the transient and 

steady-state suspension responses, a coordinate suspension error 

transformation with prescribed performance functions (PPF) is 

adopted. Then an approximation-free control (AFC) is developed 

to achieve stabilization of the transformed system so as to retain 

predefined suspension response. Extreme Value Theorem is used 

together with Lyapunov theorem to prove the stability and 

convergence of the closed-loop control system. To validate the 

proposed method and show its practical applicability, a dynamic 

simulator is built by using a commercial vehicle software, Carsim, 

where an E-SUV type vehicle is configured to describe realistic 

vehicle dynamics. Simulation results reveal that the proposed 

control can achieve better suspension performance and require 

less model information compared with some existing approaches. 

Index Terms—Active suspension control, Full-car system, 

Prescribed performance control, Nonlinear dynamics.  

I. INTRODUCTION 

USPENSION systems have always  played an essential role in 

the automotive products due to its ability to guarantee the 

passengers’ ride comfort and driving safety (i.e. road holding 

and suspension stroke limitation) [1, 2]. According to different 

mechanical configures, vehicle suspension systems can be 

classified into three types: passive suspension, semi-active 

suspension [3-5] and active suspension [6, 7]. Although passive 

suspension has been widely used in commercial vehicles due to 

its low cost and simple structure, its ability to absorb excitations 

induced by the road conditions is restricted by the fixed spring 

and damper dynamics. Hence, recent studies have been made 

toward the developments of semi-active suspension systems 

[3-5] and active suspension systems [6, 7], which are able to 

achieve considerably improved suspension performance over 

passive suspensions [8]. Specifically, active suspension system 

uses extra actuators together with passive suspension elements 
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(e.g. springs and dampers) and thus can effectively dismiss 

forces from the road excitation [9]. However, active suspension 

has not been widely used in the commercial products yet 

because of its high energy demand and increased cost. In this 

respect, the development of advanced control strategies for 

active suspension systems has been recognized as one of the 

most promising pathways to achieve cost-reduction and safety 

enhancements, and thus has attracted significant attentions in 

both academics and engineering fields [9-13]. 

In the active suspension system designs, several performance 

requirements should be considered. Apart from eliminating the 

uninterrupted disturbance from the road roughness, the ride 

comfort, road holding and suspension deflection limitation 

should be considered. To manage the potential contradictions 

between these requirements, some advanced control methods 

have been tailored for active suspension applications, e.g. 

multi-objective control[14], adaptive control[15], backstepping 

control [16] and preview control [17]. In the aforementioned 

studies, a critical assumption is that all dynamics of the studied 

suspension systems should be known accurately and even 

should be linear. This assumption may not be true in the 

realistic vehicle suspension systems (e.g. the springs, dampers 

and actuators used for suspension have nonlinear behaviors), 

which makes these model based approaches less effective. 

To accommodate unknown nonlinearities in the control 

systems, function approximators, such as neural networks (NNs) 

and fuzzy logic systems (FLSs) [7, 13, 18-21], have been 

incorporated into adaptive control designs, where the unknown 

weights of NNs or FLSs can be online updated via adaptive 

laws designed to minimize the control errors [22-24]. This 

methodology allows proving the closed-loop stability by means 

of the Lyapunov theorem. Although it is mathematically 

elegant, it is found that practical implementation of function 

approximation based adaptive control schemes is still not fully 

mature for commercial products due to their complex structure 

and demanding computational cost. Specifically, it is still a 

nontrivial task to tune the parameters used in these adaptive 

control methods. Moreover, the online learning of the function 

approximators needs fairly long time to achieve convergence, 

and the potentially sluggish convergence rate and/or large 

overshoot during the transient stage may create risks for 

operation safety of adaptive control systems [25]. 

It is also noted that quantitatively study transient response of 

nonlinear control systems is generally difficult. Recently, 

Bechlioulis and Rovithaks introduced a new control framework 

[26, 27] to guarantee both the transient and steady-state control 

convergence responses within a predefined boundary. The key 

idea is to incorporate a prescribed performance function (PPF) 

and the associate error transformation into the control designs. 
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This idea has been subsequently tailored for other control 

system designs [28-30]. Nevertheless, in these PPF based 

control designs, function approximators are still needed to 

accommodate the unknown system dynamics. To address this 

issue, an approximation-free control (AFC) [31] was further 

introduced to address tracking control of nonlinear systems. In 

this method, NNs and FLSs are not required, while both the 

transient and steady-state control performances are guaranteed. 

Hence, this technique provides a potentially new constructive 

methodology for nonlinear control system designs, which is 

also useful for active suspensions [21].  

On the other hand, it is also found from active suspension 

control literatures that most of existing results focus on quarter- 

car or half-car dynamics only, while only few results have been 

reported for full-car dynamics [10, 32]. In fact, the full-car 

suspension system has multi-inputs-multi-outputs and certain 

couplings between the vertical, roll and pitch motions, which 

makes the corresponding control design difficult. Hence, the 

aim of this paper is to introduce a new control design for 

full-car active suspension systems with unknown dynamics. 

The main merit is to further tailor the concept of AFC [9, 31] 

and extend this idea to full-car suspension applications, where 

the vertical, roll and pitch motions are all considered. This is a 

nontrivial advancement compared with the recent work [10, 32]. 

Accommodation of unknown dynamics without using any 

function approximators can improve the computational 

efficiency and eliminate the effort required for the control 

parameter tuning. Furthermore, the suspension response (e.g. 

overshoot, convergence rate and ultimate displacement) can be 

strictly guaranteed, which directly contributes to the 

enhancement of operation safety for active suspension systems. 

This control design is model independent, and the derived 

control actions are with a proportional-like form. Hence, it is 

easy to implement, and may be more preferable in practice.  

