905 research outputs found

    Orion Routing Protocol for Delay-Tolerant Networks

    Full text link
    In this paper, we address the problem of efficient routing in delay tolerant network. We propose a new routing protocol dubbed as ORION. In ORION, only a single copy of a data packet is kept in the network and transmitted, contact by contact, towards the destination. The aim of the ORION routing protocol is twofold: on one hand, it enhances the delivery ratio in networks where an end-to-end path does not necessarily exist, and on the other hand, it minimizes the routing delay and the network overhead to achieve better performance. In ORION, nodes are aware of their neighborhood by the mean of actual and statistical estimation of new contacts. ORION makes use of autoregressive moving average (ARMA) stochastic processes for best contact prediction and geographical coordinates for optimal greedy data packet forwarding. Simulation results have demonstrated that ORION outperforms other existing DTN routing protocols such as PRoPHET in terms of end-to-end delay, packet delivery ratio, hop count and first packet arrival

    VECTORS: Video communication through opportunistic relays and scalable video coding

    Full text link
    Crowd-sourced video distribution is frequently of interest in the local vicinity. In this paper, we propose a novel design to transfer such content over opportunistic networks with adaptive quality encoding to achieve reasonable delay bounds. The video segments are transmitted between source and destination in a delay tolerant manner using the Nearby Connections Android library. This implementation can be applied to multiple domains, including farm monitoring, wildlife, and environmental tracking, disaster response scenarios, etc. In this work, we present the design of an opportunistic contact based system, and we discuss basic results for the trial runs within our institute.Comment: 13 pages, 6 figures, and under 3000 words for submission to the SoftwareX journa

    A novel queue management policy for delay-tolerant networks

    Get PDF
    Delay-tolerant networks (DTNs) have attracted increasing attention from governments, academia and industries in recent years. They are designed to provide a communication channel that exploits the inherent mobility of trams, buses and cars. However, the resulting highly dynamic network suffers from frequent disconnections, thereby making node-to-node communications extremely challenging. Researchers have thus proposed many routing/forwarding strategies in order to achieve high delivery ratios and/or low latencies and/or low overheads. Their main idea is to have nodes store and carry information bundles until a forwarding opportunity arises. This, however, creates the following problems. Nodes may have short contacts and/or insufficient buffer space. Consequently, nodes need to determine (i) the delivery order of bundles at each forwarding opportunity and (ii) the bundles that should be dropped when their buffer is full. To this end, we propose an efficient scheduling and drop policy for use under quota-based protocols. In particular, we make use of the encounter rate of nodes and context information such as time to live, number of available replicas and maximum number of forwarded bundle replicas to derive a bundle\u27s priority. Simulation results, over a service quality metric comprising of delivery, delay and overhead, show that the proposed policy achieves up to 80 % improvement when nodes have an infinite buffer and up to 35 % when nodes have a finite buffer over six popular queuing policies: Drop Oldest (DO), Last Input First Output (LIFO), First Input First Output (FIFO), Most FOrwarded first (MOFO), LEast PRobable first (LEPR) and drop bundles with the greatest hop-count (HOP-COUNT)

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A Distance-Aware Replica Adaptive Data Gathering Protocol for Delay Tolerant Mobile Sensor Networks

    Get PDF
    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node’s limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes

    Routing algorithms classification & Proposed Routing Algorithm for DTN

    Get PDF
    This paper provides an introduction to Delay Tolerant Networks (DTN)alogorithms and would touch upon some basic classification. Continuous connectivity is difficult in today�s wireless world. The data preservation and security in challenged and intermittent network, is of paramount importance. In this paper, we will see how DTN provides detail classification and discription for further studies & application.an effective alternative. Security of data becomes important in disrupted networks; this paper would also discuss Praposed Routing algorithms with DTNs

    A Novel IDS Security Scheme for Multicast Communication in DTN

    Get PDF
    This DTN routing should naturally support unicast and multicast routing strategies. A network node can register itself to any receiver group by setting the corresponding destination. In this research we proposed a new security algorithm with multi cast routing against malicious packet dropping attack in DTN. The proposed security method of finding attacker is based on the link detection method for data forwarding in between sender to receiver. The packet dropping on link through node is detected and prevented by IDS security system. This method not only identified the black hole and grey hole but also prevent from routing misbehavior of malicious nodes. The attacker is identified by data dropping of packets in excessive quantity and their prevention is possible by selecting the next possible route where attacker does not exist in connected link between senders to receivers. The intermediate nodes are identified the attacker through confirm positive reply of malicious node or nodes in dynamic network. The proposed secure IDS (Intrusion Detection and prevention) is securing the DTN and improves the network performance after blocking black hole and grey hole in network. The network performance in presence of attack and secure IDS is measures through performance metrics like throughput, routing packets flooding and proposed secures routing is improves data receiving and minimizes dropping data network

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial
    corecore