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Abstract

A random balanced sample (RBS) is a multivariate distribution with n components Xk , each uniformly
distributed on [−1, 1], such that the sum of these components is precisely 0. The corresponding vectors �X
lie in an (n− 1)-dimensional polytope M(n). We present new methods for the construction of such RBS via
densities over M(n) and these apply for arbitrary n. While simple densities had been known previously for
small values of n (namely 2,3, and 4), for larger n the known distributions with large support were fractal
distributions (with fractal dimension asymptotic to n as n → ∞). Applications of RBS distributions include
sampling with antithetic coupling to reduce variance, and the isolation of nonlinearities. We also show that
the previously known densities (for n�4) are in fact the only solutions in a natural and very large class of
potential RBS densities. This finding clarifies the need for new methods, such as those presented here.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this article is to improve our understanding of “random balanced samples” (RBS),
multivariate distributions having specified marginals as well as a “balanced” property; the precise
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definition is given below. RBS have found several applications, described in the literature, but the
construction of nontrivial RBS distributions has presented interesting mathematical challenges.
We describe new methods that generate RBS densities with respect to the underlying Lebesgue
measure. In contrast, previous work on this problem has relied on fractal geometry and iterated
function systems. Ironically, the earliest examples of RBS distributions were given by simple
explicit densities. In Section 3, however, we show that those earlier techniques cannot be extended
to higher dimensions.

Definition 1. A RBS of size n is a system of random variables

�X = (X1, X2, . . . , Xn)

such that �X is balanced, i.e.

n∑
k=1

Xk = 0,

and each Xk is uniformly distributed over [−1, 1]. Other marginal distributions might be consid-
ered, but we focus here on the uniform case.

Our main concern here is to present new methods for constructing RBS densities (see
Section 2), and to point out the severe limitations of older methods (see Section 3). Nevertheless,
to set the context we briefly review some situations where RBS distributions may be usefully
applied.

A classical technique for reducing Monte Carlo variance is the use of “antithetic variates”.
First introduced by Hammersley and Morton in 1956 [11], it has been extended to larger group-
ings of variables by Arvidsen and Johnsson [1], and applied to the bootstrap by Hall [10].
For more recent applications, see the papers of Craiu and Meng [2–4]. In the following ex-
ample, we motivate the use of antithetic variates, and we show that in the exchangeable case,
RBS distributions are extremely antithetic. That is, the variables are as negatively correlated as
possible.

Example 2. We may wish to estimate the mean 1
2

∫ 1
−1 f (x) dx of an unknown function

f :[−1, 1] → R by means of

f n = 1

n

n∑
k=1

f (Xk).

The variance of f n will be reduced if cov(f (Xk), f (Xj )) < 0 for k �= j . This reduction can be
achieved for a variety of functions f by means of antithetic coupling of the sampling variables Xk ,
i.e. by insisting that cov(Xk, Xj ) be negative for k �= j . Note that for Xk uniformly distributed
over [−1, 1] we have

E

⎛
⎝

∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
2
⎞
⎠ = n

3
+

∑
k �=j

E(XkXj ),
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so that if cov(Xk, Xj ) = � for all k �= j (e.g. in the exchangeable case) then

� = 1

n(n − 1)

⎛
⎝E

⎛
⎝

∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
2
⎞
⎠ − n

3

⎞
⎠ .

Thus, the minimum value of � is − 1
3(n−1)

, achieved precisely when we have a RBS.

Example 3. In the same setting as Example 2, the estimate f n via a RBS allows a cleaner dis-
tinction between the linear and nonlinear parts of f. Indeed, if f (x) = Cx + g(x), where g is
nonlinear then a RBS entirely eliminates the linear component Cx (even though the constant C
may not be known) from the estimate f n. Applications of this nature are discussed in Gerow
et al. [5,6,8,9]; see also [14].

The structure of RBS distributions is by no means a simple matter; there is a bewildering variety
of RBS distributions for sample size n�3. Each may be regarded as a probability distribution on
the regular polytope

M(n) =
{

�x ∈ [−1, 1]n :
n∑

k=1

xk = 0

}
,

with the additional requirement of marginal uniformity. For small values of n, the
polytopes M(n) are familiar geometric objects; for example, one easily sees that M(3) is the
regular hexagon with vertices (±1, ∓1, 0), (±1, 0, ∓1), and (0, ±1, ∓1). It seems that the ear-
liest solution to this puzzle (aside from the trivial case where n = 2) is due to D. Robson.
He noted that a simple piecewise linear density on M(3) meets the requirements. See
Fig. 1. K Gerow, in [5], extended Robson’s method to n = 4, and detected problems for this
method in case n > 4. As it turned out, even a broad generalization of the Gerow–Robson
method could not produce RBS densities for n�5. This phenomenon is studied in detail in
Section 3.

As alternatives to the Robson density on M(3), many other RBS distributions were constructed;
part of [8] is devoted to a survey of these, many of which have attractive geometric features. In
particular, certain fractal measures define RBS distributions for arbitrary sample size n. See Figs. 2
and 3. While such fractal measures cannot have all of M(n) as their support, the fractal dimension
of their supports can be made large with respect to the topological dimension n − 1 of M(n)

(see [8,13]). For some time, there appeared to be a dichotomy in the possible RBS constructions:
for small n we had simple RBS densities, but for larger n only singular RBS distributions (the
fractal constructions, which produce measures singular with respect to the natural (n−1)-volume
on M(n)).