The contributions of this paper are summarized as follows: 

a) This paper addresses active suspension control for full-car 

systems, where the nonlinear dynamics of springs and dampers 

in the systems are not necessarily known. Hence, the modeling 

efforts required for the control designs can be reduced. 

b) An approximation-free control is obtained for active 

suspension by tailoring the idea of [9, 31]. The predefined 

suspension response of vehicle motions is retained, while the 

function approximators are not used. Thus, the computational 

efficiency and system operation safety can be enhanced. 

c) A dynamic simulator with realistic vehicle dynamics is 
built in a commercial vehicle simulation software Carsim 8.1. 

Comparative simulation results are given to exemplify the 

proposed control strategy and illustrate its superior responses.  

The paper is structured as follows. The modeling of full-car 

suspension systems and preliminaries are given in Section II. 

Section III presents the AFC design and analysis of the 

closed-loop system stability. Simulation results are provided in 

Section IV and Section V gives some conclusions. 

II. MODELLING OF FULL-CAR AND PRELIMINARIES 

A. Modeling of Full-car Suspension System 

In this paper, a nonlinear uncertain full-car model with four 

independent active suspension systems is considered, as shown 

in Fig.1. This full-car suspension system has seven degrees of 

freedom (DOFs), e.g. vertical, roll and pitch motions of the 

sprung mass, and the vertical motions of the four unsprung 

masses connected to the wheels (front-right, front-left, 

rear-right and rear-left) [10]. The variables of this suspension 

model as shown in Fig.1 and model (1) are defined as: M  is 

the sprung mass and , 1 4im i   is the unsprung mass, 

representing the car body and the wheel assembly, respectively; 

I  and I  denote the mass moment of inertia for the roll and 

pitch motions. 
siF  and 

diF  are the forces produced by the 

springs and dampers. 
sik  and 

dik  are the spring stiffening 

coefficients and damper damping coefficients. 
tik is the 

stiffness of the four wheels. ,sz  and   define the vertical, roll 

and pitch motions of the vehicle body. 
uiz  and 

iy  denote the 

displacement of the unsprung mass and road displacement 

input. , ,a b c  and d  are the distances of the suspensions to the 

center of the vehicle body mass. The control inputs 
iu  are the 

forces produced by the four active suspension systems to 

eliminate the effect of the road roughness. V  is the driving 

velocity of the car.   
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Fig.1 Schematic of full-car active suspension systems. 

The detailed mathematical model of active suspension 

system shown in Fig.1 can be developed as [10, 32]:  
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(1) 

In (1), ,zu u  and u  denote the lumped control forces, 

which can be calculated in terms of the realistic control actions 

iu . Hence, the formulation can be expressed as follows: 
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        (2) 

Then based on (2) and the assumption 3 4 0cu du   used in 
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[10, 32, 34, 35], the real control inputs , 1 4iu i   for active 
suspension systems can be calculated based on the derived 
three control actions ,zu u and u  as: 

  
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  (3) 

Hence, the objective is to design control for ,zu u and u  
based on (1), and then calculate the realistic control actions 

iu
 

based on (3). It should be noted that the full-car suspension 

model described by (1) is used for the stability analysis only, 

and the exact force dynamics are not required for the control 

implementation. Nevertheless, the idea proposed in this paper 

can be extended to other suspension systems with different 

DOFs provided that a similar relationship as (3) can be found 

for force allocations.  

To facilitate subsequent control designs, we first reformulate 

full-car system (1) as a state-space model. Define the system 

states as
1 2 3, , ,s sx z x z x    4 5 6 7 1, , , ,ux x x x z     

8 1 9 2 10 2 11 3, , , ,u u u ux z x z x z x z    12 3 13 4 14 4, ,u u ux z x z x z   . 

Then the system (1) can be rewritten as:  
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where the parameters 1 ,1M I  and 1 I  in (4) are bounded 

by positive constants 
1min 3min   and 

1max 3max  as 

1min 1max 2min 2max1 , 1M I        and 
3min 3max1 I   . 

In practical vehicle suspension systems, the applied forces 

are the functions of sprung/unsprung masses and tires motions. 

Hence, the dynamics of 
siF  and 

diF  can be denoted [10, 32] as 

   1 6 1 6, , ,si si di diF F x x x F F x x x  , where 
7 14[ ]x x x . 

Therefore, the forces 
siF  and 

diF  
are all bounded in a sufficient 

compact set in practice. In the proposed control, we do not 

require accurate system dynamics, e.g. dynamics of springs and 

dampers as required in [10, 32, 34, 35]. Instead, only the 

vehicle motions 
1 6, ,x x  and wheel base (i.e. the distance 

between the wheels , , ,a b c d ) are used in this paper, while the 

unknown forces and system dynamics are all handled. 

Remark 1: In most of existing active suspension control 

designs, the forces of the springs and dampers in the suspension 

models (4) and (5) are usually assumed as linear functions, 

and/or their generation dynamics are fully known [10], which 

are stringent and unrealistic in practical applications. To 

address this issue, the unknown nonlinear dynamics generated 

by the springs and dampers are considered in this paper. More 

specifically, realistic forces embedded in Carsim are adopted in 

our case studies, whose generation models are unknown. This 

implies that the proposed control can cover more realistic 

applications, whilst requiring less information and reduced 

modeling effort in the control synthesis.   

Remark 2: In the control design for systems with unknown 

nonlinearities and uncertainties, the unknown dynamics can be 

compensated by incorporating function approximators (e.g. 

NNs and FLSs) into the adaptive control implementation [20]. 

However, the function approximation based control methods 

usually have complex structures and impose demanding 

computational costs. Specifically, it is still a nontrivial task to 

tune large amount of parameters used in the adaptive control 

methods [20]. Moreover, the potentially sluggish transient 

response (online training of NNs and FLSs requires fairly long 

time to reach convergence) also limits the practical application. 

