14 research outputs found

    PROVIDE: hiding from automated network scans with proofs of identity

    Full text link
    Network scanners are a valuable tool for researchers and administrators, however they are also used by malicious actors to identify vulnerable hosts on a network. Upon the disclosure of a security vulnerability, scans are launched within hours. These opportunistic attackers enumerate blocks of IP addresses in hope of discovering an exploitable host. Fortunately, defensive measures such as port knocking protocols (PKPs) allow a service to remain stealth to unauthorized IP addresses. The service is revealed only when a client includes a special authentication token (AT) in the IP/TCP header. However this AT is generated from a secret shared between the clients/servers and distributed manually to each endpoint. As a result, these defense measures have failed to be widely adopted by other protocols such as HTTP/S due to challenges in distributing the shared secrets. In this paper we propose a scalable solution to this problem for services accessed by domain name. We make the following observation: automated network scanners access servers by IP address, while legitimate clients access the server by name. Therefore a service should only reveal itself to clients who know its name. Based on this principal, we have created a proof of the verifier’s identity (a.k.a. PROVIDE) protocol that allows a prover (legitimate user) to convince a verifier (service) that it is knowledgeable of the verifier’s identity. We present a PROVIDE implementation using a PKP and DNS (PKP+DNS) that uses DNS TXT records to distribute identification tokens (IDT) while DNS PTR records for the service’s domain name are prohibited to prevent reverse DNS lookups. Clients are modified to make an additional DNS TXT query to obtain the IDT which is used by the PKP to generate an AT. The inclusion of an AT in the packet header, generated from the DNS TXT query, is proof the client knows the service’s identity. We analyze the effectiveness of this mechanism with respect to brute force attempts for various strength ATs and discuss practical considerations.This work has been supported by the National Science Foundation (NSF) awards #1430145, #1414119, and #1012798

    The forgotten preconditions for a well-functioning internet

    Get PDF
    For decades, proponents of the Internet have promised that it would one day provide a seamless way for everyone in the world to communicate with each other, without introducing new boundaries, gatekeepers, or power structures. What happened? This article explores the system-level characteristics of a key design feature of the Internet that helped it to achieve widespread adoption, as well as the system-level implications of certain patterns of use that have emerged over the years as a result of that feature. Such patterns include the system-level acceptance of particular authorities, mechanisms that promote and enforce the concentration of power, and network effects that implicitly penalize those who do not comply with decisions taken by privileged actors. We provide examples of these patterns and offer some key observations, toward the development of a general theory of why they emerged despite our best efforts, and we conclude with some suggestions on how we might mitigate the worst outcomes and avoid similar experiences in the future

    Holmes: An Efficient and Lightweight Semantic Based Anomalous Email Detector

    Full text link
    Email threat is a serious issue for enterprise security, which consists of various malicious scenarios, such as phishing, fraud, blackmail and malvertisement. Traditional anti-spam gateway commonly requires to maintain a greylist to filter out unexpected emails based on suspicious vocabularies existed in the mail subject and content. However, the signature-based approach cannot effectively discover novel and unknown suspicious emails that utilize various hot topics at present, such as COVID-19 and US election. To address the problem, in this paper, we present Holmes, an efficient and lightweight semantic based engine for anomalous email detection. Holmes can convert each event log of email to a sentence through word embedding then extract interesting items among them by novelty detection. Based on our observations, we claim that, in an enterprise environment, there is a stable relation between senders and receivers, but suspicious emails are commonly from unusual sources, which can be detected through the rareness selection. We evaluate the performance of Holmes in a real-world enterprise environment, in which it sends and receives around 5,000 emails each day. As a result, Holmes can achieve a high detection rate (output around 200 suspicious emails per day) and maintain a low false alarm rate for anomaly detection

    An Extensible Format for Email Feedback Reports

    Full text link

    A reputation framework for behavioural history: developing and sharing reputations from behavioural history of network clients

    Get PDF
    The open architecture of the Internet has enabled its massive growth and success by facilitating easy connectivity between hosts. At the same time, the Internet has also opened itself up to abuse, e.g. arising out of unsolicited communication, both intentional and unintentional. It remains an open question as to how best servers should protect themselves from malicious clients whilst offering good service to innocent clients. There has been research on behavioural profiling and reputation of clients, mostly at the network level and also for email as an application, to detect malicious clients. However, this area continues to pose open research challenges. This thesis is motivated by the need for a generalised framework capable of aiding efficient detection of malicious clients while being able to reward clients with behaviour profiles conforming to the acceptable use and other relevant policies. The main contribution of this thesis is a novel, generalised, context-aware, policy independent, privacy preserving framework for developing and sharing client reputation based on behavioural history. The framework, augmenting existing protocols, allows fitting in of policies at various stages, thus keeping itself open and flexible to implementation. Locally recorded behavioural history of clients with known identities are translated to client reputations, which are then shared globally. The reputations enable privacy for clients by not exposing the details of their behaviour during interactions with the servers. The local and globally shared reputations facilitate servers in selecting service levels, including restricting access to malicious clients. We present results and analyses of simulations, with synthetic data and some proposed example policies, of client-server interactions and of attacks on our model. Suggestions presented for possible future extensions are drawn from our experiences with simulation