More recently, however, we have found constructions that yield RBS densities for any sample
size n. These are described in Section 2. They introduce a technique of redistribution that may
have other applications as well. Like the earlier fractal constructions (which can be implemented
via iterated function systems), these new methods are algorithmically effective. That is, workers
in the field can easily generate sampling vectors �X by following the procedures outlined in
Section 2.
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Fig. 1. The Robson density graphed as a piecewise linear density over M(3), represented as a regular hexagon. Gerow
discovered that a similar construction (density proportional to max |Xk |) works on M(4).

2. Optimal densities

2.1. Goals

Given a RBS, it may be optimized in several directions, and these goals are to some degree
incompatible. We may wish, for example, to achieve as much mutual independence as possible
among the coordinate random variables Xk . In this way, we would stay near the more familiar
situation of i.i.d. sampling. It is clear, however, that for a given value of n not more than n/2 of
the Xk can be mutually independent. Suppose, for example, that X1, X2, . . . , Xm are mutually
independent; then there is a positive probability (namely (�/2)m, if � > 0 is small) that

Xk ∈ [1 − �, 1] (k = 1, . . . , m). (1)

In this case, we would have

m(1 − �)�
m∑

k=1

Xk = −
n∑

k=m+1

Xk �(n − m), (2)

which is not possible (for sufficiently small �) if 2m > n. On the other hand, if we compromise in
other directions, the maximal mutual independence is easy to obtain. Consider, for example, an
even sample size n = 2m and a RBS defined by choosing X1, X2, . . . , Xm independently (and
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Fig. 2. A fractal “superstar” RBS distribution on the hexagon M(3). The histogram generated by this simulation is shown
at the bottom, visually verifying the uniform distribution of Xk .

each Xk uniform in [−1, 1], of course), then setting

Xm+k = −Xk (k = 1, . . . , m). (3)

Here, we have the coordinates partitioned into two subsets of m = n/2 mutually independent
random variables (for example, the first m and the last m of the Xk). This RBS, however, is
degenerate in the sense that the distribution of �X is supported on a (n/2)-dimensional subset of
the natural range M(n) for RBS of size n. Recall that

M(n) =
{

�x ∈ [−1, 1]n :
n∑

k=1

xk = 0

}
, (4)

so that M(n) has the much larger dimension n − 1. A sampling procedure based on such a RBS
lacks robustness in a certain sense: it may overlook significant structure in the distribution under
investigation because that structure lies outside the support of the RBS. Following this line of
thought, the dimension of the support of a RBS distribution has been viewed as a measure of
robustness; in some interesting cases this dimension must be computed as a fractal dimension
(see [8], for example; a fractal construction is also displayed in [3]). In Section 2.2, we shall see
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Fig. 3. As in Fig. 2, a fractal RBS may be generated in the octahedron M(4) by means of an IFS (iterated function system)
mapping all of M(n) closer to its various vertices (six in this case).

how the degenerate RBS defined by (3) can be modified to achieve maximal robustness (n − 1)

without much loss in mutual independence of the coordinates.
A natural (n − 1)-dimensional model for M(n) is obtained by first constructing n unit vectors

u1, u2, . . . , un in Rn−1 such that (ui, uj ) = −1/(n − 1) whenever i �= j . Then M(n) may be
identified with {v ∈ Rn−1 : (∀k) −1�(v, uk)�1}. Corresponding to each such v we have �X with
Xk = (v, uk) (k = 1, 2, . . . , n). See [8] for further details. These models of M(n) yield regular
polytopes in Rn−1. For example, M(3) is seen as a regular hexagon, as in Figs. 1 and 2, while
M(4) is the regular octahedron outlined in Fig. 3. Fig. 4 presents one of the three-dimensional
faces of M(5), which is itself a four-dimensional object.

Along with independence and robustness, a third desirable feature of a RBS procedure might
be algorithmic efficiency, the efficiency with which sampling variables may be generated for use
in experiments. The RBS defined by (3), for example, is very efficient, since it involves very
little beyond m calls to a random number generator to produce a sampling vector �X. We shall
see that the modifications proposed in Section 2.2 retain most of this efficiency as they increase
robustness.

2.2. Redistribution

Here, we illustrate, in a simple setting, a general procedure of redistribution that may be used to
increase the robustness of a RBS. In this initial example, we confine ourselves to the redistribution
of pairs of independent coordinates chosen from �X.

Lemma 4. Given independent X1, X2, each uniformly distributed on [−1, 1], let S = X1 + X2
and define the new variables

Y1 = S

2
+

(
1 − |S|

2

)
T , Y2 = S

2
−

(
1 − |S|

2

)
T , (5)
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Fig. 4. While the four-dimensional M(5) cannot be easily visualized, each of its faces is similar to the elegant
three-dimensional object seen here. It may be regarded as a truncated tetrahedron; the result has four regular hexagons
and four equilateral triangles as its faces.

where T is uniform on [−1, 1] and independent of the Xk; then Y1, Y2 are also independent and
uniform on [−1, 1].

Remark 5. Since Y1 + Y2 = S = X1 + X2, we may think of the procedure in this lemma as
redistributing the part of a RBS captured by X1 + X2. The geometry behind this construction is
revealed by writing �Y = (Y1, Y2) = �D + T �Q, where �D = (S/2, S/2) is a point on the diagonal
of [−1, 1]2 and

�Q =
(

1 − |S|
2

, −
(

1 − |S|
2

))
,

so that �A = �D + �Q and �B = �D − �Q are the endpoints of the segment in [−1, 1]2 passing through
�D and perpendicular to the diagonal (see Fig. 5). Thus, �Y is chosen in two steps: first, �D is chosen

with a density proportional to the length of �A �B, then �Y is placed at a point chosen uniformly
along �A �B. This procedure strongly suggests that �Y will be uniformly distributed over the square
[−1, 1]2. We present a more formal proof below, computing the joint density of (Y1, Y2).