Remark 3: It is noted that the transient suspension response 

(e.g. convergence rate, overshoot) during the first few seconds 

is a critical issue, since too sluggish convergence or large 

overshoot may degrade the ride comfort, or even cause damage 

of suspension components. However, most of existing active 
control designs (e.g. [9-12, 21]) can merely guarantee the 

steady-state motion behaviors, i.e. 0, 1,3,5
j

x j  , but they 

cannot address the transient suspension behaviors explicitly.  

Remark 4: It is noted that the realistic active suspension 

systems are operated by current or pressure applied to actuators 

(e.g. hydraulic or pneumatic actuators) to produce the required 

forces , 1 4iu i  . Since this paper mainly focuses on 

presenting and validating a novel active suspensions control 

method to deal with uncertain dynamics and unknown 

nonlinearities without using function approximators, the 

actuator dynamics are not considered explicitly. 

Inspired by the above discussions, this paper will propose 

control designs for obtaining ,zu u  and u  to accommodate 

the road excitations so as to maintain the vertical, roll and pitch 

motions 0, 1,3,5
j

x j   (i.e.
 

,sz   and  ) of the vehicle body, 

while both the predefined transient and steady-state suspension 

responses can be retained without using function approximator. 
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B. Preliminaries 

To accomplish the stability analysis of the closed-loop 

control system, the following preliminaries of the initial value 

problem [33] are briefly introduced: 

      0, , 0t t             (6) 

with : nR R     being a continuous function and 
nR   is a nonempty open set. 

Definition 1 [33]: The solution of the initial value problem (6) 

is maximal, if its solution  t
 
has no proper right extension. 

Theorem 1 [33]: For the initial value problem (6), if  ,t   

fulfills: a) locally Lipschitz on  t  for 0t  ; b) piecewise 

continuous on t  for each  t   ; and c) locally integrable 

on t  for each  t   . Then, there exists a unique maximal 

solution  t on the time interval  max0,  with 

max { , } 

   such that  t    for  max0,t   .  

Proposition 1 [33]: If the conditions of Theorem 1 are true, 

then for a maximal solution  t  on the time interval  max0,  

with 
max    and any compact set 

   , there exists a 

time instant  1 max0,t   such that  1t   . 

III. ACTIVE SUSPENSION CONTROL AND ANALYSIS 

For completeness, we first briefly present the concept of the 

PPF and error transformation to characterize the suspension 

response of 
kx  including the convergence rate and overshoot. 

Then, we will present the AFC schemes to regulate the vehicle 

motions 
kx  with the predefined error constraints.  

A. Prescribed Performance Function 

To guarantee the suspension of vehicle motions 
jx  within a 

predefined bounded region, we choose the following positive 

decreasing function   :k t R R    as the PPF [26-28]: 

   0 1, ,6ka t

k k k kt e k   

     ，     (7) 

where 
0 0k k     and 0ka   are positive constants set to 

predefine the initial error, ultimate error and convergence speed, 

respectively. Clearly, the following facts can be verified: 

1)     0

0 00 ka

k k k k ke    

     ; 

2)    0
0

lim 0 , limk k k k
t t

t    
 

  . 

Then we can use  k t  to construct predefined boundaries, 

within which the system states 
kx  can be retained. This can be 

formulated as: 

      , 0k k kt x t t t            (8) 

where   is a positive constant chosen by the designers to fulfill 

the initial condition  0 0k kx   . 

Remark 5: In the PPF formulation given in (7) and (8), 
ka  

represents the convergence rate; 
k 

 defines the ultimate 

steady-state error;  0k  and  0k  account for the lower 

bound of the undershoot and upper bound of the overshoot [26, 

28]. In this sense, both the transient and steady-state 

performance can be a priori designed by tuning the parameters 

0, ,k ka   ,
k 

. 

B. Error Transformation 

The key idea of PPF control is to represent the condition (8) 

into an equivalent “unconstrained” one as [26, 28] by 

introducing a coordinate transformation on the control error 

dynamics. For this purpose, we define 
k R   as the 

normalized error and  kS R   is a smooth and strictly 

increasing function of 
k , which satisfies the following 

conditions: 

1)   ,k kS L          

2) lim ( ) , lim ( )
k k

k kS S
 

   
 

     

From the properties of  kS  , it can be verified that the 

condition (8) equals to: 

     k k kx t t S          (9) 

Hence, one can use the function  kS   given by: 

( )
k k

k k
k

e e
S

e e

 

 

 










        (10) 

Based on the facts that 
0 0k k   

 
and  kS   is strictly 

increasing, we can calculate its inverse function as: 

 1 1
ln

2

k

k k

k

S
 

 
 

  
   

 
      (11) 

which defines a mapping from the unconstrained error 
kx  to 

the intermediate variable 
k  with the transformation (9). Then, 

the stabilization of the transformed error 
k  is sufficient to 

guarantee the suspension of vehicle motions 
kx

 
given in (4) 

with the prescribed bound given in (8). In this sense, as stated in 

[26, 28], the tracking control with a predefined error bound (8) 

can be reduced to retain the boundedness of the transformed 

error (11). Hence, in the next section, the transformed variables 

(11) will be used in the AFC design. 

C. AFC Controller Design for Vertical Motion 

The control design objective is to regulate the vertical, roll 

and pitch motions 
1 3 5, ,x x x  (i.e.

 
,sz   and  ) governed by (4) 

into the predefined boundary (8). For this purpose, we will 

present a new control design, where the PPF (7) and error 

transformation (11) will be utilized throughout the following 

developments and analyses. 

We first present the control design for vertical motion 
1x , 

while the controllers for the roll and pitch motions 
3 5,x x  can be 

obtained similarly. 

