56,101 research outputs found

    Stimulated Raman backscattering of laser radiation in deep plasma channels

    Full text link
    Stimulated Raman backscattering (RBS) of intense laser radiation confined by a single-mode plasma channel with a radial variation of plasma frequency greater than a homogeneous-plasma RBS bandwidth is characterized by a strong transverse localization of resonantly-driven electron plasma waves (EPW). The EPW localization reduces the peak growth rate of RBS and increases the amplification bandwidth. The continuum of non-bound modes of backscattered radiation shrinks the transverse field profile in a channel and increases the RBS growth rate. Solution of the initial-value problem shows that an electromagnetic pulse amplified by the RBS in the single-mode deep plasma channel has a group velocity higher than in the case of homogeneous-plasma Raman amplification. Implications to the design of an RBS pulse compressor in a plasma channel are discussed.Comment: 11 pages, 3 figures; submitted to Physics of Plasma

    Finding role communities in directed networks using Role-Based Similarity, Markov Stability and the Relaxed Minimum Spanning Tree

    Full text link
    We present a framework to cluster nodes in directed networks according to their roles by combining Role-Based Similarity (RBS) and Markov Stability, two techniques based on flows. First we compute the RBS matrix, which contains the pairwise similarities between nodes according to the scaled number of in- and out-directed paths of different lengths. The weighted RBS similarity matrix is then transformed into an undirected similarity network using the Relaxed Minimum-Spanning Tree (RMST) algorithm, which uses the geometric structure of the RBS matrix to unblur the network, such that edges between nodes with high, direct RBS are preserved. Finally, we partition the RMST similarity network into role-communities of nodes at all scales using Markov Stability to find a robust set of roles in the network. We showcase our framework through a biological and a man-made network.Comment: 4 pages, 2 figure

    Densities for random balanced sampling

    Get PDF
    A random balanced sample (RBS) is a multivariate distribution with n components X_1,...,X_n, each uniformly distributed on [-1, 1], such that the sum of these components is precisely 0. The corresponding vectors X lie in an (n-1)-dimensional polytope M(n). We present new methods for the construction of such RBS via densities over M(n) and these apply for arbitrary n. While simple densities had been known previously for small values of n (namely 2,3 and 4), for larger n the known distributions with large support were fractal distributions (with fractal dimension asymptotic to n as n approaches infinity). Applications of RBS distributions include sampling with antithetic coupling to reduce variance, and the isolation of nonlinearities. We also show that the previously known densities (for n<5) are in fact the only solutions in a natural and very large class of potential RBS densities. This finding clarifies the need for new methods, such as those presented here.Comment: 20 pages, 6 figures, to appear in Journal of Multivariate Analysi

    Combined grazing incidence RBS and TEM analysis of luminescent nano-SiGe/SiO2 multilayers.

    Get PDF
    Multilayer structures with five periods of amorphous SiGe nanoparticles/SiO2 layers with different thickness were deposited by Low Pressure Chemical Vapor Deposition and annealed to crystallize the SiGe nanoparticles. The use of grazing incidence RBS was necessary to obtain sufficient depth resolution to separate the signals arising from the individual layers only a few nm thick. The average size and areal density of the embedded SiGe nanoparticles as well as the oxide interlayer thickness were determined from the RBS spectra. Details of eventual composition changes and diffusion processes caused by the annealing processes were also studied. Transmission Electron Microscopy was used to obtain complementary information on the structural parameters of the samples in order to check the information yielded by RBS. The study revealed that annealing at 900 °C for 60 s, enough to crystallize the SiGe nanoparticles, leaves the structure unaltered if the interlayer thickness is around 15 nm or higher

    A candidate supermassive binary black hole system in the brightest cluster galaxy of RBS 797

    Full text link
    The radio source at the center of the cool core galaxy cluster RBS 797 (z=0.35) is known to exhibit a misalignment of its radio jets and lobes observed at different VLA-scale, with the innermost kpc-scale jets being almost orthogonal to the radio emission which extends for tens of kpc filling the X-ray cavities. Gitti et al. suggested that this peculiar radio morphology may indicate a recurrent activity of the central radio source, where the jet orientation is changing between the different outbursts due to the effects of supermassive binary black holes (SMBBHs). We aim at unveiling the nuclear radio properties of the brightest cluster galaxy (BCG) in RBS 797 and at investigating the presence of a SMBBH system in its center. We have performed new high-resolution observations at 5 GHz with the European VLBI Network (EVN), reaching an angular resolution of 9x5 mas^2 and a sensitivity of 36 microJy/beam. We report the EVN detection of two compact components in the BCG of RBS 797, with a projected separation of ~77 pc. We can envisage two possible scenarios: the two components are two different nuclei in a close binary system, or they are the core and a knot of its jet. Both interpretations are consistent with the presence of SMBBHs. Our re-analysis of VLA archival data seems to favor the first scenario, as we detect two pairs of radio jets misaligned by ~90 degrees on the same kpc scale emanating from the central radio core. If the two outbursts are almost contemporaneous, this is clear evidence of the presence of two active SMBHs, whose radio nuclei are unresolved at VLA resolution. The nature of the double source detected by our EVN observations in the BCG of RBS 797 can be established only by future sensitive, multi-frequency VLBI observations. If confirmed, RBS 797 would be the first SMBBH system observed at medium-high redshift at VLBI resolution. (abridged)Comment: 4 pages, 2 figures, A&A Letter in pres

    Accurate X-ray position and multiwavelength observations of the isolated neutron star RBS 1774

    Get PDF
    We report on X-ray, optical, infrared and radio observations of the X-ray dim isolated neutron star (XDINS) 1RXS J214303.7+065419 (also known as RBS 1774). The X-ray observation was performed with the High Resolution Camera on board of the Chandra X-ray Observatory, allowing us to derive the most accurate position for this source (alpha = 21h43m3.38s, delta= +6deg54'17".53; 90% uncertainty of 0."6). Furthermore, we confirmed with a higher spatial accuracy the point-like nature of this X-ray source. Optical and infrared observations were taken in B, V, r', i', J, H and Ks filters using the Keck, VLT, Blanco and Magellan telescopes, while radio observations were obtained from the ATNF Parkes single dish at 2.9GHz and 708MHz. No plausible optical and/or infrared counterpart for RBS 1774 was detected within the refined sub-arsecond Chandra X-ray error circle. Present upper limits to the optical and infrared magnitudes are r'>25.7 and J>22.6 (5 sigma confidence level). Radio observations did not show evidence for radio pulsations down to a luminosity at 1.4 GHz of L < 0.02 mJy kpc^2, the deepest limit up to date for any XDINS, and lower than what expected for the majority of radio pulsars. We can hence conclude that, if RBS 1774 is active as radio pulsar, its non detection is more probably due to a geometrical bias rather than to a luminosity bias. Furthermore, no convincing evidence for RRAT-like radio bursts have been found. Our results on RBS 1774 are discussed and compared with the known properties of other thermally emitting neutron stars and of the radio pulsar population.Comment: 8 pages, 9 figures, accepted for publication on MNRA
    • …
    corecore