Proof. Let D = S/2. The joint density f (t, d) of (T , D) on [−1, 1]2 is given by 1
2 (1 − |d|),

since T and D are independent and it is easy to compute the density of D on [−1, 1] as 1 − |d|.
Also

(Y1, Y2) = (D + (1 − |D|)T , D − (1 − |D|)T ),

a transformation with Jacobian matrix

J (t, d) =
[

(1 − |d|) 1 − sign(d)t

−(1 − |d|) 1 + sign(d)t

]
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(1,1)

Fig. 5. A graphical view of the redistribution algorithm for the case �X1 = 0.7, �X2 = −0.3.

(compute for the two cases d �0 and d < 0). It follows that det J (t, d) = 2(1 − |d|). The
transformation is injective from [−1, 1]2 to [−1, 1]2, so that we may compute (compare the
discussion of “change of variable” in [12, p. 213]) the joint density of (Y1, Y2) at the image of
(T , D) as f (t, d)/ det J (t, d) = 1

4 , the uniform density on [−1, 1]2. Thus, Y1, Y2 are uniform
over [−1, 1] and are independent. �

The following theorem shows how to redistribute selected pairs of coordinates from the degen-
erate RBS defined by (3) so that we obtain a RBS that is maximally robust.

Theorem 6. Let X1, . . . , Xm, T1, . . . , Tm be mutually independent random variables, each uni-
form on [−1, 1]. Assume m > 1 and let

Sk = Xk − Xk+1 (k = 1, . . . , m), (6)

with the understanding that Xm+1 = X1. Next (redistributing the coordinates combined in Sk as
in the lemma), let

Y2k−1 = Sk

2
+

(
1 − |Sk|

2

)
Tk, Y2k = Sk

2
−

(
1 − |Sk|

2

)
Tk, (7)

for k = 1, . . . , m. Then �Y defines a RBS of size n = 2m that is maximally robust, i.e. that has
a set of dimension n − 1 as its support. Moreover, the distribution of �Y is given by a density on
M(n).

Proof. Since Xk and −Xk+1 are independent and uniform on [−1, 1], Lemma 4 (with appro-
priate change of notation) ensures that each coordinate 3 of �Y is uniform on [−1, 1]. Clearly

3 We remark that it may be of interest to assess the degree to which these coordinates are mutually independent.
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∑n
1 Yk = ∑m

1 Sk = 0, so that �Y indeed defines a RBS. To see that it is maximally robust, note
first that every �y ∈ M(n) with sufficiently small |yk| can occur as a value of �Y . Indeed, if |yk| < 1

n
for each k, we set (for k = 1, 2, . . . , m)

xk = −
k−1∑
j=1

rj , (8)

where rj = y2j−1 + y2j . Note that x1 = xm+1 = 0 and that |xk|� 2(m−1)
n

< 1. We have
xk − xk+1 = rk for each k; for k = m this is a consequence of the fact that

∑m
1 rk = ∑n

1 yk = 0.
Solving for appropriate values of tk , we find that we require only that

tk = y2k−1 − y2k

2 − |y2k−1 + y2k| .

It is easy to check that |tk|�1, simply because |y2k−1|, |y2k|�1; if y2k−1 = y2k = ±1, any value
of tk will do. Thus, with �X = �x and �T = �t , we have �Y = �y, as claimed.

Next, consider a neighborhood �y(�) of such a �y in M(n); we must show that the procedure of
the theorem places sampling vectors in �y(�) with positive probability. By the continuity of the
procedure for obtaining �Y from ( �X, �T ), there is a neighborhood �u(�) of (�x, �t) in [−1, 1]n that is
mapped by the procedure into �y(�). The probability of �u(�) is already positive; indeed it is just
the normalized n-volume of �u(�), since the coordinates of ( �X, �T ) are chosen independently and
uniformly in [−1, 1].

To see that the distribution of �Y is given by a density on M(n), we introduce the (linear) mapping
L : [−1, 1]m → 2M(m) defined by

L(x1, . . . , xm) = (x1 − x2, x2 − x3, . . . , xm − x1). (9)

The analysis above shows that �y ∈ M(n) occurs as a value of �Y exactly when L(�x) = �r for some
�x ∈ [−1, 1]m. Given � > 0, consider the map

f : (1 − �)M(n) → 2M(m) × [−1, 1]m

defined by f (�y) = (f1(�y), f2(�y)), where f1(�y) = �r and f2(�y) = �t . The denominators in the
expressions for the tk are bounded away from zero since 2 − |y2k−1 + y2k|�2 − 2(1 − �) = 2�,
so that f is Lipschitz on (1 − �)M(n) for each fixed �. Given a Borel subset B, of (1 − �)M(n),
the probability assigned to B by the distribution of �Y is the (normalized) n-volume (or Lebesgue
measure) of {(�x, �t) : (L(�x), �t) ∈ f (B)}. Since L is linear and [−1, 1]n is bounded, this is at
most a constant times the (n − 1)-volume of f (B). As f is Lipschitz, this is in turn bounded by a
constant times the (n − 1)-volume of B. Certainly, then, the distribution is absolutely continuous
with respect to normalized Lebesgue measure on (1−�)M(n). Considering a sequence of �-values
tending to 0, we see that the distribution is absolutely continuous on M(n) itself and so given by
a density with respect to the normalized (n − 1)-volume on M(n). �

2.3. Using all of M(n)

The procedure of the last section retains algorithmic efficiency and it is robust in the sense of
dimension, but in most cases the sampling values do not fill all of M(n). Here, we show how
to modify the construction to obtain RBS procedures that have all of M(n) as support. First, let
us clarify the reasons for the failure of the construction in Section 2.2 to cover M(n); we reuse



P. Bubenik, J. Holbrook / Journal of Multivariate Analysis 98 (2007) 350–369 359

Fig. 6. The fact that the rhombic dodecahedron does not fill up all of the octahedron 2M(4) reveals the need for sym-
metrization in order to generate a RBS supported on all of M(8).

the notations of the proof above. As �y ranges over M(n) the corresponding �r fills all of 2M(m)

(recall that n = 2m). The procedure will yield every �y ∈ M(n) as a possible value exactly when
2M(m) = L([−1, 1]m). Since L([−1, 1]m) is the convex hull of the images of the 2m extreme
points of [−1, 1]m, we can simply check whether these images include the extreme points of
2M(m), which are easy to identify (at most one coordinate can differ from ±2).

For m = 2, for example, the extreme points of 2M(2) are

(2, −2) = L(1, −1) and (−2, 2) = L(−1, 1), (10)

so that the procedure of Section 2.2 for m = 2 gives a RBS distribution on M(4) having a density
that is positive everywhere on the octahedron. One can check that this density is unbounded, in
contrast to the piecewise linear density found by Gerow (see Section 3,). For m = 3, we again
get a RBS distribution with all of M(6) as support, because the extreme points of 2M(3) are

± (2, −2, 0) = L(±(1, −1, 1)), ±(0, 2, −2) = L(±(1, 1, −1)), etc. (11)

For m = 4, however, one can compute in a similar fashion that L([−1, 1]4) is a sort of rhombic
dodecahedron lying strictly inside the octahedron 2M(4). See Fig. 6. Thus, except in a few simple
cases, the procedure of Section 2.2, while it is maximally robust in terms of dimension, does not
fill M(n). As we will now see, the remedy is simply to symmetrize this procedure.

Lemma 7. Given any �w ∈ M(n), there is a permutation � of {1, 2, . . . , n} such that for �z =
�( �w) := (w�(1), . . . , w�(n)) all partial sums

k∑
j=1

zj (k = 1, . . . , n) (12)

lie in [−1, 1].
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Proof. We can choose the values of �(i) inductively. Suppose that (distinct) �(1), . . . , �(i) have
been chosen so that the partial sums (12) lie in [−1, 1] for all k� i. Since

i∑
j=1

w�(j) +
∑

j /∈�({1,...,i})
wj = 0, (13)

we can choose �(i + 1) such that w�(i+1) has sign opposite from that of the first sum in (13); it
follows that the partial sum (12) lies in [−1, 1] for k = i + 1 as well. �

Theorem 8. Given n = 2m, let the RBS �Y be defined as in Theorem 6, and let � be a randomly
chosen permutation of {1, . . . , n}. Then �W = �( �Y ) defines a RBS with all of M(n) as support.

Proof. For any �w ∈ M(n) using the � from Lemma 7, �w = �−1(�z) where all the partial sums
of (12) lie in [−1, 1]. The proof of Theorem 6 showed that any such �z could occur as a RBS �Y
defined in Section 2.2. Thus, �w can occur as �( �Y ) for the permutation � = �−1. �

2.4. Odd sample sizes

For odd sample sizes, n = 2m + 1 we can likewise construct an algorithmically efficient
degenerate RBS with two disjoint maximal subsets of mutually independent variables. This can be
done by choosing X1, . . . , Xm (with each Xk uniform in [−1, 1]) and B ∈ {−1, 1} independently,
and then setting

Xm+k = −Xk (k = 1, . . . , m − 1),

X2m = − 1
2 (Xm + B),

X2m+1 = − 1
2 (Xm − B).

It is easy to check that this gives a RBS. As in the even case, we can make this distribution robust
by redistributing pairs of the variables.

Theorem 9. Let X1, . . . , Xm, T1, . . . , Tm be mutually independent random variables, each uni-
form on [−1, 1] and B be a discrete random variable, uniform on {−1, 1}. Assume m > 1 and
let

Sk = Xk − Xk+1 (k = 1, . . . m − 2),

Sm−1 = Xm−1 − 1
2 (Xm + B),

Sm = − 1
2 (Xm − B) − X1.

Next, redistribute the variables as in Lemma 4:

Y2k−1 = Sk

2
+

(
1 − |Sk|

2

)
Tk (k = 1, . . . , m),

Y2k = Sk

2
−

(
1 − |Sk|

2

)
Tk (k = 1, . . . , m),

Y2m+1 = Xm.
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Then �Y is an RBS of size n = 2m + 1 that is maximally robust. That is, it has a set of dimension
n − 1 as its support.

Proof. First, note that − 1
2 (Xm + B) and − 1

2 (Xm − B) are uniformly distributed on [−1, 1]. As
a result, for each k, Sk is the sum of two independent uniform variables, and by Lemma 4, each
coordinate of �Y is uniform on [−1, 1]. Also,

∑n
k=1 Yk = ∑m

k=1 Sk + Y2m+1 = − 1
2 (Xm + B) −

1
2 (Xm − B) + Xm = 0, so �Y does indeed define an RBS.