Step 1: For the vertical motion dynamics given in (4), we first 

define the suspension error as 
1x , and then the normalized error 

is derived as 
1 1 1( ) ( ) ( )t x t t 

 
with a PPF defined in (7) as: 

    1

1 10 1 1

a t
t e   

          (12) 

where 
10 1,  

 and 
1a  are set as positive constants such that 

the initial condition 
1 10(0)x   is fulfilled. 

Then, one can construct the first virtual control as: 

1 1

1 1 1

1

ln
2

k
u k

 


 

 
     

 
      (13) 

where 
1 0k   is a control gain, and the transformed error is 

derived along with (11) as: 
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 1 1

1 1

1

1
ln

2
S

 
 

 

  
   

 
      (14) 

Step 2: By using the obtained virtual control action, one can 

denote the virtual control error as: 

     1 2 1e t x t u t          (15) 

Then the corresponding nominalized virtual control error is 

given by 
2 1 2( ) ( ) ( )t e t t  , where the second PPF  2 t  is 

given as:  

    2

2 20 2 2

a t
t e   

         (16) 

with 
20 2,  

 and 
2a  being properly selected positive 

constants to guarantee the initial condition 
1 20(0)e  . 

Then, the required control action 
zu  for the vertical motion 

can be described by: 

2 2

2 2

2

ln
2

z

k
u k

 


 

 
     

 
      (17) 

with 
2 0k   being a constant control gain, and the transformed 

error 
2  of  2 t  is calculated by: 

 1 2

2 2

2

1
ln

2
S

 
 

 

  
   

 
      (18) 

D. AFC Controller Design for Roll and Pitch Motions 

The control actions u
and u  for the roll and pitch motions 

3x  and 
5x  can be designed following similar manipulations as 

that for vertical motion 
1x , which can be briefly given as: 

1) The control action u  of roll motion 
3x  is designed as: 

     

4 4

4 4

4

4 2 4

2 4 3

3 3

3 3 3

3

3 3 3

ln
2

( ) ( ) ( )

,

ln
2

( ) ( ) ( )

k
u k

t e t t

e t x t u t

k
u k

t x t t



 


 

 

 


 

 

 
     

 



 

 
     

 



       (19) 

where
3 4, 0k k   are positive control gains,  3 t  and  4 t  

are PPFs defined in (7) with 
30 ,  

3 
, 

3  and 
40 4,  

,
4  

being properly selected positive constants to fulfill the initial 

conditions 
3 30(0)x   and 

2 40(0)e  . 

2) The control action u  of the pitch motion 
5x  is designed as: 

     

6 6

6 6

6

6 3 6

3 6 5

5 5

5 5 5

5

5 5 5

ln
2

( ) ( ) ( )

ln
2

( ) ( ) ( )

k
u k

t e t t

e t x t u t

k
u k

t x t t



 


 

 

 


 

 

 
     

 



 

 
     

 



      (20) 

where 
5 6, 0k k   are positive control gains, the PPFs  5 t  

and  6 t  are defined in (7) with properly selected positive 

constants
 50 ,  

5 
, 

5  and 
60 6,  

,
6  such that the initial 

conditions 
5 50(0)x   and 

3 60(0)e   are fulfilled. 

Hence, as explained in (3), we can calculate the realistic 

control inputs , 1,2,3,4iu i   applied on the practical 

suspension system as long as the control actions ,zu u  and u  

are obtained by using (17), (19) and (20). 

Remark 6: It is noted in the above control designs that the 

intermediate control laws 
1 3 5,  ,u u u  are similar to the virtual 

control variables in the backstepping [10, 16]. However, unlike 

backstepping methods where the derivatives of the virtual 

controls needs to be obtained, the proposed AFC actions (17), 

(19) and (20) are with a proportional-like form of the transform 

errors 1[ ]k kS   for the normalized errors 
k . Clearly, the 

proposed controller has a simpler structure, making its practical 

implementation easier. Moreover, the ‘explosion of complexity’ 

issue encountered in the backstepping methods is also avoided.  

Remark 7: As shown in (17), (19) and (20), the AFC does not 

require any function approximators, while the unknown 

dynamics in the suspension system (4) can be accommodated 

effectively. Hence, this control has reduced computational 

costs, and avoids the sluggish online learning procedure. This is 

clearly different to the well-known function approximation 

based adaptive control methods, where NNs or FLSs are used to 

estimate and compensate the unknown nonlinearities.  

Remark 8: In the proposed AFC method, the parameters to be 

tuned can be classified into two categories, i.e. PPF parameters 

0 , , ,k k ka    and control gains kk . The parameter tuning of 

the AFC is more straightforward than adaptive control schemes 

and thus easy to implement for practitioners. The required 

initial conditions 
1 10 1 20 3 30(0) , (0) , (0) ,x e x      

2 40 5 50 3 60(0) , (0) , (0)e x e     can be satisfied by 

choosing large PPF parameters 0k  and  . The convergence 

rate ka  can be set small initially and then adjusted large to 

achieve fast error convergence. The ultimate error bounds k   

can be set large in the initial phase and then reduced to obtain 

smaller errors. On the other hand, the control gains kk  are 

related to the control error and the smoothness and amplitude of 

control actions, thus they can be set small initially and then 

increased gradually to seek for a tradeoff between the control 

response and the required control actions.  

The practical implementation of the proposed control 

method can be described as the following algorithm: 

Algorithm: Online Implementation of the proposed AFC 

1: Initialize the PPF parameters , 1, ,6k k   for vertical, 

roll and pitch motions;  

2: Calculate the suspension errors ( )ke t  according to the 

measured variables 1 6, ,x x ; 

3: Define the normalized errors k  as: 

 k k ke t                                (21) 

where 
k  is the PPF defined in (7). 

