537 research outputs found

    Global-Scale Resource Survey and Performance Monitoring of Public OGC Web Map Services

    Full text link
    One of the most widely-implemented service standards provided by the Open Geospatial Consortium (OGC) to the user community is the Web Map Service (WMS). WMS is widely employed globally, but there is limited knowledge of the global distribution, adoption status or the service quality of these online WMS resources. To fill this void, we investigated global WMSs resources and performed distributed performance monitoring of these services. This paper explicates a distributed monitoring framework that was used to monitor 46,296 WMSs continuously for over one year and a crawling method to discover these WMSs. We analyzed server locations, provider types, themes, the spatiotemporal coverage of map layers and the service versions for 41,703 valid WMSs. Furthermore, we appraised the stability and performance of basic operations for 1210 selected WMSs (i.e., GetCapabilities and GetMap). We discuss the major reasons for request errors and performance issues, as well as the relationship between service response times and the spatiotemporal distribution of client monitoring sites. This paper will help service providers, end users and developers of standards to grasp the status of global WMS resources, as well as to understand the adoption status of OGC standards. The conclusions drawn in this paper can benefit geospatial resource discovery, service performance evaluation and guide service performance improvements.Comment: 24 pages; 15 figure

    Open Source Based Deployment of Environmental Data into Geospatial Information Infrastructures

    Get PDF
    Today, scientists use local and closed geospatial solutions to run their models and store their results. This may limit their ability to share their models, and results with other interested colleagues. This scenario is changing with the advent of new factors such as the rapid growth and rise of open source projects, or new paradigms promoted by government organizations to manage environmental data, such as Infrastructure for Spatial Information in the European Community (INSPIRE) directive, or the massive use of Web 2.0 techniques where users are looking for applications with a high degree of collaboration, interactiveness, and multimedia effects. Many authors address the versatility of Spatial Data Infrastructures where resources are shared and accessed via standard service according to complex specifications. In this context, the authors point out the need to merge the traditional building and maintenance of these infrastructures, driven by official providers, with these more participative methodologies where users can participate in creating and integrating information. It seems necessary to develop new geospatial tools which integrate these new trends. This paper proposes a unified solution offering to the scientific field an open development framework, based on standards and philosophies focused on new technologies and scientific needs

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Assessment of OGC Web Processing Services for REST principles

    Get PDF
    Recent distributed computing trends advocate the use of REpresentational State Transfer (REST) to alleviate the inherent complexity of the web services standards in building service-oriented web applications. In this paper we focus on the particular case of geospatial services interfaced by the OGC web processing service (WPS) specification in order to assess whether WPS-based geospatial services can be viewed from the architectural principles exposed in REST. Our concluding remarks suggest that the adoption of REST principles, to specially harness the built-in mechanisms of the HTTP application protocol, may be beneficial in scenarios where ad hoc composition of geoprocessing services are required, common for most non-expert users of geospatial information infrastructures

    Enhancing integrated environmental modelling by designing resource-oriented interfaces

    Get PDF
    Integrated environmental modelling is gaining momentum for addressing grand scientific challenges such as monitoring the environment for change detection and forecasting environmental conditions along with the consequences for society. Such challenges can only be addressed by a multi-disciplinary approach, in which socio-economic, geospatial, and environmental information becomes inter-connected. However, existing solutions cannot be seamlessly integrated and current interaction paradigms prevent mainstream usage of the existing technology. In particular, it is still difficult to access and join harmonized data and processing algorithms that are provided by different environmental information infrastructures. In this paper we take a novel approach for integrated environmental modelling based on the notion of inter-linked resources on the Web. We present design practices for creating resource-oriented interfaces, driven by an interaction protocol built on the combination of valid linkages to enhance resource integration, accompanied by associated recommendations for implementation. The suggested resource-oriented approach provides a solution to the problems identified above, but still requires intense prototyping and experimentation. We discuss the central open issues and present a roadmap for future research

    Design and Development of Personal GeoServices for Universities

    Get PDF
    Personal GeoServices are emerging as an interaction paradigm linking users to information rich environments like a university campus or to Big Data sources like the Internet of Things by delivering spatially intelligent web-services. OpenStreetMap (OSM) constitutes a valuable source of spatial base-data that can be extracted, integrated, and utilised with such heterogeneous data sources for free. In this paper, we present a Personal GeoServices application built on OSM spatial data and university-specific business data for staff, faculty, and students. While generic products such as Google Maps and Google Earth enable basic forms of spatial exploration, the domain of a university campus presents specific business information needs, such as “What classes are scheduled in that room over there?” and “How can I get to Prof. Murray’s office from here?” Within the framework of the StratAG project (www.StratAG.ie), an eCampus Demonstrator was developed for the National University of Ireland Maynooth (NUIM) to assist university users in exploring and analysing their surroundings within a detailed data environment. This work describes this system in detail, discussing the usage of OSM vector data, and providing insights for developers of spatial information systems for personalised visual exploration of an area

    A Case Study for eCampus Spatial: Business Data Exploration

    Get PDF
    Location based querying is the core interaction paradigm between mobile citizens and the Internet of Things, so providing users with intelligent web-services that interact efficiently with web and wireless devices to recommend personalised services is a key goal. With today\u27s popular Web Map Services, users can ask for general information at a specific location, but not detailed information such as related functionality or environments. This shortcoming comes from a lack of connection between non-spatial “business” data and spatial “map” data. This chapter presents a novel approach for location-based querying in web and wireless environments, in which non-spatial business data is dynamically connected to spatial base-map data to provide users with spatially-enabled attribute information at particular locations. The proposed approach is illustrated in a case study at the National University of Ireland in Maynooth (NUIM), where detailed 3D campus building models were constructed. Non-spatial university specific business data such as the functionalities and timetables of class rooms/buildings, campus news, noise levels, and navigation are then explored over the web and presented as both mobile and desktop web-services

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Mobile 2D and 3D Spatial Query Techniques for the Geospatial Web

    Get PDF
    The increasing availability of abundant geographically referenced information in the Geospatial Web provides a variety of opportunities for developing value-added LBS applications. However, large data volumes of the Geospatial Web and small mobile device displays impose a data visualization problem, as the amount of searchable information overwhelms the display when too many query results are returned. Excessive returned results clutter the mobile display, making it harder for users to prioritize information and causes confusion and usability problems. Mobile Spatial Interaction (MSI) research into this “information overload” problem is ongoing where map personalization and other semantic based filtering mechanisms are essential to de-clutter and adapt the exploration of the real-world to the processing/display limitations of mobile devices. In this thesis, we propose that another way to filter this information is to intelligently refine the search space. 3DQ (3-Dimensional Query) is our novel MSI prototype for information discovery on today’s location and orientation-aware smartphones within 3D Geospatial Web environments. Our application incorporates human interactions (interpreted from embedded sensors) in the geospatial query process by determining the shape of their actual visibility space as a query “window” in a spatial database, e.g. Isovist in 2D and Threat Dome in 3D. This effectively applies hidden query removal (HQR) functionality in 360Âș 3D that takes into account both the horizontal and vertical dimensions when calculating the 3D search space, significantly reducing display clutter and information overload on mobile devices. The effect is a more accurate and expected search result for mobile LBS applications by returning information on only those objects visible within a user’s 3D field-of-view
    • 

    corecore