To see that this RBS is maximally robust, we will show that every �y ∈ M(n) with sufficiently
small coordinates can occur as �Y . If |yk| < 1

2m
for each k, construct �x and �t as follows. Fix

b ∈ {−1, 1} and let rk = y2k−1 + y2k for k = 1, . . . , m, and let

xm = −
m∑

i=1

ri,

xk = 1

2
(xm + b) +

m−1∑
i=k

ri (k = 1, . . . , m − 1).

Then for k < m, xk = 1
2 (

∑m
i=1(−1)ai ri + b) for some choice of ai . So since |rk| < 1

m
, |xk| < 1

for all k. Also for k�m − 2,

sk = xk − xk+1 = rk, sm−1 = xm−1 − 1
2 (xm + b) = rm−1

and

sm = −1

2
(xm − b) − x1 = −xm −

m−1∑
i=1

ri = rm.

Thus, we have a �x ∈ [−1, 1]m such that the corresponding sk = rk for each k. We can then solve
for tk ∈ [−1, 1] such that Y2k−1 = y2k−1 and Y2k = y2k . Also, Y2m+1 = xm = − ∑m

i=1 ri =
− ∑2m

k=1 yk = y2m+1.
Finally, consider the neighborhood y(�) of �y in M(n); we must show that the procedure of

the theorem places sampling vectors in y(�) with positive probability. By the continuity of the
procedure there is a neighborhood �u(�) of (�x, �t) in [−1, 1]n that is mapped by the procedure into
y(�). The probability of �u(�) is already positive; indeed it is just the normalized n-volume, since
the coordinates are chosen independently and uniformly in [−1, 1]. �

Note that the procedure above will yield a �y ∈ M(n) if and only if xk = ∑n−3
i=2k−1 yi + 1

2 (yn+b)

lies in [−1, 1] for k = 1, . . . , n − 3. By symmetrizing the procedure and proving the following
lemma which is slightly stronger than necessary, we will get a RBS that fills all of M(n).

Lemma 10. Given any �w ∈ M(n) where n is odd, there exists a permutation � of {1, 2, . . . , n}
and b ∈ {−1, 1} such that for �z = �( �w) := (w�(1), . . . , w�(1)) all of the sums

n−3∑
i=k

zi + 1

2
(zn + b) (k = 1, . . . , n − 3) (14)

lie in [−1, 1].
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Proof. Choose �(n) such that zn = w�(n) �0. Let b = −1. Let a = − 1
2 (zn + b) ∈ [0, 1

2 ]. The
condition now becomes

Sk :=
n−3∑
i=k

zi ∈ [−1 + a, 1 + a] (k = 1, . . . , n − 3).

Taking Sn−2 = 0, we will prove the above condition by induction. Assume �(n − 3), . . . , �(k)

are defined such that Sk ∈ [−1 + a, 1 + a].
If Sk ∈ [a, 1 + a] then

∑n−3
i=k w�(i) + w�(n) �0. Since

n−3∑
i=k

w�(i) + w�(n) +
∑

i /∈�({k,...,n−3,n})
wi = 0

we can choose �(k − 1) such that w�(k−1) �0. Then Sk−1 ∈ [−1 + a, 1 + a].
If Sk−1 ∈ [−1 + a, a] then if possible choose �(k − 1) such that w�(k−1) �0. Then Sk−1 ∈

[−1 + a, 1 + a]. Otherwise choose any �(k − 1) and ∀i /∈ �({k − 1, . . . , n − 3, n}), w�(i) �0.
So

∑n−3
i=k−1 w�(i) + w�(n) �0 and thus Sk−1 � − w�(n) = −1 + 2a� − 1 + a. Therefore Sk−1 ∈

[−1 + a, 1 + a]. �

Theorem 11. Given n = 2m + 1, let the RBS �Y be defined as in the above theorem and let � be
a randomly chosen permutation of {1, . . . , n}. Then �w = �( �Y ) defines a RBS with all of M(n)

as support.

Proof. The proof follows from Theorem 9 and Lemma 10 in much the same way as Theorem
8 followed from Theorem 6 and Lemma 7. That is, for any �w ∈ M(n) using the � and b from
Lemma 10, �w = �−1(�z) where all the sums in (14) lie in [−1, 1]. The proof of Theorem 9 showed
that any such �z could occur as a RBS �Y as defined in the statement of that theorem. Thus, �w can
occur as �( �Y ) for the permutation � = �−1. �

3. Gerow–Robson densities

We are interested in probability densities on M(n) with respect to the measure vn−1 defined as
follows. Let �1 denote the vector (1, 1, . . . , 1) ∈ Rn, and let �1⊥ denote the hyperplane consisting
of all vectors perpendicular to �1. For each Borel subset S of �1⊥, let vn−1(S) denote the (n − 1)-
dimensional Lebesgue measure of S, regarding �1⊥ as an isometric copy of Rn−1. Let Vn−1 =
vn−1(M(n)).