4: Calculate the transformed errors k  
as: 

 1 1
ln

2

k

k k

k

S
 

 
 

  
   

 
                 (22) 
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5: Design the control signals as: 

ln
2

k k

k k k

k

k
u k

 


 

 
     

 
                (23) 

6: Allocate the control signals 
2 2 4 4, ,zu k u k    

6 6u k    based on (3) and obtain the real control actions 

1 4, ,u u  to be applied on the system. 

7: Go back to step 2. 

E. Stability and Convergence Analysis 

The stability of the closed-loop control system and the 

convergence of suspension displacements will be examined in 

this section. As shown in (4), the vertical, roll and pitch motions
 

,sz   and   and the proposed corresponding controllers have 

similar structures. Hence, we will provide detailed analysis for 

the vertical motion 
1 2,x x  only. Similar analysis can be 

conducted for the roll motion 
3 4,x x  and pitch motion 

5 6,x x , 

which will not be detailed due to the page limit.  

Before presenting the convergence property of the proposed 

control system, we first derive the dynamics of the adopted 

transformed errors. Consider the definition of virtual control 

errors and the corresponding normalized errors  k t , one can 

obtain from (13)-(20): 

1 1 1 2 2 2 1

3 3 3 4 4 4 3

5 5 5 6 6 6 5

,

, ,

, .

x x u

x x u

x x u

   

   

   

  

  

  

，

       (24) 

By using (24) and the explanations below (4), the governing 

dynamics of 
siF  and 

diF  in the suspension system (4) can be 

reformulated as: 

   

   

1 6 1 1 2 2 1 3 3 4 4 3 5 5 6 6 5

1 6 1 1 2 2 1 3 3 4 4 3 5 5 6 6 5

, , , , , , ,

, , , , , , ,

si si

di di

F x x x F u u u x

F x x x F u u u x

           

           

   

   

(25) 

Based on the definition of the normalized errors 
1 2,  , their 

derivatives are calculated along (24) and (13)-(17) with (4) as: 

   1 1

1 1 1 1 2 2 1 1 1

1 1

1 1 2

( ) 1 1
=

( , , )

d x
x u

dt

t


      

 

  

    



        (26) 

   



 

 

2 2

2 2 2 2 2 1 2 2

2 2

4

1 1 2 2 1 3 3 4 4 3 5 5

12

4

6 6 5 1 1 2 2 1 3 3 4 4 3

1

5 5 6 6 5 1 2 2

2 1 2 3 4 5 6

( ) 1 1

1 1
= , , , , ,

, , , , ,

, ,

( , , , , , , )

si

i

di

i

z

d e
e x u

dt

F u u
M

u x F u u

u x u u

t


    

 

         


         

     

      





     

 
   


   

    





 (27) 

From (26)-(27), the dynamics of the normalized error vector

1 2 3 4 5 6[ , , , , , ]T        are represented in a compact form: 

1 1 2

2 1 2 3 4 5 6

( , , )
( ) ( , )

( , , , , , , )

t
t t

t

  
  

      

 
   

 
   (28) 

Since the induced forces in (4) are assumed to be continuous 

functions with respect to time and its coordinates, the function 

( , )t   given in (28) is piecewise continuous on time t , locally 

Lipschitz on   within a nonempty set ( , ) ( , )         . 

Hence, the main results of this paper can be given as: 

Theorem 2: For active suspension system (4), consider the 

AFC (17) with (13) is designed for the vertical motion 
1x under 

the initial conditions 
0(0)k ke  , then all signals in the 

vertical dynamic system are bounded, and 
1x  is retained within 

the prescribed bound defined in (8). 

Proof: The proof is shown in the Appendix   ◇ 

It is noted that similar analysis results can also be claimed for 

the roll motion 
3x  and pitch motion 

5x , which implies that the 

suspension responses of 
3x  and

 5x  can be retained within the 

bound 
3 3 3 5 5 5( ) ( ) ( ), ( ) ( ) ( )t x t t t x t t         . 

IV. SIMULATIONS 

In this section, numerical simulations with two different road 

profiles are carried out to validate the effectiveness of the 

proposed AFC method. To cover more realistic vehicle 

dynamics, we have built a dynamic simulator by using 

professional vehicle simulation software Carsim○R  and Matlab○R . 

For the purpose of demonstration, an E-SUV type vehicle 

model embedded in Carsim○R  is used. The full-car suspension 

dynamics are generated by Carsim○R  based on the embedded 
realistic vehicle data, which are all unknown and thus not 

required in the control implementation, and the proposed AFC 

method is implemented in Simulink/Matlab. The control 

signals and the suspension system states are communicated 

between these two softwares in real time. The structure of the 

developed simulator can be found in Fig. 2.  

Vehicle Dynamics

Model TypeRoad Condition

1 6x x

Export 

Channels

1 4U U

Control Strategy

Import 

Channels

SIMULINK
2013MATLABb

Signal Response

 
Fig.2 Diagram of the closed-loop dynamic simulator. 

It is noted that in this developed simulator, the dynamics of 

full-car suspension system (1) are generated from Carsim○R  and 

their accurate models are unknown. Only the system states 

1 2 6, , ,x x x
 
that can be measured by using the configured 

sensors are required in this paper. In this sense, the plant to be 

controlled can be regarded as a “black box”. This requirement 

is clearly less stringent than most of existing active suspension 

control results, which assume fully known suspension system 

dynamics. Hence, this control method can reduce the modeling 

effort as it is a model-independent control structure.  
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 The major parameters of the studied E-SUV type vehicle are 

listed in TABLE I, which are taken from Carsim○R . It is worth 

mentioning that only parts of these parameters are used in the 

AFC strategy in comparison to the backstepping control (BSC) 

[10, 16], i.e. only the distances between the wheels , , ,a b c d  are 

used to allocate control signals in (3). For comparison, passive 

suspension scheme embedded in the Carsim○R  is also tested, 

where the corresponding parameters, i.e., stiffness coefficients 

of spring ( 1, ,4)sik i   and damper ( 1, ,4)dik i  , are also 

listed in Table I.  