    A real-time system for abusive network traffic detection

    Get PDF
    Abusive network traffic--to include unsolicited e-mail, malware propagation, and denial-of-service attacks--remains a constant problem in the Internet. Despite extensive research in, and subsequent deployment of, abusive-traffic detection infrastructure, none of the available techniques addresses the problem effectively or completely. The fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new mitigation techniques. Analyzing network traffic by exploiting transport-layer characteristics can help remedy this and provide effective detection of abusive traffic. Within this framework, we develop a real-time, online system that integrates transport layer characteristics into the existing SpamAssasin tool for detecting unsolicited commercial e-mail (spam). Specifically, we implement the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms based on classification performance, training required, adaptability, and computational load. We evaluate system performance in a virtual test bed and live environment and present analytical results. Finally, we evaluate our system in the context of Spam Assassin's auto-learning mode, providing an effective method to train the system without explicit user interaction or feedback.http://archive.org/details/arealtimesystemf109455754Outstanding ThesisApproved for public release; distribution is unlimited

    Towards secure message systems

    Get PDF
    Message systems, which transfer information from sender to recipient via communication networks, are indispensable to our modern society. The enormous user base of message systems and their critical role in information delivery make it the top priority to secure message systems. This dissertation focuses on securing the two most representative and dominant messages systems---e-mail and instant messaging (IM)---from two complementary aspects: defending against unwanted messages and ensuring reliable delivery of wanted messages.;To curtail unwanted messages and protect e-mail and instant messaging users, this dissertation proposes two mechanisms DBSpam and HoneyIM, which can effectively thwart e-mail spam laundering and foil malicious instant message spreading, respectively. DBSpam exploits the distinct characteristics of connection correlation and packet symmetry embedded in the behavior of spam laundering and utilizes a simple statistical method, Sequential Probability Ratio Test, to detect and break spam laundering activities inside a customer network in a timely manner. The experimental results demonstrate that DBSpam is effective in quickly and accurately capturing and suppressing e-mail spam laundering activities and is capable of coping with high speed network traffic. HoneyIM leverages the inherent characteristic of spreading of IM malware and applies the honey-pot technology to the detection of malicious instant messages. More specifically, HoneyIM uses decoy accounts in normal users\u27 contact lists as honey-pots to capture malicious messages sent by IM malware and suppresses the spread of malicious instant messages by performing network-wide blocking. The efficacy of HoneyIM has been validated through both simulations and real experiments.;To improve e-mail reliability, that is, prevent losses of wanted e-mail, this dissertation proposes a collaboration-based autonomous e-mail reputation system called CARE. CARE introduces inter-domain collaboration without central authority or third party and enables each e-mail service provider to independently build its reputation database, including frequently contacted and unacquainted sending domains, based on the local e-mail history and the information exchanged with other collaborating domains. The effectiveness of CARE on improving e-mail reliability has been validated through a number of experiments, including a comparison of two large e-mail log traces from two universities, a real experiment of DNS snooping on more than 36,000 domains, and extensive simulation experiments in a large-scale environment

    Malicious Payload Distribution Channels in Domain Name System

    Get PDF
    Botmasters are known to use different protocols to hide their activities under the radar. Throughout the past years, several protocols have been abused and recently Domain Name System (DNS) also became a target of such malicious activities. In this dissertation, we analyze the use of DNS as a malicious payload distribution channel. To the best of our knowledge, this is the first comprehensive analysis of these payload distribution channels via DNS. We present a system to characterize such channels in the passive DNS (pDNS) traffic by modelling DNS query and response patterns. Then, we analyze the Resource Record (RR) activities of these channels to build their DNS zone profiles. Finally, we detect and assign levels of intensity for payload distribution channels by using a fuzzy logic theory. Our work is based on an extensive analysis of malware datasets for one year, and a near real-time feed of pDNS traffic. The experimental results reveal few long-running hidden domains used by Morto worm to distribute malicious payloads. We also found that some of these payloads are in cleartext, without any encoding or encryption. Our experiments on pDNS traffic indicate that our system can detect these channels regardless of the payload format. Passive DNS is a useful data source for DNS based research, and it requires to be stored in a database for historical data analysis, such as the work we present in this dissertation. Once this database is established, it can be used for any sort of threat analysis that requires DNS oriented intelligence. Our aim is to create a scalable pDNS database, that contains potentially valuable security intelligence data. We present our pDNS database by discussing the database design, implementation challenges, and the evaluation of the system

    RFC 4871 DomainKeys Identified Mail (DKIM) Signatures -- Update

    No full text

    The Decentralized File System Igor-FS as an Application for Overlay-Networks

    Get PDF
    corecore