By a Gerow–Robson (G–R) density on M(n) we shall mean a probability density h with respect
to vn−1 such that

h( �X) = f (‖ �X‖∞) ( �X ∈ M(n)) (15)

for some f : [0, 1] → [0, ∞), where

‖ �X‖∞ = max
1�k �n

|Xk|. (16)

We remark that on M(3) and M(4) the subspaces with constant ∞-norm are represented by
hexagons and octahedra, respectively. This definition is suggested by the densities discovered by
Robson and Gerow for the cases n = 3, 4. They noted that with f (s) proportional to s, i.e. with
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f3(s) = C3s and f4(s) = C4s for certain constants Ck , the corresponding G–R densities define
RBS distributions on M(3), M(4), respectively (see Fig. 1). These facts will also follow from the
general analysis of G–R densities given below. It was natural to try to extend this construction
to larger values of n. We will prove below a rather surprising fact: not only do densities with
fn(s) = Cns fail to generate RBS distributions when n > 4, but (at least for n�250) no other
choices of fn yield RBS distributions. Concisely, it seems that the only G–R densities that yield
RBS distributions are those discovered by Robson and Gerow.

As a historical note, Gerow was already aware via numerical simulations reported in [5] that
f (s) = C5s did not yield a RBS distribution. In [7] this was verified theoretically and it was
shown that, in fact, no choice of fn gives a RBS distribution for n = 5.

Here, we will extend this result to larger values of n. For n�6, we will derive a sufficient con-
dition for the nonexistence of a G–R density on M(n). This condition can be verified numerically
for n�250. We will also show that the densities given by Gerow and Robson are the only such
densities on M(3) and M(4) and we will reprove the nonexistence of a G–R density on M(5).

We conjecture that the condition we will derive for the nonexistence of a G–R density on M(n)

holds for all n�6. While we are unable to prove this, our computational results settle all cases
likely to be of practical interest. For very large samples sizes, constructing RBS is perhaps less
important, since for large values of n a uniform sample from [−1, 1]n is, in view of the law of
large numbers, likely to be very nearly balanced.

For any probability measure P on M(n) we have the corresponding distribution function defined
on [0, 1] by

G(r) = P(rM(n)) = P({ �X ∈ M(n) : ‖ �X‖∞ �r}). (17)

In those cases where G has a density on [0, 1] we denote it by g:

G(r) = P(rM(n)) =
∫ r

0
g(s) ds. (18)

If P is defined by a G–R density h corresponding to f, we must have

G(r) =
∫ r

0
f (s)(vn−1(sM(n)))′ ds, (19)

and since vn−1(sM(n)) = sn−1vn−1(M(n)) = sn−1Vn−1,

G(r) =
∫ r

0
f (s)(n − 1)Vn−1s

n−2 ds. (20)

Thus, g(s) = (n − 1)Vn−1s
n−2f (s) for a G–R density. This relation, along with the fact that

G(1) = 1, allows us to properly normalize f. For example, in the cases treated by Robson and
Gerow we have fn(s) = Cns; normalizing g we see that gn(s) = nsn−1. Thus, the normalizing
constants Cn are given by n

(n−1)Vn−1
. A little computation reveals that V2 = 3

√
3 and V3 = 32

3 ,

so that, in our models, the densities found by Robson and Gerow correspond to f3(s) = s/2
√

3
and f4(s) = s/8.

Conversely, given any probability density g on [0, 1], we shall see how to construct a probability
measure on M(n) with the corresponding G–R density: for �X ∈ M(n),

h( �X) = f (‖ �X‖∞) = g(‖ �X‖∞)

(n − 1)Vn−1‖ �X‖n−2∞
. (21)
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It is natural to ask for which g and for which n we obtain RBS distributions. The answer, as
claimed above, is given by the following result.

Theorem 12. For n�250, the G–R density on M(n) corresponding to a density g on [0, 1] defines
a RBS distribution in exactly two cases: n = 3 with g3(s) = 3s2, and n = 4 with g4(s) = 4s3.

Before turning to the proof of this theorem, we introduce a specific model for the distribution
of �X ∈ M(n) according to the G–R density implied by a density g on [0, 1]. Consider auxiliary
random variables Y1 and Z2, . . . , Zn defined as follows: 0�Y1 �1 has the given density g, and
(independently) (Z2, . . . , Zn) is uniformly distributed with respect to the (n − 2)-volume on{

�Z ∈ [−1, 1]n−1 :
n∑

k=2

Zk = −1

}
. (22)

Let Yk = Y1Zk for k = 2, . . . , n, so that Y1 � |Yk| and
∑n

k=1 Yk = 0. Then �X = �Y yields sample
points in that part of M(n) where ‖ �X‖∞ = X1. Finally, we symmetrize over M(n):

�X = ±(Y�(1), . . . , Y�(n)), (23)

where the sign ± and the permutation � are chosen at random.

Proposition 13. Relative to (n − 1)-volume on M(n), this �X has a density of the G–R form (21).

Proof. It suffices to consider a point �X ∈ M(n) where

‖ �X‖∞ = X1 > |Xk| (k = 2, . . . , n),

and the behavior as �t → 0 of the probability P( �X + �tM(n)) that a sample point falls in the
neighborhood �X + �tM(n). Denote this probability, briefly, by P(�t). Then

P(�t) = P {± = +}P {�(1) = 1}P {Yk ∈ [Xk − �t, Xk + �t] (k = 1, . . . , n)}.
For small values of �t , P {Y1 ∈ [X1 − �t, X1 + �t]} is close to 2�tg(X1), and given Y1 the
probability

P {Yk ∈ [Xk − �t, Xk + �t] (k = 2, . . . , n)}

= P

{
Zk ∈

[
Xk

Y1
− �t

Y1
,
Xk

Y1
+ �t

Y1

]
(k = 2, . . . , n)

}

is nearly proportional to (�t/X1)
n−2, since Y1 ≈ X1 and the hyperplane {∑n

2 Zk = −1} makes
the same angle with each coordinate axis. Thus, P(�t) is nearly proportional to

1

2
· 1

n
· 2�tg(X1) · (�t/X1)

n−2

as �t → 0. It follows that the density of P relative to (n − 1)-volume, i.e.

lim
�t↓0

P(�t)

(�t)n−1Vn−1
,
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is proportional to

g(X1)

Xn−2
1

= g(‖ �X‖∞)

‖ �X‖n−2∞
.