TABLE I PARAMETERS FOR E-SUV TYPE CAR MODEL 

Symbol Value Symbol Value 

M  1590 kg  c  0.7875 m  

I  2894.4 kgm  d
 

0.7875 m  

I  22687.1 kgm  V  40 km/h  

im  120 kg  
sik  46 N/mm  

a  1.18 m  
dik  30000 Ns/m  

b  1.77 m    

In the following, two driving road profiles embedded in 

Carsim○R  are chosen to verify the active suspension system. 

Scenario 1 (Bump road with example roughness): Unlike 

most of existing suspension results that only use bump road 

condition to test the effectiveness of active suspension control 

system, this paper incorporates the example road roughness 

into a bump road to conduct a more realistic test driving road 

condition ( 3.5 cm  high and 40 cm  long). The generated road 

profile is shown in Fig.3.  

In the simulations, the initial suspension system states are

 0 0, 1, ,14
k

x k   . Following the aforementioned parameter 

tuning guidelines in Remark 8, the PPFs’ parameters are set as: 

       10 10

1 20.1 0.04 0.04, 10000 6000 4000,t tt e t e       

         15 20

3 4 5= 5 2 2, 5000 3000 3000,t tt e t e t       

  22= 6 3 3te   and     20

6 10000 6500 6500tt e    . The 

feedback control gains are set as 
1 2 37000, 9000,k k k    

4 57500, 12000, 5100k k  and 
6 7400k  . Simulation results 

are given in Figs.4-5. In Fig.4, the responses of displacements 

and accelerations of the vehicle motions in the vertical, roll and 

pitch directions are provided. One can find from Fig.4 that the 

proposed active suspension control system has lower peaks and 

less fluctuations for both the vehicle motion displacements and 

accelerations in comparison to the passive suspension. This fact 

indicates that the proposed AFC method can isolate the 

vibrations transmitted to the vehicle body from irregular road 

roughness effectively to maintain the stability of vehicle body, 

which contributes to improving the ride comfort. The profiles 

of suspension deflections for four active suspension systems 

are shown in Fig.5, where all the deflections are within the 

allowable range 0.1 m,  which help to retain the driving safety. 

It is noted that there are inherent conflicts between the ride 

comfort and suspension deflections, which means that better 

ride comfort may result in larger suspension deflection. In the 

control design presented in this paper, we choose the ride 

comfort as the primary target. Hence, the suspension deflection 

may be larger than the passive scheme as shown in Fig.5. 

Moreover, there are significant couplings between the vertical, 

pitch and roll dynamics, which lead to asymmetric behaviors in 

the deflections as shown in Fig.5, which may also stem from 

the asymmetric forces applied on the left and right tires.  

 
Fig.3 Ground road elevations of the combined bump road. 

 
Fig.4 Vehicle motions and accelerations under bump road. 

 
Fig.5 Profiles of suspension deflections. 

Scenario 2 (Bounce sine sweep road): To further validate the 

efficiency and robustness of the AFC method, a more oscillated 

road condition, bounce sine sweep road, is selected, which is 

given in Fig.6. Considering the fact that the bounce sine sweep 

road is more aggressive (i.e. with fast varying frequency and 
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amplitude) than bump road, the corresponding PPF boundaries 

can be further modified to enhance the control response as: 

       2.5 15

1 21.2 0.5 0.5, = 8000 5000 5000,t tt e t e       

       3 1.5

3 4
15 10 10, 8000 5000 5000,

t t
t e t e 

 
     

  2.5

5 ( ) 15 10 10tt e     and     2

6
8000 6000 6000

t
t e


   . 

The feedback control gains are set as 
1 24000, 7880,k k   

3 4 51700, 4830, 1482k k k    and 
6 4790k  .  

Figs.7-10 give comparative simulation results. It is shown in 

Fig.7 that the introduced AFC scheme achieves fairly good 

suspension performance under the bounce sine sweep road 

condition compared with the BSC method and passive 

suspension. Specifically, the vibrations of the vehicle body in 

the vertical, roll and pitch directions are significantly mitigated 

with the AFC method, and both the transient and steady-state 

suspension errors are the smallest among the three tested 

controllers. To evaluate the ride comfort of different suspension 

schemes, the acceleration signals that have been well 

recognized as a ride comfort performance index are also 

depicted in Fig.8. One can find from Fig.8 that both the AFC 

method and BSC method can reduce the amplitude of the 

accelerations of the vehicle body in the vertical, roll and pitch 

directions compared with passive suspension. In particular, the 

proposed AFC yields lower peaks than the BSC method. This 

fact indicates that the AFC scheme provides improved ride 

comfort over the BSC method.  

 
Fig.6 Ground road elevations of sinusoid road. 

 
Fig.7 Vehicle motions under sinusoid road condition. 

 
Fig.8 Acceleration responses of vehicle motions. 

To further quantitatively exemplify the performance of the 

proposed AFC method, three commonly used performance 

indices: Integral Absolute Error (IAE), Root Mean Square 

(RMS) and Maximum (MAX), are calculated for the three 

different controllers. Comparative results for the three control 

strategies under the sine sweep road condition are shown in 

Fig.9. From Fig.9, it can be clearly found that the proposed 

AFC method yields the smallest index values among the three 

given performance indices, which means that the AFC provides 

superior performs over the BSC method and passive suspension 

in terms of suspension motion behaviors. This again implies 
that the AFC has better capability to isolate the vehicle motions 

as much as possible from the road-induced shocks.  

 
Fig.9 Performance evaluation of different methods. 

Moreover, since the suspension strokes have certain effects 

on the driving safety, it must be limited within a resaonalbe 

bound especially in the presense of aggressive riding road 

conditon. Simulation results of the suspension deflections with 

sine sweep road excitation can be observed from Fig.10. As 

shown in Fig.10, the suspension stroke responses with both the 
AFC and BSC appraoches are all guaranteed within the 

allowable bounded set. Furthermore, the proposed AFC again 

can obtain less fluctuationss and lower peaks than BSC method 

and passive suspension, in particular in the high-frequency 

regimes. Comparative results of control inputs with the 

proposed AFC method and the BSC method are plotted in 

Fig.11. One may find from Fig.11 that although the control 

inputs of both methods are bounded, the AFC requires less 

forces and provides smoother control signals (i.e. less 
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fluctuations) compared to the BSC method, i.e. it requires less 

control power due to the use of the prescribed performance 

function that leads to better suspension responses. This 

advantage is preferable in practical suspension system designs.  

 
Fig.10 Comparative results of suspension deflections. 

 
Fig.11 Control inputs of the proposed AFC and BSC method. 

Moreover, to illustrate the computational efficiency of the 

proposed method, the computational time of simulations for the 

three control methods under two different road conditions 

(Scenario 1 and Scenario 2) is provided in Table II. One can 

find from Table II that the computational time of the AFC is 

dramatically decreased for both road conditions compared with 

adaptive control given in [36] and the BSC method. This is 

reasonable since the online training of the NNs weights 
involved in the adaptive control and the repeated calculation of 

the derivatives of virtual control actions in the BSC method are 

all avoided in the proposed AFC method.  

Table II COMPARATIVE RESULTS OF COMPUTATIONAL TIME 

(SCENARIO 1/SCENARIO 2) 

Methods 
Computational 

time (s) 
Decreasing ratio 

Adaptive control 15.83 s/19.1 s Benchmark 

BSC method 10.76 s/11.5 s 68.1%/66.1%↓ 

AFC method 4.46 s/4.3 s 71.8%/77.5%↓ 

Finally, to demonstrate the effectiveness of the proposed 

AFC method and the generality of using same control 

parameters under different road conditions, an extra simulation 

is carried out, where the simulation parameters used in Scenario 

2 are also adopted for Scenario 1 since the required initial 

conditions can be fulfilled for both road conditions. It can be 

found from Fig.12 that both the transient and steady-state 

convergence can be retained for both road conditions, though 

the well-tuned parameters can contribute to better control 

performance as shown in the above simulations. 

 
Fig.12 Control performance with same parameters for different 

road conditions. 

To justify the implementation of the AFC in practical 

applications, the required variables of the proposed AFC 

method and the BSC method are summarized in Table III. For 

the BSC method, the vehicle forces ,di siF F , inertial variables 

, ,M I I 
, vehicle motions 

1 6, ,x x  and wheel base (i.e. the 

distance between the wheels , , ,a b c d ) are all required to be 

measureable and available, while for the proposed AFC, only 

the vehicle motions and wheel base are required in the control 

implementation. In this respect, the proposed AFC may be 

more suited for practical active suspension systems due to its 

reduced modeling effort and less sensors.  
TABLE III REQUIRED VARIABLES FOR TWO CONTROLLERS  

 AFC Method BSC Method 

Forces — ,di siF F  

Inertial Variables — , ,M I I 
 

Vehicle Motions , 1, ,6ix i    , 1, ,6ix i   

Wheel Base , , ,a b c d   , , ,a b c d  

It should be noted that the control designs for the vertical, 

pitch and roll motions of the full-car suspension system 

presented in this paper have been derived separately as shown 

in (17), (19) and (20), and then the obtained control actions are 

allocated based on (3). The motion dynamics of each DOF of 

the sprung mass are indeed the same as those of quarter-car 

suspension systems studied in the literature, e.g. [8-9] and 

references therein. In this sense, the proposed AFC scheme can 

be applied to quarter-car suspension systems, where its validity 

and effectiveness can also be demonstrated. 

V. CONCLUSION 

This paper presents a new control design for full-car active 

suspension systems with unknown nonlinear dynamics. Unlike 
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the existing results, the proposed control does not use any 

function approximation, whilst the unavoidable uncertainties 

and nonlinearities in the suspension systems can be tackled 

effectively. This control has a simple proportional-like 

structure with less requirements on the system and improved 

computation efficiency. Moreover, both the predefined 

transient and steady-state suspension motion bounds are strictly 

guaranteed by incorporating PPFs into the control design. 

These features make it more suitable for practical application. 

The stability of the closed-loop control system is rigorously 

proved by using Extreme Value Theorem and Lyapunov 

Theorem. A dynamic simulator consisting of commercial 

software Carsim ○R  and Matlab/Simulink has been built to 

conduct comparative simulations, where a realistic E-SUV type 

full-car model embedded in Carsim○R  is utilized. Simulation 

results show the efficacy and superior performance of the 

proposed control over several other suspension methods. 

Future work will focus on the validation of the proposed AFC 

schemes on practical active suspension systems including the 

actuator dynamics.  

APPENDIX  

Proof: The proof follows a similar procedure as [31], which 

consists of three steps. We first prove the existence of the 

maximal solution ( )t  of (28) over the set 
  for a time 

interval
max[0, ) . Then, we prove the boundedness of the 

closed-loop system signals with the proposed controls (13) and 

(17) for all 
max[0, )t  . We finally prove that 

max   holds 

for all ( ) ,t   max[0, )t   .  

Step 1. It has been stated that the PPF parameters can be set to 

guarantee the initial conditions 
1 10 1 20(0) , (0)x e   . 

Then the fact (0) , 1,2k k    is true, i.e. (0)   . 