We have, therefore, a G–R density with f (s) = Kg(s)/sn−2, for some constant K, and we must
have (21), i.e. K = 1/(n − 1)Vn−1, because of the general relation between f and g for G–R
densities. �

To see whether a given density g on [0, 1] generates a RBS distribution on M(n) we must
examine the values of P {Xk ∈ [a, b]} in the model defined above. It is sufficient to compute
P {X1 ∈ [0, t]} since the coordinates Xk have been symmetrized, i.e. they are interchangeable
and −Xk has the same distribution as Xk . Thus, the sampling vector �X will have a RBS distribution
on M(n) exactly when

P {X1 ∈ [0, t]} = t

2
(t ∈ [0, 1]). (24)

Recalling the equidistribution of Y2, . . . , Yn, we compute:

P {X1 ∈ [0, t]} = P {± = +}P {�(1) = 1}P {Y1 ∈ [0, t]}
+P {± = +}P {�(1) �= 1}P {Y2 ∈ [0, t]}
+P {± = −}P {�(1) �= 1}P {Y2 ∈ [−t, 0]}

= 1

2n

∫ t

0
g(s) ds + 1

2

(
1 − 1

n

)
P {Y1Z2 ∈ [−t, t]}

= 1

2n

∫ t

0
g(s) ds + 1

2

(
1 − 1

n

) ∫ 1

0
g(s)P

{
Z2 ∈

[−t

s
,
t

s

]}
ds.

Let Pn(r) = P {|Z2|�r}. Since Pn(t/s) = 1 when s < t , our condition for a RBS distribution
becomes: for all t ∈ [0, 1],

t

2
= 1

2

∫ t

0
g(s) ds + 1

2

(
1 − 1

n

) ∫ 1

t

g(s)Pn

(
t

s

)
ds. (25)

Differentiating with respect to t, we obtain the condition:

1 ≡ 1

n
g(t) +

(
1 − 1

n

) ∫ 1

t

g(s)P ′
n

(
t

s

)
ds

s
(t ∈ [0, 1]). (26)

A little geometry reveals that P3(r) = r and P4(r) = r , so that we may verify that (26) is satisfied
with n = 3, g3(s) = 3s2 and with n = 4, g4(s) = 4s3. This is one way to verify the discoveries
of Robson and Gerow that fn(s) = Cns yields RBS distributions for n = 3, 4. By a more involved
geometric argument one may obtain P5(r) = (24s − s3)/23 and see that g5(s) = 5s4 does not
satisfy (26) (with n = 5), i.e. that the most “natural” generalization of the constructions of Robson
and Gerow does not yield a RBS distribution for sample size 5. To use (26) more systematically,
we must first find some general expressions for P ′

n(r).
Note that the (n−2)-volume on R×[−1, 1]n−2 ∩{∑n

2 Zk = −1} can be sampled uniformly by
choosing Z3, . . . , Zn independently and uniformly on [−1, 1] and then setting Z2 = −1−∑n

3 Zk .
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Thus, the (n−2)-volume on [−1, 1]n−1 ∩{∑n
2 Zk = −1} can be sampled uniformly by repeating

the above procedure until Z2 ∈ [−1, 1]. That is, until
∑n

3 Zk ∈ [0, 2]. Thus,

Pn(s) := P {|Z2|�s} = P {∑n
3 Zk ∈ [1 − s, 1 + s]}

P {∑n
3 Zk ∈ [0, 2]} (s ∈ [0, 1]), (27)

where the Zk are now independent and uniform over [−1, 1]. Let � be the uniform density over
[−1, 1], i.e. � = 1

2I[−1,1]. Then the density �n of
∑n

3 Zk is the (n − 2)-fold convolution of �
with itself. Note that �n is an even function. It follows that, for s ∈ [0, 1],

Pn(s) =
∫ 1+s

1−s
�n(u) du∫ 2

0 �n(u) du
,

and that

P ′
n(s) = �n(1 + s) + �n(1 − s)∫ 2

0 �n(u) du
= �n(1 + s) + �n(1 − s)

2�n+1(1)
.

These functions, for s ∈ [0, 1], are polynomials in s. One way to see this, and to obtain explicit
expressions for P ′

n(s), is to compute in terms of Laplace transforms. By the Laplace transform
L�(s) of a function �(t) (with left-bounded support) we mean

L�(s) =
∫ ∞

−∞
e−st�(t) dt (s > 0).

We shall use several well-known properties of L; for example, L converts convolution products
�1 � �2 into ordinary pointwise products:

L{�1 � �2}(s) = L�1(s)L�2(s).

Since L�(s) = (es − e−s)/2s, it follows that

L�n(s) = (es − e−s)n−2

2n−2sn−2
.

Now ers/sn−2 = L{(t + r)n−3+ /(n − 3)!}(s), where t+ denotes H(t)t , H(t) being the Heaviside
function. Since L is injective,

�n(t) = 1

(n − 3)!2n−2

n−2∑
k=0

(
n − 2

k

)
(−1)k(t + n − 2 − 2k)n−3+ . (28)

In evaluating P ′
n(s) (for s ∈ [0, 1]), we need only apply (28) for t ∈ [0, 2] and we obtain

P ′
n(s) = Cn

n−2∑
k=0

(
n − 2

k

)
(−1)k{(n − 1 − 2k + s)n−3+ + (n − 1 − 2k − s)n−3+ }, (29)

where Cn = 1/((n − 3)!2n−1�n+1(1)).
Let us consider the case of even n, say n = 2m. Then in (29), 2m − 1 − 2k ± s�0 if and only

if k�m (always with s ∈ [0, 1]). So

P ′
n(s) = Cn

m−1∑
k=0

(
2(m−1)

k

)
(−1)k{(2m−1−2k + s)n−3 + (2m−1−2k−s)n−3}. (30)
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The odd case is the same but with one additional term. In both cases, the odd powers of s cancel,
and the polynomial has the form

P ′
n(s) = Cn

�n∑
j=0

cj,ns
2j , (31)

for certain coefficients cj,n, where �n = �(n − 3)/2�. These coefficients may be evaluated
explicitly in any specific case, by reference to (29); later we will take a somewhat different point
of view to derive some general properties of the cj,n.

Proposition 14. The G–R density corresponding to a probability density gn on [0,1] defines a
RBS distribution on M(n) exactly when

Lqn(s) = n

s(1 + (n − 1)LQn(s))
, (32)

where qn(t) = H(t)gn(e
−t ) and Qn(t) = H(t)P ′

n(e
−t ).

Proof. The condition (26), with g = gn, may be rewritten in the form

n ≡ qn(t) + (n − 1)

∫ 1

e−t

gn(s)P
′
n

(
e−t

s

)
ds

s
(t �0).

With the change of variable s = e−u, this becomes

n ≡ qn(t) + (n − 1)

∫ t

0
qn(u)P ′

n(e
−(t−u)) du (t �0),

i.e.

nH(t) = qn(t) + (n − 1)

∫ ∞

−∞
qn(u)Qn(t − u) du,

i.e.

nH = qn + (n − 1)qn � Qn.

Applying the Laplace transform we obtain

n

s
= Lqn(s) + (n − 1)Lqn(s)LQn(s). �

Now in terms of (31), we have

Qn(t) = H(t)Cn

�n∑
j=0

cj,ne
−2j t ,

so that

LQn(s) = Cn

�n∑
j=0

cj,n

s + 2j
.
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From Proposition 14 it follows that, in order for gn to generate a RBS distribution, we must have

Lqn(s) = n

/⎛
⎝s

⎛
⎝1 + (n − 1)Cn

�n∑
j=0

cj,n

s + 2j

⎞
⎠

⎞
⎠ . (33)

Using this condition one can check that the densities discovered by Gerow and Robson are the
only G–R densities for n = 3, 4. Indeed evaluating (33), Lq3(s) = 3

s+2 and Lq4(s) = 4
s+3 . Thus,

since L is injective, q3(s) = 3e−2t and q3(s) = 4e−3t . So g3(t) = 3t2 and g4(t) = 4t3.

Continuing, using (33) one can check that Lq5(s) = 115(s+2)

23s2+130s+192
and thus q5(t) = 5

191e− 65
23 t

(191 cos(
√

191
23 t) − 19

√
191 sin(

√
191
23 t)). However q5(1.5) < 0. This contradicts the fact that

q(t) = g(e−t ) and g is a probability density on [0, 1]. Therefore, there is no G–R density on
M(5).

We can generalize this nonexistence result to higher n without explicitly calculating Lqn

and qn.
Let

Bn(s) =
⎛
⎝ �n∏

j=0

(s + 2j)

⎞
⎠

⎛
⎝1 + (n − 1)Cn

�n∑
j=0

cj,n

s + 2j

⎞
⎠ .

Then Bn(s) is a polynomial of degree �n + 1 and

Lqn(s) = n
∏�n

j=1(s + 2j)

Bn(s)
.

Assume that Bn(s) has �n + 1 real distinct roots a0 > a1 > · · · a�n . Then for some k �= 0 and
some {bj �= 0},

Lqn(s) = n
∏�n

j=1(s + 2j)

k
∏�n

j=0(s − aj )
=

�n∑
j=0

bj

s − aj

.

Since L is injective,

qn(t) =
�n∑

j=0

bj e
aj t .

Since a0 > a1 > · · · > a�n , for large values of t the sign of qn(t) equals the sign of b0. Since g
is a probability density, q(t)�0 for all t �0. So b0 �0. We have shown the following.

Theorem 15. Let n�6. If Bn(s) has �n + 1 distinct real roots and b0 < 0 then there does not
exist a G–R density on M(n).

With a few hours of computation on a desktop computer using a computational program such as
Maple one can verify that Bn(s) has �n + 1 distinct real roots for 6�n�250. We remark that we
can show if Bn(s) has �n+1 distinct real roots then −3 < a0 < −2 and b0 < 0. However, to prove
Theorem 12 we do not need to use this fact. The second condition can be verified computationally
for 6�n�250. For example, for a given n one can check that −3 < a0 < −2. Since for all
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s ∈ (−3, −2), the sign of Bn(s) is the opposite of the sign of Lqn(s), it follows that b0 < 0 if
and only if Bn(−3) < 0 and Bn(−2) > 0. This proves Theorem 12.
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