Moreover, since the suspension dynamics in (4) and the PPFs 

( )k t  are continuous with respect to their coordinates, the 

function   in (28) is piecewise continuous, locally Lipschitz 

on   over the set 
 , and piecewise continuous on t  for each 

fixed ( )t   . Hence, based on Theorem 1, there exists a 

maximal solution ( )t  of (28) on a time interval 
max[0, )t  , 

such that
 max( ) ( , ),  1,2,  [0, )i t i t        . 

Step 2. To prove the boundedness of all closed-loop control 

system signals for all 
max[0, )t   with the proposed control, 

we will calculate the time derivative of , 1,2k k   along (14) 

and (18) with (26) and (27) as: 

 



 

 

1

1 1 1 1 1 1 1 2 2 1 1 1 1

1

1 4

2 2 2 1 1 2 2 1 3 3 4 4 3 5 5

12

4

6 6 5 1 1 2 2 1 3 3 4 4 3

1

5 5 6 6 5 1 2 2

( )=

1
= , , , , ,

, , , , ,

, ,

si

i

di

i

z

S
r x r k

S
r F u u

M

u x F u u

u x u u

        


           


         

     










    


 
    
 

   

    





(29) 
where the variables 2

1 1 11/ [ ( )]r      and 2

2 2 21/ [ ( )]r      are 

bounded by positive constants
 

0, 1,2Mkr k  , i.e. 

0 k Mkr r   is true [28].  

We select a Lyapunov function as 2

1 1 2V  , and calculate 

its time derivative along (29) as: 

1 1 1 1 2 2 1 1 1 1( )V r k               (30) 

Consider 
max( ) , [0, )k t t      and the facts that 

1 2,   

are all bounded, then by recalling the Extreme Value Theorem 

[33], we can verify that  

2 2 1 1 1F     , for  max0,t       (31) 

is true for a positive constant 
1 0F  . Thus, it follows from (30)

-(31): 

 1 1 1 1 1 1M
V r F k          (32) 

Consequently, one can conclude that 
1V  is negative when 

1 1 1/F k  . Then based on the Lyapunov theorem, the 

variable
1  will ultimately converge to a set defined by 

 1 1 1 1 1 1 1
: | max{ (0) , / }

M
F k       for

max
[0, )t   . 

Moreover, the boundedness of 
1  can be verified from (29), 

and the derivative of the first virtual control 
1u  is also 

bounded. Then it can be claimed that 
1 1 1 1,  ,  ,  u u L    for 

max[0, )t  .  

On the other hand, consider the relationship between 
1  and 

1  given by (11), we have 

 12 1

1

e
  

 





 (33) 

Consequently, it can be derived that 

 
1 1

1 1

2 2

12 2
( )

1 1

M M

M M

e e
t

e e

 

 

   
  





 
    

 
 (34) 

Therefore, we know 
1 1/x      is true, which indicates 

1 1 1( ) ( ) ( )t x t t    , i.e. the vertical displacement 
1x  is 

retained  within the bound (8) for 
max[0, )t  . 

Following the above analysis, we set a Lyapunov function 
2

2 2 2V  , then calculate 
2V  from (29) as: 



 



4

2 2 2 1 1 2 2 1 3 3 4 4 3 5 5

1

4

6 6 5 1 1 2 2 1 3 3 4 4 3

1

5 5 6 6 5 2 2 1 2 2

2 2 2 2 1min 2

1
, , , , ,

, , , , ,

1
, ,

si

i

i di

i

i

M

V r F u u
M

u x F u u

u x k u
M

r F k

          

         

      

  





 
    



   


    



    




(35) 

Similar to the arguments given in (31), we know that 

3 1,  ,  , , ,  1,2i i i u u i     are all bounded for 
max[0, )t  . 

Thus, there exists a positive constant 
2 0F   such that  

 



4

1 1 2 2 1 3 3 4 4 3 5 5 6 6 5

1

4

1 1 2 2 1 3 3 4 4 3 5 5 6 6 5 1 2 2 2

1

1
, , , , , ,

, , , , , ,

si i

i

di i

i

F u u u x
M

F u u u x u F

           

             





    

     







 

For  max0,t   , which can be validated by recalling the 

Extreme Value Theorem and the fact 
2 ( )t  . Therefore, we 

conclude from (35) and the facts 2 20 Mr r  and 

1min 1max1 M   that  
2 2 2 2 2 1 min 2M

V r F k    , which 

implies that 
2  ultimately converges to the set defined by 

   
2 2 2 2 2 2 2 1 min

| max (0) ,
M

F k         for
 max

[0, )t  . 
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Thus, the control signal 
zu  and the state variable 

2x  are all 

bounded for 
max[0, )t  . Moreover, the boundedness of 

2  

and 
zu

 
can be easily verified from (29) and (17). Again, 

similar to (33), we know 22

2 2(1 ) / (1 )e
     , and thus it 

can be derived that 

 
2 2

2 2

2 2

22 2
( )

1 1

M M

M M

e e
t

e e

 

 

   
  





 
    

 
 (36) 

Therefore, the fact 
2 1 2( ) ( ) ( )t e t t     is also true for 

max[0, )t  . 

Step 3. The last step will validate that 
max    is true. 

Equations. (34) and (36) show that the condition 

max( ) , [0, )t t     holds for a nonempty open set 

2

1

,
1 1

Mk Mk

Mk Mk
k

e e

e e

 

  

   




  
   

  
 . Consequently, we can easily 

verify that 
    for ( , ) ( , )         . If we assume 

max  
 
is true, Proposition 1 implies that there exists a 

finite time 
1 max[0, )t   such that

1( )t   . This claim leads 

to a contradiction. Therefore, we can conclude that 
max    is 

true. Thus all the closed-loop signals in control system are 

bounded for 0t  . Specifically, the vertical motion 
1x  is 

retained within the predefined bound (8) for 0t  . This 

completes the proof.    ◇  
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